Quanta Magazine recently published a reflection by Natalie Wolchover on the state of fundamental particle physics. The discussion covers a lot of ground, but one particular paragraph has gotten the lion’s share of the attention. Wolchover talked to Jared Kaplan, the ex-theoretical physicist turned co-founder of Anthropic, one of the foremost AI companies today.
Kaplan was one of Nima Arkani-Hamed’s PhD students, which adds an extra little punch.
There’s a lot to contest here. Is AI technology anywhere close to generating papers as good as the top physicists, or is that relegated to the sci-fi future? Does Kaplan really believe this, or is he just hyping up his company?
I don’t have any special insight into those questions, about the technology and Kaplan’s motivations. But I think that, even if we trusted him on the claim that AI could be generating Witten- or Nima-level papers in three years, that doesn’t mean it will replace theoretical physicists. That part of the argument isn’t a claim about the technology, but about society.
So let’s take the technological claims as given, and make them a bit more specific. Since we don’t have any objective way of judging the quality of scientific papers, let’s stick to the subjective. Today, there are a lot of people who get excited when Witten posts a new paper. They enjoy reading them, they find the insights inspiring, they love the clarity of the writing and their tendency to clear up murky ideas. They also find them reliable: the papers very rarely have mistakes, and don’t leave important questions unanswered.
Let’s use that as our baseline, then. Suppose that Anthropic had an AI workflow that could reliably write papers that were just as appealing to physicists as Witten’s papers are, for the same reasons. What happens to physicists?
Witten himself is retired, which for an academic means you do pretty much the same thing you were doing before, but now paid out of things like retirement savings and pension funds, not an institute budget. Nobody is going to fire Witten, there’s no salary to fire him from. And unless he finds these developments intensely depressing and demoralizing (possible, but very much depends on how this is presented), he’s not going to stop writing papers. Witten isn’t getting replaced.
More generally, though, I don’t think this directly results in anyone getting fired, or in universities trimming positions. The people making funding decisions aren’t just sitting on a pot of money, trying to maximize research output. They’ve got money to be spent on hires, and different pools of money to be spent on equipment, and the hires get distributed based on what current researchers at the institutes think is promising. Universities want to hire people who can get grants, to help fund the university, and absent rules about AI personhood, the AIs won’t be applying for grants.
Funding cuts might be argued for based on AI, but that will happen long before AI is performing at the Witten level. We already see this happening in other industries or government agencies, where groups that already want to cut funding are getting think tanks and consultants to write estimates that justify cutting positions, without actually caring whether those estimates are performed carefully enough to justify their conclusions. That can happen now, and doesn’t depend on technological progress.
AI could also replace theoretical physicists in another sense: the physicists themselves might use AI to do most of their work. That’s more plausible, but here adoption still heavily depends on social factors. Will people feel like they are being assessed on whether they can produce these Witten-level papers, and that only those who make them get hired, or funded? Maybe. But it will propagate unevenly, from subfield to subfield. Some areas will make their own rules forbidding AI content, there will be battles and scandals and embarrassments aplenty. It won’t be a single switch, the technology alone setting the timeline.
Finally, AI could replace theoretical physicists in another way, by people outside of academia filling the field so much that theoretical physicists have nothing more that they want to do. Some non-physicists are very passionate about physics, and some of those people have a lot of money. I’ve done writing work for one such person, whose foundation is now attempting to build an AI Physicist. If these AI Physicists get to Witten-level quality, they might start writing compelling paper after compelling paper. Those papers, though, will due to their origins be specialized. Much as philanthropists mostly fund the subfields they’ve heard of, philanthropist-funded AI will mostly target topics the people running the AI have heard are important. Much like physicists themselves adopting the technology, there will be uneven progress from subfield to subfield, inch by socially-determined inch.
In a hard-to-quantify area like progress in science, that’s all you can hope for. I suspect Kaplan got a bit of a distorted picture of how progress and merit work in theoretical physics. He studied with Nima Arkani-Hamed, who is undeniably exceptionally brilliant but also undeniably exceptionally charismatic. It must feel to a student of Nima’s that academia simply hires the best people, that it does whatever it takes to accomplish the obviously best research. But the best research is not obvious.
I think some of these people imagine a more direct replacement process, not arranged by topic and tastes, but by goals. They picture AI sweeping in and doing what theoretical physics was always “meant to do”: solve quantum gravity, and proceed to shower us with teleporters and antigravity machines. I don’t think there’s any reason to expect that to happen. If you just asked a machine to come up with the most useful model of the universe for a near-term goal, then in all likelihood it wouldn’t consider theoretical high-energy physics at all. If you see your AI as a tool to navigate between utopia and dystopia, theoretical physics might matter at some point: when your AI has devoured the inner solar system, is about to spread beyond the few light-minutes when it can signal itself in real-time, and has to commit to a strategy. But as long as the inner solar system remains un-devoured, I don’t think you’ll see an obviously successful theory of fundamental physics.








