Tag Archives: astrophysics

Generalize

What’s the difference between a model and an explanation?

Suppose you cared about dark matter. You observe that things out there in the universe don’t quite move the way you would expect. There is something, a consistent something, that changes the orbits of galaxies and the bending of light, the shape of the early universe and the spiderweb of super-clusters. How do you think about that “something”?

One option is to try to model the something. You want to use as few parameters as possible, so that your model isn’t just an accident, but will actually work to predict new data. You want to describe how it changes gravity, on all the scales you care about. Your model might be very simple, like the original MOND, and just describe a modification to Newtonian gravity, since you typically only need Newtonian gravity to model many of these phenomena. (Though MOND itself can’t account for all the things attributed to dark matter, so it had to be modified.) You might have something slightly more complicated, proposing some “matter” but not going into much detail about what it is, just enough for your model to work.

If you were doing engineering, a model like that is a fine thing to have. If you were building a spaceship and wanted to figure out what its destination would look like after a long journey, you’d need a model of dark matter like this, one that predicted how galaxies move and light bends, to do the job.

But a model like that isn’t an explanation. And the reason why is that explanations generalize.

In practice, you often just need Newtonian gravity to model how galaxies move. But if you want to model more dramatic things, the movement of the whole universe or the area around a black hole, then you need general relativity as well. So to generalize to those areas, you can’t just modify Newtonian gravity. You need an explanation, one that tells you not just how Newton’s equations change, but how Einstein’s equations change.

In practice, you can get by with a simple model of dark matter, one that doesn’t tell you very much, and just adds a new type of matter. But if you want to model quantum gravity, you need to know how this new matter interacts, not just at baseline with gravity, but with everything else. You need to know how the new matter is produced, whether it gets its mass from the Higgs boson or from something else, whether it falls into the same symmetry groups as the Standard Model or totally new ones, how it arises from tangled-up strings and multi-dimensional membranes. You need not just a model, but an explanation, one that tells you not just roughly what kind of particle you need, but how it changes our models of particle physics overall.

Physics, at its best, generalizes. Newton’s genius wasn’t that he modeled gravity on Earth, but that he unified it with gravity in the solar system. By realizing that gravity was universal, he proposed an explanation that led to much more progress than the models of predecessors like Kepler. Later, Einstein’s work on general relativity led to similar progress.

We can’t always generalize. Sometimes, we simply don’t know enough. But if we’re not engineering, then we don’t need a model, and generalizing should, at least in the long-run, be our guiding hope.

Physics’ Unique Nightmare

Halloween is coming up, so let’s talk about the most prominent monster of the physics canon, the nightmare scenario.

Not to be confused with the D&D Nightmare, which once was a convenient source of infinite consumable items for mid-level characters.

Right now, thousands of physicists search for more information about particle physics beyond our current Standard Model. They look at data from the Large Hadron Collider to look for signs of new particles and unexpected behavior, they try to detect a wide range of possible dark matter particles, and they make very precise measurements to try to detect subtle deviations. And in the back of their minds, almost all of those physicists wonder if they’ll find anything at all.

It’s not that we think the Standard Model is right. We know it has problems, deep mathematical issues that make it give nonsense answers and an apparent big mismatch with what we observe about the motion of matter and light in the universe. (You’ve probably heard this mismatch called dark matter and dark energy.)

But none of those problems guarantee an answer soon. The Standard Model will eventually fail, but it may fail only for very difficult and expensive experiments, not a Large Hadron Collider but some sort of galactic-scale Large Earth Collider. It might be that none of the experiments or searches or theories those thousands of physicists are working on will tell them anything they didn’t already know. That’s the nightmare scenario.

I don’t know another field that has a nightmare scenario quite like this. In most fields, one experiment or another might fail, not just not giving the expected evidence but not teaching anything new. But most experiments teach us something new. We don’t have a theory, in almost any field, that has the potential to explain every observation up to the limits of our experiments, but which we still hope to disprove. Only the Standard Model is like that.

And while thousands of physicists are exposed to this nightmare scenario, the majority of physicists aren’t. Physics isn’t just the science of the reductionistic laws of the smallest constituents of matter. It’s also the study of physical systems, from the bubbling chaos of nuclear physics to the formation of planets and galaxies and black holes, to the properties of materials to the movement of bacteria on a petri dish and bees in a hive. It’s also the development of new methods, from better control of individual atoms and quantum states to powerful new tricks for calculation. For some, it can be the discovery, not of reductionistic laws of the smallest scales, but of general laws of the largest scales, of how systems with many different origins can show echoes of the same behavior.

Over time, more and more of those thousands of physicists break away from the nightmare scenario, “waking up” to new questions of these kinds. For some, motivated by puzzles and skill and the beauty of physics, the change is satisfying, a chance to work on ideas that are moving forward, connected with experiment or grounded in evolving mathematics. But if your motivation is really tied to those smallest scales, to that final reductionistic “why”, then such a shift won’t be satisfying, and this is a nightmare you won’t wake up from.

Me, I’m not sure. I’m a tool-builder, and I used to tell myself that tool-builders are always needed. But I find I do care, in the end, what my tools are used for. And as we approach the nightmare scenario, I’m not at all sure I know how to wake up.

It’s Only a Model

Last week, I said that the current best estimate for the age of the universe, 13.8 billion years old, is based on a mathematical model. In order to get that number, astronomers had to assume the universe evolved in a particular way, according to a model where the universe is composed of ordinary matter, dark matter, and dark energy. In other words, the age of the universe is a model-dependent statement.

Reading that, you might ask whether we can do better. What about a model-independent measurement of the age of the universe?

As intuitive as it might seem, we can’t actually do that. In fact, if we’re really strict about it, we can’t get a model-independent measurement of anything at all. Everything is based on a model.

Imagine stepping on your bathroom scale, getting a mass in kilograms. The number it gives you seems as objective as anything. But to get that number, you have to trust that a number of models are true. You have to model gravity, to assume that the scale’s measurement of your weight gives you the right mass based on the Earth’s surface gravity being approximately constant. You have to model the circuits and sensors in the scale, and be confident that you understand how they’re supposed to work. You have to model people: to assume that the company that made the scale tested it accurately, and that the people who sold it to you didn’t lie about where it came from. And finally, you have to model error: you know that the scale can’t possibly give you your exact weight, so you need a rough idea of just how far off it can reasonably be.

Everything we know is like this. Every measurement in science builds on past science, on our understanding of our measuring equipment and our trust in others. Everything in our daily lives comes through a network of assumptions about the world around us. Everything we perceive is filtered through instincts, our understanding of our own senses and knowledge of when they do and don’t trick us.

Ok, but when I say that the age of the universe is model-dependent, I don’t really mean it like that, right?

Everything we know is model-dependent, but only some model-dependence is worth worrying about. Your knowledge of your bathroom scale comes from centuries-old physics of gravity, widely-applied principles of electronics, and a trust in the function of basic products that serves you well in every other aspect of your life. The models that knowledge depends on aren’t really in question, especially not when you just want to measure your weight.

Some measurements we make in physics are like this too. When the experimental collaborations at the LHC measured the Higgs mass, they were doing something far from routine. But the models they based that measurement on, models of particle physics and particle detector electronics and their own computer code, are still so well-tested that it mostly doesn’t make sense to think of this as a model-dependent measurement. If we’re questioning the Higgs mass, it’s only because we’re questioning something much bigger.

The age of the universe, though, is trickier. Our most precise measurements are based on a specific model: we estimate what the universe is made of and how fast it’s expanding, plug it into our model of how the universe changes over time, and get an estimate for the age. You might suggest that we should just look out into the universe and find the oldest star, but that’s model-dependent too. Stars don’t have rings like trees. Instead, to estimate the age of a star we have to have some model for what kind of light it emits, and for how that light has changed over the history of the universe before it reached us.

These models are not quite as well-established as the models behind particle physics, let alone those behind your bathroom scale. Our models of stars are pretty good, applied to many types of stars in many different galaxies, but they do involve big, complicated systems involving many types of extreme and difficult to estimate physics. Star models get revised all the time, usually in minor ways but occasionally in more dramatic ones. Meanwhile, our model of the whole universe is powerful, but by its very nature much less-tested. We can test it on observations of the whole universe today, or on observations of the whole universe in the past (like the cosmic microwave background). And it works well for these, better than any other model. But it’s not inconceivable, not unrealistic, and above all not out of context, that another model could take its place. And if it did, many of the model-dependent measurements we’ve based on it will have to change.

So that’s why, while everything we know is model-dependent, some are model-dependent in a more important way. Some things, even if we feel they have solid backing, may well turn out to be wrong, in a way that we have reason to take seriously. The age of the universe is pretty well-established as these things go, but it still is one of those types of things, where there is enough doubt in our model that we can’t just take the measurement at face value.

Small Shifts for Specificity

Cosmologists are annoyed at a recent spate of news articles claiming the universe is 26.7 billion years old (rather than 13.8 billion as based on the current best measurements). To some of the science-reading public, the news sounds like a confirmation of hints they’d already heard: about an ancient “Methuselah” star that seemed to be older than the universe (later estimates put it younger), and recent observations from the James Webb Space Telescope of early galaxies that look older than they ought.

“The news doesn’t come from a telescope, though, or a new observation of the sky. Instead, it comes from this press release from the University of Ottawa: “Reinventing cosmology: uOttawa research puts age of universe at 26.7 — not 13.7 — billion years”.

(If you look, you’ll find many websites copying this press release almost word-for-word. This is pretty common in science news, where some websites simply aggregate press releases and others base most of their science news on them rather than paying enough for actual journalism.)

The press release, in turn, is talking about a theory, not an observation. The theorist, Rajendra Gupta, was motivated by examples like the early galaxies observed by JWST and the Methuselah star. Since the 13.8 billion year age of the universe is based on a mathematical model, he tried to find a different mathematical model that led to an older universe. Eventually, by hypothesizing what seems like every unproven physics effect he could think of, he found one that gives a different estimate, 26.7 billion. He probably wasn’t the first person to do this, because coming up with different models to explain odd observations is a standard thing cosmologists do all the time, and until one of the models is shown to explain a wider range of observations (because our best theories explain a lot, so they’re hard to replace), they’re just treated as speculation, not newsworthy science.

This is a pretty clear case of hype, and as such most of the discussion has been about what went wrong. Should we blame the theorist? The university? The journalists? Elon Musk?

Rather than blame, I think it’s more productive to offer advice. And in this situation, the person I think could use some advice is the person who wrote the press release.

So suppose you work for a university, writing their press releases. One day, you hear that one of your professors has done something very cool, something worthy of a press release: they’ve found a new estimate for the age of the universe. What do you do?

One thing you absolutely shouldn’t do is question the science. That just isn’t your job, and even if it were you don’t have the expertise to do that. Anyone who’s hoping that you will only write articles about good science and not bad science is being unrealistic, that’s just not an option.

If you can’t be more accurate, though, you can still be more precise. You can write your article, and in particular your headline, so that you express what you do know as clearly and specifically as possible.

(I’m assuming here you write your own headlines. This is not normal in journalism, where most headlines are written by an editor, not by the writer of a piece. But university press offices are small enough that I’m assuming, perhaps incorrectly, that you can choose how to title your piece.)

Let’s take a look at the title, “Reinventing cosmology: uOttawa research puts age of universe at 26.7 — not 13.7 — billion years”, and see if we can make some small changes to improve it.

One very general word in that title is “research”. Lots of people do research: astronomers do research when they collect observations, theorists do research when they make new models. If you say “research”, some people will think you’re reporting a new observation, a new measurement that gives a radically different age for the universe.

But you know that’s not true, it’s not what the scientist you’re talking to is telling you. So to avoid the misunderstanding, you can get a bit more specific, and replace the word “research” with a more precise one: “Reinventing cosmology: uOttawa theory puts age of universe at 26.7 — not 13.7 — billion years”.

“Theory” is just as familiar a word as “research”. You won’t lose clicks, you won’t confuse people. But now, you’ve closed off a big potential misunderstanding. By a small shift, you’ve gotten a lot clearer. And you didn’t need to question the science to do it!

You can do more small shifts, if you understand a bit more of the science. “Puts” is kind of ambiguous: a theory could put an age somewhere because it computes it from first principles, or because it dialed some parameter to get there. Here, the theory was intentionally chosen to give an older universe, so the title should hint at this in some way. Instead of “puts”, then, you can use “allows”: “Reinventing cosmology: uOttawa theory allows age of universe to be 26.7 — not 13.7 — billion years”.

These kinds of little tricks can be very helpful. If you’re trying to avoid being misunderstood, then it’s good to be as specific as you can, given what you understand. If you do it carefully, you don’t have to question your scientists’ ideas or downplay their contributions. You can do your job, promote your scientists, and still contribute to responsible journalism.

Another Window on Gravitational Waves

If you follow astronomers on twitter, you may have heard some rumblings. For the last week or so, a few big collaborations have been hyping up an announcement of “something big”.

Those who knew who those collaborations were could guess the topic. Everyone else found out on Wednesday, when the alphabet soup of NANOGrav, EPTA, PPTA, CPTA, and InPTA announced detection of a gravitational wave background.

These guys

Who are these guys? And what have they found?

You’ll notice the letters “PTA” showing up again and again here. PTA doesn’t stand for Parent-Teacher Association, but for Pulsar Timing Array. Pulsar timing arrays keep track of pulsars, special neutron stars that spin around, shooting out jets of light. The ones studied by PTAs spin so regularly that we can use them as a kind of cosmic clock, counting time by when their beams hit our telescopes. They’re so regular that, if we see them vary, the best explanation isn’t that their spinning has changed: it’s that space-time itself has.

Because of that, we can use pulsar timing arrays to detect subtle shifts in space and time, ripples in the fabric of the universe caused by enormous gravitational waves. That’s what all these collaborations are for: the Indian Pulsar Timing Array (InPTA), the Chinese Pulsar Timing Array (CPTA), the Parkes Pulsar Timing Array (PPTA), the European Pulsar Timing Array (EPTA), and the North American Nanohertz Observatory for Gravitational Waves (NANOGrav).

For a nice explanation of what they saw, read this twitter thread by Katie Mack, who unlike me is actually an astronomer. NANOGrav, in typical North American fashion, is talking the loudest about it, but in this case they kind of deserve it. They have the most data, fifteen years of measurements, letting them make the clearest case that they are actually seeing evidence of gravitational waves. (And not, as an earlier measurement of theirs saw, Jupiter.)

We’ve seen evidence of gravitational waves before of course, most recently from the gravitational wave observatories LIGO and VIRGO. LIGO and VIRGO could pinpoint their results to colliding black holes and neutrons stars, estimating where they were and how massive. The pulsar timing arrays can’t quite do that yet, even with fifteen years of data. They expect that the waves they are seeing come from colliding black holes as well, but much larger ones: with pulsars spread over a galaxy, the effects they detect are from black holes big enough to be galactic cores. Rather than one at a time, they would see a chorus of many at once, a gravitational wave background (though not to be confused with a cosmic gravitational wave background: this would be from black holes close to the present day, not from the origin of the universe). If it is this background, then they’re seeing a bit more of the super-massive black holes than people expected. But for now, they’re not sure: they can show they’re seeing gravitational waves, but so far not much more.

With that in mind, it’s best to view the result, impressive as it is, as a proof of principle. Much as LIGO showed, not that gravitational waves exist at all, but that it is possible for us to detect them, these pulsar timing arrays have shown that it is possible to detect the gravitational wave background on these vast scales. As the different arrays pool their data and gather more, the technique will become more and more useful. We’ll start learning new things about the life-cycles of black holes and galaxies, about the shape of the universe, and maybe if we’re lucky some fundamental physics too. We’ve opened up a new window, making sure it’s bright enough we can see. Now we can sit back, and watch the universe.

Solutions and Solutions

The best misunderstandings are detective stories. You can notice when someone is confused, but digging up why can take some work. If you manage, though, you learn much more than just how to correct the misunderstanding. You learn something about the words you use, and the assumptions you make when using them.

Recently, someone was telling me about a book they’d read on Karl Schwarzschild. Schwarzschild is famous for discovering the equations that describe black holes, based on Einstein’s theory of gravitation. To make the story more dramatic, he did so only shortly before dying from a disease he caught fighting in the first World War. But this person had the impression that Schwarzschild had done even more. According to this person, the book said that Schwarzschild had done something to prove Einstein’s theory, or to complete it.

Another Schwarzschild accomplishment: that mustache

At first, I thought the book this person had read was wrong. But after some investigation, I figured out what happened.

The book said that Schwarzschild had found the first exact solution to Einstein’s equations. That’s true, and as a physicist I know precisely what it means. But I now realize that the average person does not.

In school, the first equations you solve are algebraic, x+y=z. Some equations, like x^2=4, have solutions. Others, like x^2=-4, seem not to, until you learn about new types of numbers that solve them. Either way, you get used to equations being like a kind of puzzle, a question for which you need to find an answer.

If you’re thinking of equations like that, then it probably sounds like Schwarzschild “solved the puzzle”. If Schwarzschild found the first solution to Einstein’s equation, that means that Einstein did not. That makes it sound like Einstein’s work was incomplete, that he had asked the right question but didn’t yet know the right answer.

Einstein’s equations aren’t algebraic equations, though. They’re differential equations. Instead of equations for a variable, they’re equations for a mathematical function, a formula that, in this case, describes the curvature of space and time.

Scientists in many fields use differential equations, but they use them in different ways. If you’re a chemist or a biologist, it might be that you’re most used to differential equations with simple solutions, like sines, cosines, or exponentials. You learn how to solve these equations, and they feel a bit like the algebraic ones: you have a puzzle, and then you solve the puzzle.

Other fields, though, have tougher differential equations. If you’re a physicist or an engineer, you’ve likely met differential equations that you can’t treat in this way. If you’re dealing with fluid mechanics, or general relativity, or even just Newtonian gravity in an odd situation, you can’t usually solve the problem by writing down known functions like sines and cosines.

That doesn’t mean you can’t solve the problem at all, though!

Even if you can’t write down a solution to a differential equation with sines and cosines, a solution can still exist. (In some cases, we can even prove a solution exists!) It just won’t be written in terms of sines and cosines, or other functions you’ve learned in school. Instead, the solution will involve some strange functions, functions no-one has heard of before.

If you want, you can make up names for those functions. But unless you’re going to classify them in a useful way, there’s not much point. Instead, you work with these functions by approximation. You calculate them in a way that doesn’t give you the full answer, but that does let you estimate how close you are. That’s good enough to give you numbers, which in turn is good enough to compare to experiments. With just an approximate solution, like this, Einstein could check if his equations described the orbit of Mercury.

Once you know you can find these approximate solutions, you have a different perspective on equations. An equation isn’t just a mysterious puzzle. If you can approximate the solution, then you already know how to solve that puzzle. So we wouldn’t think of Einstein’s theory as incomplete because he was only able to find approximate solutions: for a theory as complicated as Einstein’s, that’s perfectly normal. Most of the time, that’s all we need.

But it’s still pretty cool when you don’t have to do this. Sometimes, we can not just approximate, but actually “write down” the solution, either using known functions or well-classified new ones. We call a solution like that an analytic solution, or an exact solution.

That’s what Schwarzschild managed. These kinds of exact solutions often only work in special situations, and Schwarzschild’s is no exception. His Schwarzschild solution works for matter in a special situation, arranged in a perfect sphere. If matter happened to be arranged in that way, then the shape of space and time would be exactly as Schwarzschild described it.

That’s actually pretty cool! Einstein’s equations are complicated enough that no-one was sure that there were any solutions like that, even in very special situations. Einstein expected it would be a long time until they could do anything except approximate solutions.

(If Schwarzschild’s solution only describes matter arranged in a perfect sphere, why do we think it describes real black holes? This took later work, by people like Roger Penrose, who figured out that matter compressed far enough will always find a solution like Schwarzschild’s.)

Schwarzschild intended to describe stars with his solution, or at least a kind of imaginary perfect star. What he found was indeed a good approximation to real stars, but also the possibility that a star shoved into a sufficiently small space would become something weird and new, something we would come to describe as a black hole. That’s a pretty impressive accomplishment, especially for someone on the front lines of World War One. And if you know the difference between an exact solution and an approximate one, you have some idea of what kind of accomplishment that is.

Why Dark Matter Feels Like Cheating (And Why It Isn’t)

I’ve never met someone who believed the Earth was flat. I’ve met a few who believed it was six thousand years old, but not many. Occasionally, I run into crackpots who rail against relativity or quantum mechanics, or more recent discoveries like quarks or the Higgs. But for one conclusion of modern physics, the doubters are common. For this one idea, the average person may not insist that the physicists are wrong, but they’ll usually roll their eyes a little bit, ask the occasional “really?”

That idea is dark matter.

For the average person, dark matter doesn’t sound like normal, responsible science. It sounds like cheating. Scientists try to explain the universe, using stars and planets and gravity, and eventually they notice the equations don’t work, so they just introduce some new matter nobody can detect. It’s as if a budget didn’t add up, so the accountant just introduced some “dark expenses” to hide the problem.

Part of what’s going on here is that fundamental physics, unlike other fields, doesn’t have to reduce to something else. An accountant has to explain the world in terms of transfers of money, a chemist in terms of atoms and molecules. A physicist has to explain the world in terms of math, with no more restrictions than that. Whatever the “base level” of another field is, physics can, and must, go deeper.

But that doesn’t explain everything. Physics may have to explain things in terms of math, but we shouldn’t just invent new math whenever we feel like it. Surely, we should prefer explanations in terms of things we know to explanations in terms of things we don’t know. The question then becomes, what justifies the preference? And when do we get to break it?

Imagine you’re camping in your backyard. You’ve brought a pack of jumbo marshmallows. You wake up to find a hole torn in the bag, a few marshmallows strewn on a trail into the bushes, the rest gone. You’re tempted to imagine a new species of ant, with enormous jaws capable of ripping open plastic and hauling the marshmallows away. Then you remember your brother likes marshmallows, and it’s probably his fault.

Now imagine instead you’re camping in the Amazon rainforest. Suddenly, the ant explanation makes sense. You may not have a particular species of ants in mind, but you know the rainforest is full of new species no-one has yet discovered. And you’re pretty sure your brother couldn’t have flown to your campsite in the middle of the night and stolen your marshmallows.

We do have a preference against introducing new types of “stuff”, like new species of ants or new particles. We have that preference because these new types of stuff are unlikely, based on our current knowledge. We don’t expect new species of ants in our backyards, because we think we have a pretty good idea of what kinds of ants exist, and we think a marshmallow-stealing brother is more likely. That preference gets dropped, however, based on the strength of the evidence. If it’s very unlikely our brother stole the marshmallows, and if we’re somewhere our knowledge of ants is weak, then the marshmallow-stealing ants are more likely.

Dark matter is a massive leap. It’s not a massive leap because we can’t see it, but simply because it involves new particles, particles not in our Standard Model of particle physics. (Or, for the MOND-ish fans, new fields not present in Einstein’s theory of general relativity.) It’s hard to justify physics beyond the Standard Model, and our standards for justifying it are in general very high: we need very precise experiments to conclude that the Standard Model is well and truly broken.

For dark matter, we keep those standards. The evidence for some kind of dark matter, that there is something that can’t be explained by just the Standard Model and Einstein’s gravity, is at this point very strong. Far from a vague force that appears everywhere, we can map dark matter’s location, systematically describe its effect on the motion of galaxies to clusters of galaxies to the early history of the universe. We’ve checked if there’s something we’ve left out, if black holes or unseen planets might cover it, and they can’t. It’s still possible we’ve missed something, just like it’s possible your brother flew to the Amazon to steal your marshmallows, but it’s less likely than the alternatives.

Also, much like ants in the rainforest, we don’t know every type of particle. We know there are things we’re missing: new types of neutrinos, or new particles to explain quantum gravity. These don’t have to have anything to do with dark matter, they might be totally unrelated. But they do show that we should expect, sometimes, to run into particles we don’t already know about. We shouldn’t expect that we already know all the particles.

If physicists did what the cartoons suggest, it really would be cheating. If we proposed dark matter because our equations didn’t match up, and stopped checking, we’d be no better than an accountant adding “dark money” to a budget. But we didn’t do that. When we argue that dark matter exists, it’s because we’ve actually tried to put together the evidence, because we’ve weighed it against the preference to stick with the Standard Model and found the evidence tips the scales. The instinct to call it cheating is a good instinct, one you should cultivate. But here, it’s an instinct physicists have already taken into account.

When Your Research Is a Cool Toy

Merry Newtonmas, everyone!

In the US, PhD students start without an advisor. As they finish their courses, different research groups make their pitch, trying to get them to join. Some promise interesting puzzles and engaging mysteries, others talk about the importance of their work, how it can help society or understand the universe.

Thinking back to my PhD, there is one pitch I remember to this day. The pitch was from the computational astrophysics group, and the message was a simple one: “we blow up stars”.

Obviously, these guys didn’t literally blow up stars: they simulated supernovas. They weren’t trying to make some weird metaphysical argument, they didn’t believe their simulation was somehow the real thing. The point they were making, instead, was emotional: blowing up stars feels cool.

Scientists can be motivated by curiosity, fame, or altruism, and these are familiar things. But an equally important motivation is a sense of play. If your job is to build tiny cars for rats, some of your motivation has to be the sheer joy of building tiny cars for rats. If you simulate supernovas, then part of your motivation can be the same as my nephew hurling stuffed animals down the stairs: that joyful moment when you yell “kaboom!”

Probably, your motivation shouldn’t just be to play with a cool toy. You need some of those “serious” scientific motivations as well. But for those of you blessed with a job where you get to say “kaboom”, you have that extra powerful reason to get up in the morning. And for those of you just starting a scientific career, may you have some cool toys under your Newtonmas tree!

Machine Learning, Occam’s Razor, and Fundamental Physics

There’s a saying in physics, attributed to the famous genius John von Neumann: “With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.”

Say you want to model something, like some surprising data from a particle collider. You start with some free parameters: numbers in your model that aren’t decided yet. You then decide those numbers, “fixing” them based on the data you want to model. Your goal is for your model not only to match the data, but to predict something you haven’t yet measured. Then you can go out and check, and see if your model works.

The more free parameters you have in your model, the easier this can go wrong. More free parameters make it easier to fit your data, but that’s because they make it easier to fit any data. Your model ends up not just matching the physics, but matching the mistakes as well: the small errors that crop up in any experiment. A model like that may look like it’s a great fit to the data, but its predictions will almost all be wrong. It wasn’t just fit, it was overfit.

We have statistical tools that tell us when to worry about overfitting, when we should be impressed by a model and when it has too many parameters. We don’t actually use these tools correctly, but they still give us a hint of what we actually want to know, namely, whether our model will make the right predictions. In a sense, these tools form the mathematical basis for Occam’s Razor, the idea that the best explanation is often the simplest one, and Occam’s Razor is a critical part of how we do science.

So, did you know machine learning was just modeling data?

All of the much-hyped recent advances in artificial intelligence, GPT and Stable Diffusion and all those folks, at heart they’re all doing this kind of thing. They start out with a model (with a lot more than five parameters, arranged in complicated layers…), then use data to fix the free parameters. Unlike most of the models physicists use, they can’t perfectly fix these numbers: there are too many of them, so they have to approximate. They then test their model on new data, and hope it still works.

Increasingly, it does, and impressively well, so well that the average person probably doesn’t realize this is what it’s doing. When you ask one of these AIs to make an image for you, what you’re doing is asking what image the model predicts would show up captioned with your text. It’s the same sort of thing as asking an economist what their model predicts the unemployment rate will be when inflation goes up. The machine learning model is just way, way more complicated.

As a physicist, the first time I heard about this, I had von Neumann’s quote in the back of my head. Yes, these machines are dealing with a lot more data, from a much more complicated reality. They literally are trying to fit elephants, even elephants wiggling their trunks. Still, the sheer number of parameters seemed fishy here. And for a little bit things seemed even more fishy, when I learned about double descent.

Suppose you start increasing the number of parameters in your model. Initially, your model gets better and better. Your predictions have less and less error, your error descends. Eventually, though, the error increases again: you have too many parameters so you’re over-fitting, and your model is capturing accidents in your data, not reality.

In machine learning, weirdly, this is often not the end of the story. Sometimes, your prediction error rises, only to fall once more, in a double descent.

For a while, I found this deeply disturbing. The idea that you can fit your data, start overfitting, and then keep overfitting, and somehow end up safe in the end, was terrifying. The way some of the popular accounts described it, like you were just overfitting more and more and that was fine, was baffling, especially when they seemed to predict that you could keep adding parameters, keep fitting tinier and tinier fleas on the elephant’s trunk, and your predictions would never start going wrong. It would be the death of Occam’s Razor as we know it, more complicated explanations beating simpler ones off to infinity.

Luckily, that’s not what happens. And after talking to a bunch of people, I think I finally understand this enough to say something about it here.

The right way to think about double descent is as overfitting prematurely. You do still expect your error to eventually go up: your model won’t be perfect forever, at some point you will really overfit. It might take a long time, though: machine learning people are trying to model very complicated things, like human behavior, with giant piles of data, so very complicated models may often be entirely appropriate. In the meantime, due to a bad choice of model, you can accidentally overfit early. You will eventually overcome this, pushing past with more parameters into a model that works again, but for a little while you might convince yourself, wrongly, that you have nothing more to learn.

(You can even mitigate this by tweaking your setup, potentially avoiding the problem altogether.)

So Occam’s Razor still holds, but with a twist. The best model is simple enough, but no simpler. And if you’re not careful enough, you can convince yourself that a too-simple model is as complicated as you can get.

Image from Astral Codex Ten

I was reminded of all this recently by some articles by Sabine Hossenfelder.

Hossenfelder is a critic of mainstream fundamental physics. The articles were her restating a point she’s made many times before, including in (at least) one of her books. She thinks the people who propose new particles and try to search for them are wasting time, and the experiments motivated by those particles are wasting money. She’s motivated by something like Occam’s Razor, the need to stick to the simplest possible model that fits the evidence. In her view, the simplest models are those in which we don’t detect any more new particles any time soon, so those are the models she thinks we should stick with.

I tend to disagree with Hossenfelder. Here, I was oddly conflicted. In some of her examples, it seemed like she had a legitimate point. Others seemed like she missed the mark entirely.

Talk to most astrophysicists, and they’ll tell you dark matter is settled science. Indeed, there is a huge amount of evidence that something exists out there in the universe that we can’t see. It distorts the way galaxies rotate, lenses light with its gravity, and wiggled the early universe in pretty much the way you’d expect matter to.

What isn’t settled is whether that “something” interacts with anything else. It has to interact with gravity, of course, but everything else is in some sense “optional”. Astroparticle physicists use satellites to search for clues that dark matter has some other interactions: perhaps it is unstable, sometimes releasing tiny signals of light. If it did, it might solve other problems as well.

Hossenfelder thinks this is bunk (in part because she thinks those other problems are bunk). I kind of do too, though perhaps for a more general reason: I don’t think nature owes us an easy explanation. Dark matter isn’t obligated to solve any of our other problems, it just has to be dark matter. That seems in some sense like the simplest explanation, the one demanded by Occam’s Razor.

At the same time, I disagree with her substantially more on collider physics. At the Large Hadron Collider so far, all of the data is reasonably compatible with the Standard Model, our roughly half-century old theory of particle physics. Collider physicists search that data for subtle deviations, one of which might point to a general discrepancy, a hint of something beyond the Standard Model.

While my intuitions say that the simplest dark matter is completely dark, they don’t say that the simplest particle physics is the Standard Model. Back when the Standard Model was proposed, people might have said it was exceptionally simple because it had a property called “renormalizability”, but these days we view that as less important. Physicists like Ken Wilson and Steven Weinberg taught us to view theories as a kind of series of corrections, like a Taylor series in calculus. Each correction encodes new, rarer ways that particles can interact. A renormalizable theory is just the first term in this series. The higher terms might be zero, but they might not. We even know that some terms cannot be zero, because gravity is not renormalizable.

The two cases on the surface don’t seem that different. Dark matter might have zero interactions besides gravity, but it might have other interactions. The Standard Model might have zero corrections, but it might have nonzero corrections. But for some reason, my intuition treats the two differently: I would find it completely reasonable for dark matter to have no extra interactions, but very strange for the Standard Model to have no corrections.

I think part of where my intuition comes from here is my experience with other theories.

One example is a toy model called sine-Gordon theory. In sine-Gordon theory, this Taylor series of corrections is a very familiar Taylor series: the sine function! If you go correction by correction, you’ll see new interactions and more new interactions. But if you actually add them all up, something surprising happens. Sine-Gordon turns out to be a special theory, one with “no particle production”: unlike in normal particle physics, in sine-Gordon particles can neither be created nor destroyed. You would never know this if you did not add up all of the corrections.

String theory itself is another example. In string theory, elementary particles are replaced by strings, but you can think of that stringy behavior as a series of corrections on top of ordinary particles. Once again, you can try adding these things up correction by correction, but once again the “magic” doesn’t happen until the end. Only in the full series does string theory “do its thing”, and fix some of the big problems of quantum gravity.

If the real world really is a theory like this, then I think we have to worry about something like double descent.

Remember, double descent happens when our models can prematurely get worse before getting better. This can happen if the real thing we’re trying to model is very different from the model we’re using, like the example in this explainer that tries to use straight lines to match a curve. If we think a model is simpler because it puts fewer corrections on top of the Standard Model, then we may end up rejecting a reality with infinite corrections, a Taylor series that happens to add up to something quite nice. Occam’s Razor stops helping us if we can’t tell which models are really the simple ones.

The problem here is that every notion of “simple” we can appeal to here is aesthetic, a choice based on what makes the math look nicer. Other sciences don’t have this problem. When a biologist or a chemist wants to look for the simplest model, they look for a model with fewer organisms, fewer reactions…in the end, fewer atoms and molecules, fewer of the building-blocks given to those fields by physics. Fundamental physics can’t do this: we build our theories up from mathematics, and mathematics only demands that we be consistent. We can call theories simpler because we can write them in a simple way (but we could write them in a different way too). Or we can call them simpler because they look more like toy models we’ve worked with before (but those toy models are just a tiny sample of all the theories that are possible). We don’t have a standard of simplicity that is actually reliable.

From the Wikipedia page for dark matter halos

There is one other way out of this pickle. A theory that is easier to write down is under no obligation to be true. But it is more likely to be useful. Even if the real world is ultimately described by some giant pile of mathematical parameters, if a simple theory is good enough for the engineers then it’s a better theory to aim for: a useful theory that makes peoples’ lives better.

I kind of get the feeling Hossenfelder would make this objection. I’ve seen her argue on twitter that scientists should always be able to say what their research is good for, and her Guardian article has this suggestive sentence: “However, we do not know that dark matter is indeed made of particles; and even if it is, to explain astrophysical observations one does not need to know details of the particles’ behaviour.”

Ok yes, to explain astrophysical observations one doesn’t need to know the details of dark matter particles’ behavior. But taking a step back, one doesn’t actually need to explain astrophysical observations at all.

Astrophysics and particle physics are not engineering problems. Nobody out there is trying to steer a spacecraft all the way across a galaxy, navigating the distribution of dark matter, or creating new universes and trying to make sure they go just right. Even if we might do these things some day, it will be so far in the future that our attempts to understand them won’t just be quaint: they will likely be actively damaging, confusing old research in dead languages that the field will be better off ignoring to start from scratch.

Because of that, usefulness is also not a meaningful guide. It cannot tell you which theories are more simple, which to favor with Occam’s Razor.

Hossenfelder’s highest-profile recent work falls afoul of one or the other of her principles. Her work on the foundations of quantum mechanics could genuinely be useful, but there’s no reason aside from claims of philosophical beauty to expect it to be true. Her work on modeling dark matter is at least directly motivated by data, but is guaranteed to not be useful.

I’m not pointing this out to call Hossenfelder a hypocrite, as some sort of ad hominem or tu quoque. I’m pointing this out because I don’t think it’s possible to do fundamental physics today without falling afoul of these principles. If you want to hold out hope that your work is useful, you don’t have a great reason besides a love of pretty math: otherwise, anything useful would have been discovered long ago. If you just try to model existing data as best you can, then you’re making a model for events far away or locked in high-energy particle colliders, a model no-one else besides other physicists will ever use.

I don’t know the way through this. I think if you need to take Occam’s Razor seriously, to build on the same foundations that work in every other scientific field…then you should stop doing fundamental physics. You won’t be able to make it work. If you still need to do it, if you can’t give up the sub-field, then you should justify it on building capabilities, on the kind of “practice” Hossenfelder also dismisses in her Guardian piece.

We don’t have a solid foundation, a reliable notion of what is simple and what isn’t. We have guesses and personal opinions. And until some experiment uncovers some blinding flash of new useful meaningful magic…I don’t think we can do any better than that.

Don’t Trust the Experiments, Trust the Science

I was chatting with an astronomer recently, and this quote by Arthur Eddington came up:

“Never trust an experimental result until it has been confirmed by theory.”

Arthur Eddington

At first, this sounds like just typical theorist arrogance, thinking we’re better than all those experimentalists. It’s not that, though, or at least not just that. Instead, it’s commenting on a trend that shows up again and again in science, but rarely makes the history books. Again and again an experiment or observation comes through with something fantastical, something that seems like it breaks the laws of physics or throws our best models into disarray. And after a few months, when everyone has checked, it turns out there was a mistake, and the experiment agrees with existing theories after all.

You might remember a recent example, when a lab claimed to have measured neutrinos moving faster than the speed of light, only for it to turn out to be due to a loose cable. Experiments like this aren’t just a result of modern hype: as Eddington’s quote shows, they were also common in his day. In general, Eddington’s advice is good: when an experiment contradicts theory, theory tends to win in the end.

This may sound unscientific: surely we should care only about what we actually observe? If we defer to theory, aren’t we putting dogma ahead of the evidence of our senses? Isn’t that the opposite of good science?

To understand what’s going on here, we can use an old philosophical argument: David Hume’s argument against miracles. David Hume wanted to understand how we use evidence to reason about the world. He argued that, for miracles in particular, we can never have good evidence. In Hume’s definition, a miracle was something that broke the established laws of science. Hume argued that, if you believe you observed a miracle, there are two possibilities: either the laws of science really were broken, or you made a mistake. The thing is, laws of science don’t just come from a textbook: they come from observations as well, many many observations in many different conditions over a long period of time. Some of those observations establish the laws in the first place, others come from the communities that successfully apply them again and again over the years. If your miracle was real, then it would throw into doubt many, if not all, of those observations. So the question you have to ask is: it it more likely those observations were wrong? Or that you made a mistake? Put another way, your evidence is only good enough for a miracle if it would be a bigger miracle if you were wrong.

Hume’s argument always struck me as a little bit too strict: if you rule out miracles like this, you also rule out new theories of science! A more modern approach would use numbers and statistics, weighing the past evidence for a theory against the precision of the new result. Most of the time you’d reach the same conclusion, but sometimes an experiment can be good enough to overthrow a theory.

Still, theory should always sit in the background, a kind of safety net for when your experiments screw up. It does mean that when you don’t have that safety net you need to be extra-careful. Physics is an interesting case of this: while we have “the laws of physics”, we don’t have any established theory that tells us what kinds of particles should exist. That puts physics in an unusual position, and it’s probably part of why we have such strict standards of statistical proof. If you’re going to be operating without the safety net of theory, you need that kind of proof.

This post was also inspired by some biological examples. The examples are politically controversial, so since this is a no-politics blog I won’t discuss them in detail. (I’ll also moderate out any comments that do.) All I’ll say is that I wonder if in that case the right heuristic is this kind of thing: not to “trust scientists” or “trust experts” or even “trust statisticians”, but just to trust the basic, cartoon-level biological theory.