Tag Archives: DoingScience

Confidence and Friendliness in Science

I’ve seen three kinds of scientific cultures.

First, there are folks who are positive about almost everyone. Ask them about someone else’s lab, even a competitor, and they’ll be polite at worst, and often downright excited. Anyone they know, they’ll tell you how cool the work they’re doing is, how it’s important and valuable and worth doing. They might tell you they prefer a different approach, but they’ll almost never bash someone’s work.

I’ve heard this comes out of American culture, and I can kind of see it. There’s an attitude in the US that everything needs to be described as positively as possible. This is especially true in a work context. Negativity is essentially a death sentence, doled out extremely rarely: if you explicitly say someone or their work is bad, you’re trying to get them fired. You don’t do that unless someone really really deserves it.

That style of scientific culture is growing, but it isn’t universal. There’s still a big cultural group that is totally ok with negativity: as long as it’s directed at other people, anyway.

This scientific culture prides itself on “telling it like it is”. They’ll happily tell you about how everything everyone else is doing is bullshit. Sometimes, they claim their ideas are the only ways forward. Others will have a small number of other people who they trust, who have gained their respect in one way or another. This sort of culture is most stereotypically associated with Russians: a “Russian-style” seminar, for example, is one where the speaker is aggressively questioned for hours.

It may sound like those are the only two options, but there is a third. While “American-style” scientists don’t criticize anyone, and “Russian-style” scientists criticize everyone else, there are also scientists who criticize almost everyone, including themselves.

With a light touch, this culture can be one of the best. There can be a real focus on “epistemic humility”, on always being clear of how much we still don’t know.

However, it can be worryingly easy to spill past that light touch, into something toxic. When the criticism goes past humility and into a lack of confidence in your own work, you risk falling into a black hole, where nothing is going well and nobody has a way out. This kind of culture can spread, filling a workplace and infecting anyone who spends too long there with the conviction that nothing will ever measure up again.

If you can’t manage that light skeptical touch, then your options are American-style or Russian-style. I don’t think either is obviously better. Both have their blind spots: the Americans can let bad ideas slide to avoid rocking the boat, while the Russians can be blind to their own flaws, confident that because everyone else seems wrong they don’t need to challenge their own worldview.

You have one more option, though. Now that you know this, you can recognize each for what it is: not the one true view of the world, but just one culture’s approach to the truth. If you can do that, you can pick up each culture as you need, switching between them as you meet different communities and encounter different things. If you stay aware, you can avoid fighting over culture and discourse, and use your energy on what matters: the science.

Visiting the IAS

I’m at the Institute for Advanced Study, or IAS, this week.

There isn’t a conference going on, but if you looked at the visitor list you’d be forgiven for thinking there was. We have talks in my subfield almost every day this week, two professors from my subfield here on sabbatical, and extra visitors on top of that.

The IAS is a bit of an odd place. Partly, that’s due to its physical isolation: tucked away in the woods behind Princeton, a half-hour’s walk from the nearest restaurant, it’s supposed to be a place for contemplation away from the hustle and bustle of the world.

Since the last time I visited they’ve added a futuristic new building, seen here out of my office window. The building is most notable for one wild promise: someday, they will serve dinner there.

Mostly, though, the weirdness of the IAS is due to the kind of institution it is.

Within a given country, most universities are pretty similar. Each may emphasize different teaching styles, and the US has a distinction between public and private, but (neglecting scammy for-profit universities), there are some commonalities of structure: both how they’re organized, and how they’re funded. Even between countries, different university systems have quite a bit of overlap.

The IAS, though, is not a university. It’s an independent institute. Neighboring Princeton supplies it with PhD students, but otherwise the IAS runs, and funds, itself.

There are a few other places like that around the world. The Perimeter Institute in Canada is also independent, and also borrows students from a neighboring university. CERN pools resources from several countries across Europe and beyond, Nordita from just the Nordic countries. Generalizing further, many countries have some sort of national labs or other nation-wide systems, from US Department of Energy labs like SLAC to Germany’s Max Planck Institutes.

And while universities share a lot in common, non-university institutes can be very different. Some are closely tied to a university, located inside university buildings with members with university affiliations. Others sit at a greater remove, less linked to a university or not linked at all. Some have their own funding, investments or endowments or donations, while others are mostly funded by governments, or groups of governments. I’ve heard that the IAS gets about 10% of its budget from the government, while Perimeter gets its everyday operating expenses entirely from the Canadian government and uses donations for infrastructure and the like.

So ultimately, the IAS is weird because every organization like it is weird. There are a few templates, and systems, but by and large each independent research organization is different. Understanding one doesn’t necessarily help at understanding another.

Fields and Scale

I am a theoretical particle physicist, and every morning I check the arXiv.

arXiv.org is a type of website called a preprint server. It’s where we post papers before they are submitted to (and printed by) a journal. In practice, everything in our field shows up on arXiv, publicly accessible, before it appears anywhere else. There’s no peer review process on arXiv, the journals still handle that, but in our field peer review doesn’t often notice substantive errors. So in practice, we almost never read the journals: we just check arXiv.

And so every day, I check the arXiv. I go to the section on my sub-field, and I click on a link that lists all of the papers that were new that day. I skim the titles, and if I see an interesting paper I’ll read the abstract, and maybe download the full thing. Checking as I’m writing this, there were ten papers posted in my field, and another twenty “cross-lists” were posted in other fields but additionally classified in mine.

Other fields use arXiv: mathematicians and computer scientists and even economists use it in roughly the same way physicists do. For biology and medicine, though, there are different, newer sites: bioRxiv and medRxiv.

One thing you may notice is the different capitalization. When physicists write arXiv, the “X” is capitalized. In the logo, it looks like a Greek letter chi, thus saying “archive”. The biologists and medical researchers capitalize the R instead. The logo still has an X that looks like a chi, but positioned with the R it looks like the Rx of medical prescriptions.

Something I noticed, but you might not, was the lack of a handy link to see new papers. You can search medRxiv and bioRxiv, and filter by date. But there’s no link that directly takes you to the newest papers. That suggests that biologists aren’t using bioRxiv like we use arXiv, and checking the new papers every day.

I was curious if this had to do with the scale of the field. I have the impression that physics and mathematics are smaller fields than biology, and that much less physics and mathematics research goes on than medical research. Certainly, theoretical particle physics is a small field. So I might have expected arXiv to be smaller than bioRxiv and medRxiv, and I certainly would expect fewer papers in my sub-field than papers in a medium-sized subfield of biology.

On the other hand, arXiv in my field is universal. In biology, bioRxiv and medRxiv are still quite controversial. More and more people are using them, but not every journal accepts papers posted to a preprint server. Many people still don’t use these services. So I might have expected bioRxiv and medRxiv to be smaller.

Checking now, neither answer is quite right. I looked between November 1 and November 2, and asked each site how many papers were uploaded between those dates. arXiv had the most, 604 papers. bioRxiv had roughly half that many, 348. medRxiv had 97.

arXiv represents multiple fields, bioRxiv is “just” biology. Specializing, on that day arXiv had 235 physics papers, 135 mathematics papers, and 250 computer science papers. So each individual field has fewer papers than biology in this period.

Specializing even further, I can look at a subfield. My subfield, which is fairly small, had 20 papers between those dates. Cell biology, which I would expect to be quite a big subfield, had 33.

Overall, the numbers were weirdly comparable, with medRxiv unexpectedly small compared to both arXiv and bioRxiv. I’m not sure whether there are more biologists than physicists, but I’m pretty sure there should be more cell biologists than theoretical particle physicists. This suggests that many still aren’t using bioRxiv. It makes me wonder: will bioRxiv grow dramatically in future? Are the people running it ready for if it does?

From Journal to Classroom

As part of the pedagogy course I’ve been taking, I’m doing a few guest lectures in various courses. I’ve got one coming up in a classical mechanics course (“intermediate”-level, so not Newton’s laws, but stuff the general public doesn’t know much about like Hamiltonians). They’ve been speeding through the core content, so I got to cover a “fun” topic, and after thinking back to my grad school days I chose a topic I think they’ll have a lot of fun with: Chaos theory.

Getting the obligatory Warhammer reference out of the way now

Chaos is one of those things everyone has a vague idea about. People have heard stories where a butterfly flaps its wings and causes a hurricane. Maybe they’ve heard of the rough concept, determinism with strong dependence on the initial conditions, so a tiny change (like that butterfly) can have huge consequences. Maybe they’ve seen pictures of fractals, and got the idea these are somehow related.

Its role in physics is a bit more detailed. It’s one of those concepts that “intermediate classical mechanics” is good for, one that can be much better understood once you’ve been introduced to some of the nineteenth century’s mathematical tools. It felt like a good way to show this class that the things they’ve learned aren’t just useful for dusty old problems, but for understanding something the public thinks is sexy and mysterious.

As luck would have it, the venerable textbook the students are using includes a (2000’s era) chapter on chaos. I read through it, and it struck me that it’s a very different chapter from most of the others. This hit me particularly when I noticed a section describing a famous early study of chaos, and I realized that all the illustrations were based on the actual original journal article.

I had surprisingly mixed feelings about this.

On the one hand, there’s a big fashion right now for something called research-based teaching. That doesn’t mean “using teaching methods that are justified by research” (though you’re supposed to do that too), but rather, “tying your teaching to current scientific research”. This is a fashion that makes sense, because learning about cutting-edge research in an undergraduate classroom feels pretty cool. It lets students feel more connected with the scientific community, it inspires them to get involved, and it gets them more used to what “real research” looks like.

On the other hand, structuring your textbook based on the original research papers feels kind of lazy. There’s a reason we don’t teach Newtonian mechanics the way Newton would have. Pedagogy is supposed to be something we improve at over time: we come up with better examples and better notation, more focused explanations that teach what we want students to learn. If we just summarize a paper, we’re not really providing “added value”: we should hope, at this point, that we can do better.

Thinking about this, I think the distinction boils down to why you’re teaching the material in the first place.

With a lot of research-based teaching, the goal is to show the students how to interact with current literature. You want to show them journal papers, not because the papers are the best way to teach a concept or skill, but because reading those papers is one of the skills you want to teach.

That makes sense for very current topics, but it seems a bit weird for the example I’ve been looking at, an early study of chaos from the 60’s. It’s great if students can read current papers, but they don’t necessarily need to read older ones. (At least, not yet.)

What then, is the textbook trying to teach? Here things get a bit messy. For a relatively old topic, you’d ideally want to teach not just a vague impression of what was discovered, but concrete skills. Here though, those skills are just a bit beyond the students’ reach: chaos is more approachable than you’d think, but still not 100% something the students can work with. Instead they’re learning to appreciate concepts. This can be quite valuable, but it doesn’t give the kind of structure that a concrete skill does. In particular, it makes it hard to know what to emphasize, beyond just summarizing the original article.

In this case, I’ve come up with my own way forward. There are actually concrete skills I’d like to teach. They’re skills that link up with what the textbook is teaching, skills grounded in the concepts it’s trying to convey, and that makes me think I can convey them. It will give some structure to the lesson, a focus on not merely what I’d like the students to think but what I’d like them to do.

I won’t go into too much detail: I suspect some of the students may be reading this, and I don’t want to spoil the surprise! But I’m looking forward to class, and to getting to try another pedagogical experiment.

Jumpstarting Elliptic Bootstrapping

I was at a mini-conference this week, called Jumpstarting Elliptic Bootstrap Methods for Scattering Amplitudes.

I’ve done a lot of work with what we like to call “bootstrap” methods. Instead of doing a particle physics calculation in all its gory detail, we start with a plausible guess and impose requirements based on what we know. Eventually, we have the right answer pulled up “by its own bootstraps”: the only answer the calculation could have, without actually doing the calculation.

This method works very well, but so far it’s only been applied to certain kinds of calculations, involving mathematical functions called polylogarithms. More complicated calculations involve a mathematical object called an elliptic curve, and until very recently it wasn’t clear how to bootstrap them. To get people thinking about it, my colleagues Hjalte Frellesvig and Andrew McLeod asked the Carlsberg Foundation (yes, that Carlsberg) to fund a mini-conference. The idea was to get elliptic people and bootstrap people together (along with Hjalte’s tribe, intersection theory people) to hash things out. “Jumpstart people” are not a thing in physics, so despite the title they were not invited.

Anyone remember these games? Did you know that they still exist, have an educational MMO, and bought neopets?

Having the conference so soon after the yearly Elliptics meeting had some strange consequences. There was only one actual duplicate talk, but the first day of talks all felt like they would have been welcome additions to the earlier conference. Some might be functioning as “overflow”: Elliptics this year focused on discussion and so didn’t have many slots for talks, while this conference despite its discussion-focused goal had a more packed schedule. In other cases, people might have been persuaded by the more relaxed atmosphere and lack of recording or posted slides to give more speculative talks. Oliver Schlotterer’s talk was likely in this category, a discussion of the genus-two functions one step beyond elliptics that I think people at the previous conference would have found very exciting, but which involved work in progress that I could understand him being cautious about presenting.

The other days focused more on the bootstrap side, with progress on some surprising but not-quite-yet elliptic avenues. It was great to hear that Mark Spradlin is making new progress on his Ziggurat story, to hear James Drummond suggest a picture for cluster algebras that could generalize to other theories, and to get some idea of the mysterious ongoing story that animates my colleague Cristian Vergu.

There was one thing the organizers couldn’t have anticipated that ended up throwing the conference into a new light. The goal of the conference was to get people started bootstrapping elliptic functions, but in the meantime people have gotten started on their own. Roger Morales Espasa presented his work on this with several of my other colleagues. They can already reproduce a known result, the ten-particle elliptic double-box, and are well on-track to deriving something genuinely new, the twelve-particle version. It’s exciting, but it definitely makes the rest of us look around and take stock. Hopefully for the better!

Cabinet of Curiosities: The Nested Toy

I had a paper two weeks ago with a Master’s student, Alex Chaparro Pozo. I haven’t gotten a chance to talk about it yet, so I thought I should say a few words this week. It’s another entry in what I’ve been calling my cabinet of curiosities, interesting mathematical “objects” I’m sharing with the world.

I calculate scattering amplitudes, formulas that give the probability that particles scatter off each other in particular ways. While in principle I could do this with any particle physics theory, I have a favorite: a “toy model” called N=4 super Yang-Mills. N=4 super Yang-Mills doesn’t describe reality, but it lets us figure out cool new calculation tricks, and these often end up useful in reality as well.

Many scattering amplitudes in N=4 super Yang-Mills involve a type of mathematical functions called polylogarithms. These functions are especially easy to work with, but they aren’t the whole story. One we start considering more complicated situations (what if two particles collide, and eight particles come out?) we need more complicated functions, called elliptic polylogarithms.

A few years ago, some collaborators and I figured out how to calculate one of these elliptic scattering amplitudes. We didn’t do it as well as we’d like, though: the calculation was “half-done” in a sense. To do the other half, we needed new mathematical tools, tools that came out soon after. Once those tools were out, we started learning how to apply them, trying to “finish” the calculation we started.

The original calculation was pretty complicated. Two particles colliding, eight particles coming out, meant that in total we had to keep track of ten different particles. That gets messy fast. I’m pretty good at dealing with six particles, not ten. Luckily, it turned out there was a way to pretend there were six particles only: by “twisting” up the calculation, we found a toy model within the toy model: a six-particle version of the calculation. Much like the original was in a theory that doesn’t describe the real world, these six particles don’t describe six particles in that theory: they’re a kind of toy calculation within the toy model, doubly un-real.

Not quintuply-unreal though

With this nested toy model, I was confident we could do the calculation. I wasn’t confident I’d have time for it, though. This ended up making it perfect for a Master’s thesis, which is how Alex got into the game.

Alex worked his way through the calculation, programming and transforming, going from one type of mathematical functions to another (at least once because I’d forgotten to tell him the right functions to use, oops!) There were more details and subtleties than expected, but in the end everything worked out.

Then, we were scooped.

Another group figured out how to do the full, ten-particle problem, not just the toy model. That group was just “down the hall”…or would have been “down the hall” if we had been going to the office (this was 2021, after all). I didn’t hear about what they were working on until it was too late to change plans.

Alex left the field (not, as far as I know, because of this). And for a while, because of that especially thorough scooping, I didn’t publish.

What changed my mind, in part, was seeing the field develop in the meantime. It turns out toy models, and even nested toy models, are quite useful. We still have a lot of uncertainty about what to do, how to use the new calculation methods and what they imply. And usually, the best way to get through that kind of uncertainty is with simple, well-behaved toy models.

So I thought, in the end, that this might be useful. Even if it’s a toy version of something that already exists, I expect it to be an educational toy, one we can learn a lot from. So I’ve put it out into the world, as part of this year’s cabinet of curiosities.

At Elliptic Integrals in Fundamental Physics in Mainz

I’m at a conference this week. It’s named Elliptic Integrals in Fundamental Physics, but I think of it as “Elliptics 2022”, the latest in a series of conferences on elliptic integrals in particle physics.

It’s in Mainz, which you can tell from the Gutenberg street art

Elliptics has been growing in recent years, hurtling into prominence as a subfield of amplitudes (which is already a subfield of theoretical physics). This has led to growing lists of participants and a more and more packed schedule.

This year walked all of that back a bit. There were three talks a day: two one-hour talks by senior researchers and one half-hour talk by a junior researcher. The rest, as well as the whole last day, are geared to discussion. It’s an attempt to go back to the subfield’s roots. In the beginning, the Elliptics conferences drew together a small group to sort out a plan for the future, digging through the often-confusing mathematics to try to find a baseline for future progress. The field has advanced since then, but some of our questions are still almost as basic. What relations exist between different calculations? How much do we value fast numerics, versus analytical understanding? What methods do we want to preserve, and which aren’t serving us well? To answer these questions, it helps to get a few people together in one place, not to silently listen to lectures, but to question and discuss and hash things out. I may have heard a smaller range of topics at this year’s Elliptics, but due to the sheer depth we managed to probe on those fewer topics I feel like I’ve learned much more.

Since someone always asks, I should say that the talks were not recorded, but they are posting slides online, so if you’re interested in the topic you can watch there. A few people discussed new developments, some just published and some yet to be published. I discussed the work I talked about last week, and got a lot of good feedback and ideas about how to move forward.

Cabinet of Curiosities: The Coaction

I had two more papers out this week, continuing my cabinet of curiosities. I’ll talk about one of them today, and the other in (probably) two weeks.

This week, I’m talking about a paper I wrote with an excellent Master’s student, Andreas Forum. Andreas came to me looking for a project on the mathematical side. I had a rather nice idea for his project at first, to explain a proof in an old math paper so it could be used by physicists.

Unfortunately, the proof I sent him off to explain didn’t actually exist. Fortunately, by the time we figured this out Andreas had learned quite a bit of math, so he was ready for his next project: a coaction for Calabi-Yau Feynman diagrams.

We chose to focus on one particular diagram, called a sunrise diagram for its resemblance to a sun rising over the sea:

This diagram

Feynman diagrams depict paths traveled by particles. The paths are a metaphor, or organizing tool, for more complicated calculations: computations of the chances fundamental particles behave in different ways. Each diagram encodes a complicated integral. This one shows one particle splitting into many, then those many particles reuniting into one.

Do the integrals in Feynman diagrams, and you get a variety of different mathematical functions. Many of them integrate to functions called polylogarithms, and we’ve gotten really really good at working with them. We can integrate them up, simplify them, and sometimes we can guess them so well we don’t have to do the integrals at all! We can do all of that because we know how to break polylogarithm functions apart, with a mathematical operation called a coaction. The coaction chops polylogarithms up to simpler parts, parts that are easier to work with.

More complicated Feynman diagrams give more complicated functions, though. Some of them give what are called elliptic functions. You can think of these functions as involving a geometrical shape, in this case a torus.

Other functions involve more complicated geometrical shapes, in some cases very complicated. For example, some involve the Calabi-Yau manifolds studied by string theorists. These sunrise diagrams are some of the simplest to involve such complicated geometry.

Other researchers had proposed a coaction for elliptic functions back in 2018. When they derived it, though, they left a recipe for something more general. Follow the instructions in the paper, and you could in principle find a coaction for other diagrams, even the Calabi-Yau ones, if you set it up right.

I had an idea for how to set it up right, and in the grand tradition of supervisors everywhere I got Andreas to do the dirty work of applying it. Despite the delay of our false start and despite the fact that this was probably in retrospect too big a project for a normal Master’s thesis, Andreas made it work!

Our result, though, is a bit weird. The coaction is a powerful tool for polylogarithms because it chops them up finely: keep chopping, and you get down to very simple functions. Our coaction isn’t quite so fine: we don’t chop our functions into as many parts, and the parts are more mysterious, more difficult to handle.

We think these are temporary problems though. The recipe we applied turns out to be a recipe with a lot of choices to make, less like Julia Child and more like one of those books where you mix-and-match recipes. We believe the community can play with the parameters of this recipe, finding new version of the coaction for new uses.

This is one of the shiniest of the curiosities in my cabinet this year, I hope it gets put to good use.

Cabinet of Curiosities: The Cubic

Before I launch into the post: I got interviewed on Theoretically Podcasting, a new YouTube channel focused on beginning grad student-level explanations of topics in theoretical physics. If that sounds interesting to you, check it out!

This Fall is paper season for me. I’m finishing up a number of different projects, on a number of different things. Each one was its own puzzle: a curious object found, polished, and sent off into the world.

Monday I published the first of these curiosities, along with Jake Bourjaily and Cristian Vergu.

I’ve mentioned before that the calculations I do involve a kind of “alphabet“. Break down a formula for the probability that two particles collide, and you find pieces that occur again and again. In the nicest cases, those pieces are rational functions, but they can easily get more complicated. I’ve talked before about a case where square roots enter the game, for example. But if square roots appear, what about something even more complicated? What about cubic roots?

What about 1024th roots?

Occasionally, my co-authors and I would say something like that at the end of a talk and an older professor would scoff: “Cube roots? Impossible!”

You might imagine these professors were just being unreasonable skeptics, the elderly-but-distinguished scientists from that Arthur C. Clarke quote. But while they turned out to be wrong, they weren’t being unreasonable. They were thinking back to theorems from the 60’s, theorems which seemed to argue that these particle physics calculations could only have a few specific kinds of behavior: they could behave like rational functions, like logarithms, or like square roots. Theorems which, as they understood them, would have made our claims impossible.

Eventually, we decided to figure out what the heck was going on here. We grabbed the simplest example we could find (a cube root involving three loops and eleven gluons in N=4 super Yang-Mills…yeah) and buckled down to do the calculation.

When we want to calculate something specific to our field, we can reference textbooks and papers, and draw on our own experience. Much of the calculation was like that. A crucial piece, though, involved something quite a bit less specific: calculating a cubic root. And for things like that, you can tell your teachers we use only the very best: Wikipedia.

Check out the Wikipedia entry for the cubic formula. It’s complicated, in ways the quadratic formula isn’t. It involves complex numbers, for one. But it’s not that crazy.

What those theorems from the 60’s said (and what they actually said, not what people misremembered them as saying), was that you can’t take a single limit of a particle physics calculation, and have it behave like a cubic root. You need to take more limits, not just one, to see it.

It turns out, you can even see this just from the Wikipedia entry. There’s a big cube root sign in the middle there, equal to some variable “C”. Look at what’s inside that cube root. You want that part inside to vanish. That means two things need to cancel: Wikipedia labels them \Delta_1, and \sqrt{\Delta_1^2-4\Delta_0^3}. Do some algebra, and you’ll see that for those to cancel, you need \Delta_0=0.

So you look at the limit, \Delta_0\rightarrow 0. This time you need not just some algebra, but some calculus. I’ll let the students in the audience work it out, but at the end of the day, you should notice how C behaves when \Delta_0 is small. It isn’t like \sqrt[3]{\Delta_0}. It’s like just plain \Delta_0. The cube root goes away.

It can come back, but only if you take another limit: not just \Delta_0\rightarrow 0, but \Delta_1\rightarrow 0 as well. And that’s just fine according to those theorems from the 60’s. So our cubic curiosity isn’t impossible after all.

Our calculation wasn’t quite this simple, of course. We had to close a few loopholes, checking our example in detail using more than just Wikipedia-based methods. We found what we thought was a toy example, that turned out to be even more complicated, involving roots of a degree-six polynomial (one that has no “formula”!).

And in the end, polished and in their display case, we’ve put our examples up for the world to see. Let’s see what people think of them!

Why the Antipode Was Supposed to Be Useless

A few weeks back, Quanta Magazine had an article about a new discovery in my field, called antipodal duality.

Some background: I’m a theoretical physicist, and I work on finding better ways to make predictions in particle physics. Folks in my field make these predictions with formulas called “scattering amplitudes” that encode the probability that particles bounce, or scatter, in particular ways. One trick we’ve found is that these formulas can often be written as “words” in a kind of “alphabet”. If we know the alphabet, we can make our formulas much simpler, or even guess formulas we could never have calculated any other way.

Quanta’s article describes how a few friends of mine (Lance Dixon, Ömer Gürdoğan, Andrew McLeod, and Matthias Wilhelm) noticed a weird pattern in two of these formulas, from two different calculations. If you flip the “words” around, back to front (an operation called the antipode), you go from a formula describing one collision of particles to a formula for totally different particles. Somehow, the two calculations are “dual”: two different-seeming descriptions that secretly mean the same thing.

Quanta quoted me for their article, and I was (pleasantly) baffled. See, the antipode was supposed to be useless. The mathematicians told us it was something the math allows us to do, like you’re allowed to order pineapple on pizza. But just like pineapple on pizza, we couldn’t imagine a situation where we actually wanted to do it.

What Quanta didn’t say was why we thought the antipode was useless. That’s a hard story to tell, one that wouldn’t fit in a piece like that.

It fits here, though. So in the rest of this post, I’d like to explain why flipping around words is such a strange, seemingly useless thing to do. It’s strange because it swaps two things that in physics we thought should be independent: branch cuts and derivatives, or particles and symmetries.

Let’s start with the first things in each pair: branch cuts, and particles.

The first few letters of our “word” tell us something mathematical, and they tell us something physical. Mathematically, they tell us ways that our formula can change suddenly, and discontinuously.

Take a logarithm, the inverse of e^x. You’re probably used to plugging in positive numbers, and getting out something reasonable, that changes in a smooth and regular way: after all, e^x is always positive, right? But in mathematics, you don’t have to just use positive numbers. You can use negative numbers. Even more interestingly, you can use complex numbers. And if you take the logarithm of a complex number, and look at the imaginary part, it looks like this:

Mostly, this complex logarithm still seems to be doing what it’s supposed to, changing in a nice slow way. But there is a weird “cut” in the graph for negative numbers: a sudden jump, from \pi to -\pi. That jump is called a “branch cut”.

As physicists, we usually don’t like our formulas to make sudden changes. A change like this is an infinitely fast jump, and we don’t like infinities much either. But we do have one good use for a formula like this, because sometimes our formulas do change suddenly: when we have enough energy to make a new particle.

Imagine colliding two protons together, like at the LHC. Colliding particles doesn’t just break the protons into pieces: due to Einstein’s famous E=mc^2, it can create new particles as well. But to create a new particle, you need enough energy: mc^2 worth of energy. So as you dial up the energy of your protons, you’ll notice a sudden change: you couldn’t create, say, a Higgs boson, and now you can. Our formulas represent some of those kinds of sudden changes with branch cuts.

So the beginning of our “words” represent branch cuts, and particles. The end represents derivatives and symmetries.

Derivatives come from the land of calculus, a place spooky to those with traumatic math class memories. Derivatives shouldn’t be so spooky though. They’re just ways we measure change. If we have a formula that is smoothly changing as we change some input, we can describe that change with a derivative.

The ending of our “words” tell us what happens when we take a derivative. They tell us which ways our formulas can smoothly change, and what happens when they do.

In doing so, they tell us about something some physicists make sound spooky, called symmetries. Symmetries are changes we can make that don’t really change what’s important. For example, you could imagine lifting up the entire Large Hadron Collider and (carefully!) carrying it across the ocean, from France to the US. We’d expect that, once all the scared scientists return and turn it back on, it would start getting exactly the same results. Physics has “translation symmetry”: you can move, or “translate” an experiment, and the important stuff stays the same.

These symmetries are closely connected to derivatives. If changing something doesn’t change anything important, that should be reflected in our formulas: they shouldn’t change either, so their derivatives should be zero. If instead the symmetry isn’t quite true, if it’s what we call “broken”, then by knowing how it was “broken” we know what the derivative should be.

So branch cuts tell us about particles, derivatives tell us about symmetries. The weird thing about the antipode, the un-physical bizarre thing, is that it swaps them. It makes the particles of one calculation determine the symmetries of another.

(And lest you’ve heard about particles with symmetries, like gluons and SU(3)…this is a different kind of thing. I don’t have enough room to explain why here, but it’s completely unrelated.)

Why the heck does this duality exist?

A commenter on the last post asked me to speculate. I said there that I have no clue, and that’s most of the answer.

If I had to speculate, though, my answer might be disappointing.

Most of the things in physics we call “dualities” have fairly deep physical meanings, linked to twisting spacetime in complicated ways. AdS/CFT isn’t fully explained, but it seems to be related to something called the holographic principle, the idea that gravity ties together the inside of space with the boundary around it. T duality, an older concept in string theory, is explained: a consequence of how strings “see” the world in terms of things to wrap around and things to spin around. In my field, one of our favorite dualities links back to this as well, amplitude-Wilson loop duality linked to fermionic T-duality.

The antipode doesn’t twist spacetime, it twists the mathematics. And it may be it matters only because the mathematics is so constrained that it’s forced to happen.

The trick that Lance Dixon and co. used to discover antipodal duality is the same trick I used with Lance to calculate complicated scattering amplitudes. It relies on taking a general guess of words in the right “alphabet”, and constraining it: using mathematical and physical principles it must obey and throwing out every illegal answer until there’s only one answer left.

Currently, there are some hints that the principles used for the different calculations linked by antipodal duality are “antipodal mirrors” of each other: that different principles have the same implication when the duality “flips” them around. If so, then it could be this duality is in some sense just a coincidence: not a coincidence limited to a few calculations, but a coincidence limited to a few principles. Thought of in this way, it might not tell us a lot about other situations, it might not really be “deep”.

Of course, I could be wrong about this. It could be much more general, could mean much more. But in that context, I really have no clue what to speculate. The antipode is weird: it links things that really should not be physically linked. We’ll have to see what that actually means.