Category Archives: Life as a Physicist

At Bohr-100: Current Themes in Theoretical Physics

During the pandemic, some conferences went online. Others went dormant.

Every summer before the pandemic, the Niels Bohr International Academy hosted a conference called Current Themes in High Energy Physics and Cosmology. Current Themes is a small, cozy conference, a gathering of close friends some of whom happen to have Nobel prizes. Holding it online would be almost missing the point.

Instead, we waited. Now, at least in Denmark, the pandemic is quiet enough to hold this kind of gathering. And it’s a special year: the 100th anniversary of Niels Bohr’s Nobel, the 101st of the Niels Bohr Institute. So it seemed like the time for a particularly special Current Themes.

For one, it lets us use remarkably simple signs

A particularly special Current Themes means some unusually special guests. Our guests are usually pretty special already (Gerard t’Hooft and David Gross are regulars, to just name the Nobelists), but this year we also had Alexander Polyakov. Polyakov’s talk had a magical air to it. In a quiet voice, broken by an impish grin when he surprised us with a joke, Polyakov began to lay out five unsolved problems he considered interesting. In the end, he only had time to present one, related to turbulence: when Gross asked him to name the remaining four, the second included a term most of us didn’t recognize (striction, known in a magnetic context and which he wanted to explore gravitationally), so the discussion hung while he defined that and we never did learn what the other three problems were.

At the big 100th anniversary celebration earlier in the spring, the Institute awarded a few years worth of its Niels Bohr Institute Medal of Honor. One of the recipients, Paul Steinhardt, couldn’t make it then, so he got his medal now. After the obligatory publicity photos were taken, Steinhardt entertained us all with a colloquium about his work on quasicrystals, including the many adventures involved in finding the first example “in the wild”. I can’t do the story justice in a short blog post, but if you won’t have the opportunity to watch him speak about it then I hear his book is good.

An anniversary conference should have some historical elements as well. For this one, these were ably provided by David Broadhurst, who gave an after-dinner speech cataloguing things he liked about Bohr. Some was based on public information, but the real draw were the anecdotes: his own reminiscences, and those of people he knew who knew Bohr well.

The other talks covered interesting ground: from deep approaches to quantum field theory, to new tools to understand black holes, to the implications of causality itself. One out of the ordinary talk was by Sabrina Pasterski, who advocated a new model of physics funding. I liked some elements (endowed organizations to further a subfield) and am more skeptical of others (mostly involving NFTs). Regardless it, and the rest of the conference more broadly, spurred a lot of good debate.

Covering the Angles

One way to think of science is of a lot of interesting little problems. Some scientists are driven by questions like “how does this weird cell work?” or “how accurately can I predict the chance these particles collide?” If the puzzles are fun enough and the questions are interesting enough, then that can be enough motivation on its own.

Another perspective thinks of science as pursuit of a few big problems. Physicists want to write down the laws of nature, to know where the universe came from, to reconcile gravity and quantum mechanics. Biologists want to understand how life works and manipulate it, psychologists want the same for the human mind. For some scientists, these big questions are at the heart of why they do science. Someone in my field once joked he can’t get up in the morning without telling himself “spacetime is doomed”.

Even if you care about the big questions, though, you can’t neglect the small ones. That’s because modern science is collaborative. A big change, like a new particle or a whole new theory of physics, requires confirmation. It’s not enough for one person to propose it. The ideas that last in science last because they crop up in many different places, with many different methods. They last because we check all the angles, compulsively, looking for any direction that might be screwed up.

In those checks, any and all science can be useful. We need the big conceptual leaps from people like Einstein and the careful and systematic measurements of Brahe. We need people who look for the wackiest ideas, not just because they might be true, but to rule them out when they’re false, to make us all the more confident we’re on the right path. We need people pushing tried-and-true theories to the next leap of precision, to show that nothing is hiding in the gaps and make it clearer when something is. We need many people pushing many different paths: all are necessary, and any one might be crucial.

Often, one of these paths gets the lion’s share of the glory: the press, the Nobel, the mention in the history books. But the other paths still matter: we wouldn’t be confident in the science if they didn’t exist. Most working scientists will be on those other paths, as a matter of course. But we still need them to get science done.

The Conference Dilemma: Freshness vs. Breadth

Back in 2017, I noticed something that should have struck me as a little odd. My sub-field has a big yearly conference, called Amplitudes, that brings in everyone who works on our kind of research. Amplitudes 2017 was fun, but not “fresh”: most people talked about work they had already published. A smaller conference I went to that year, called QCD Meets Gravity, was much “fresher”: a lot of discussion of work in progress and work “hot off the presses”.

At the time, I chalked the difference up to timing: it was a few months later, and people happened to have projects that matured around then. But I realized recently there’s another reason, one why you would expect bigger conferences to have less fresh content.

See, I’ve recently been on the other “side of the curtain”: I was an organizer for Amplitudes last year. And I noticed one big obstacle to having fresh content: the timeframe.

The bigger a conference is, the longer in advance you need to invite speakers. It’s a bigger task to organize everyone, to make sure travel and hotels and raw availability works, that everyone has time to prepare their talks and you have a nice full (but not too full) schedule. So when we started asking people, we didn’t know what the “freshest” work was going to be. We had recommendations from our scientific committee (a group of experts in the subfield whose job is to suggest speakers), but in practice the goal is more one of breadth than freshness: we needed to make sure that everybody in our community was represented.

A smaller conference can get around this. It can be organized a bit later, so the organizers have more information about new developments. It covers a smaller area, so the organizers have more information about new hot topics and unpublished results. And it typically invites most of the sub-community anyway, so you’re guaranteed to cover the hot new stuff just by raw completeness.

This doesn’t mean small conferences are “just better” or anything like that. Breadth is genuinely useful: a big conference covering a whole subfield is great for bringing a community together, getting everyone on a shared page and expanding their horizons. There’s a real tradeoff between those goals and getting a conference with the latest progress. It’s not a fixed tradeoff, we can improve both goals at once (I think at Amplitudes we as organizers could have been better at highlighting unpublished work), but we still have to make choices of what to emphasize.

Proxies for Proxies

Why pay scientists?

Maybe you care about science itself. You think that exploring the world should be one of our central goals as human beings, that it “makes our country worth defending”.

Maybe you care about technology. You support science because, down the line, you think it will give us new capabilities that improve people’s lives. Maybe you expect this to happen directly, or maybe indirectly as “spinoff” inventions like the internet.

Maybe you just think science is cool. You want the stories that science tells: they entertain you, they give you a place in the world, they help distract from the mundane day to day grind.

Maybe you just think that the world ought to have scientists in it. You can think of it as a kind of bargain, maintaining expertise so that society can tackle difficult problems. Or you can be more cynical, paying early-career scientists on the assumption that most will leave academia and cheapen labor costs for tech companies.

Maybe you want to pay the scientists to teach, to be professors at universities. You notice that they don’t seem to be happy if you don’t let them research, so you throw a little research funding at them, as a treat.

Maybe you just want to grow your empire: your department, your university, the job numbers in your district.

In most jobs, you’re supposed to do what people pay you to do. As a scientist, the people who pay you have all of these motivations and more. You can’t simply choose to do what people pay you to do.

So you come up with a proxy. You sum up all of these ideas, into a vague picture of what all those people want. You have some idea of scientific quality: not just a matter of doing science correctly and carefully, but doing interesting science. It’s not something you ever articulate. It’s likely even contradictory, after all, the goals it approximates often are. Nonetheless, it’s your guide, and not just your guide: it’s the guide of those who hire you, those who choose if you get promoted or whether you get more funding. All of these people have some vague idea in their head of what makes good science, their own proxy for the desires of the vast mass of voters and decision-makers and funders.

But of course, the standard is still vague. Should good science be deep? Which topics are deeper than others? Should it be practical? Practical for whom? Should it be surprising? What do you expect to happen, and what would surprise you? Should it get the community excited? Which community?

As a practicing scientist, you have to build your own proxy for these proxies. The same work that could get you hired in one place might meet blank stares at another, and you can’t build your life around those unpredictable quirks. So you make your own vague idea of what you’re supposed to do, an alchemy of what excites you and what makes an impact and what your friends are doing. You build a stand-in in your head, on the expectation that no-one else will have quite the same stand-in, then go out and convince the other stand-ins to give money to your version. You stand on a shifting pile of unwritten rules, subtler even than some artists, because at the end of the day there’s never a real client to be seen. Just another proxy.

Types of Undergrad Projects

I saw a discussion on twitter recently, about PhD programs in the US. Apparently universities are putting more and more weight whether prospective students published a paper during their Bachelor’s degree. For some, it’s even an informal requirement. Some of those in the discussion were skeptical that the students were really contributing to these papers much, and thought that most of the work must have been done by the papers’ other authors. If so, this would mean universities are relying more and more on a metric that depends on whether students can charm their professors enough to be “included” in this way, rather than their own abilities.

I won’t say all that much about the admissions situation in the US. (Except to say that if you find yourself making up new criteria to carefully sift out a few from a group of already qualified-enough candidates, maybe you should consider not doing that.) What I did want to say a bit about is what undergraduates can typically actually do, when it comes to research in my field.

First, I should clarify that I’m talking about students in the US system here. Undergraduate degrees in Europe follow a different path. Students typically take three years to get a Bachelor’s degree, often with a project at the end, followed by a two-year Master’s degree capped with a Master’s thesis. A European Master’s thesis doesn’t have to result in a paper, but is often at least on that level, while a European Bachelor project typically isn’t. US Bachelor’s degrees are four years, so one might expect a Bachelor’s thesis to be in between a European Bachelor’s project and Master’s thesis. In practice, it’s a bit different: courses for Master’s students in Europe will generally cover material taught to PhD students in the US, so a typical US Bachelor’s student won’t have had some courses that have a big role in research in my field, like Quantum Field Theory. On the other hand, the US system is generally much more flexible, with students choosing more of their courses and having more opportunities to advance ahead of the default path. So while US Bachelor’s students don’t typically take Quantum Field Theory, the more advanced students can and do.

Because of that, how advanced a given US Bachelor’s student is varies. A small number are almost already PhD students, and do research to match. Most aren’t, though. Despite that, it’s still possible for such a student to complete a real research project in theoretical physics, one that results in a real paper. What does that look like?

Sometimes, it’s because the student is working with a toy model. The problems we care about in theoretical physics can be big and messy, involving a lot of details that only an experienced researcher will know. If we’re lucky, we can make a simpler version of the problem, one that’s easier to work with. Toy models like this are often self-contained, the kind of thing a student can learn without all of the background we expect. The models may be simpler than the real world, but they can still be interesting, suggesting new behavior that hadn’t been considered before. As such, with a good choice of toy model an undergraduate can write something that’s worthy of a real physics paper.

Other times, the student is doing something concrete in a bigger collaboration. This isn’t quite the same as the “real scientists” doing all the work, because the student has a real task to do, just one that is limited in scope. Maybe there is particular computer code they need to get working, or a particular numerical calculation they need to do. The calculation may be comparatively straightforward, but in combination with other results it can still merit a paper. My first project as a PhD student was a little like that, tackling one part of a larger calculation. Once again, the task can be quite self-contained, the kind of thing you can teach a student over a summer project.

Undergraduate projects in the US won’t always result in a paper, and I don’t think anyone should expect, or demand, that they do. But a nontrivial number do, and not because the student is “cheating”. With luck, a good toy model or a well-defined sub-problem can lead a Bachelor’s student to make a real contribution to physics, and get a paper in the bargain.

At Mikefest

I’m at a conference this week of a very particular type: a birthday conference. When folks in my field turn 60, their students and friends organize a special conference for them, celebrating their research legacy. With COVID restrictions just loosening, my advisor Michael Douglas is getting a last-minute conference. And as one of the last couple students he graduated at Stony Brook, I naturally showed up.

The conference, Mikefest, is at the Institut des Hautes Études Scientifiques, just outside of Paris. Mike was a big supporter of the IHES, putting in a lot of fundraising work for them. Another big supporter, James Simons, was Mike’s employer for a little while after his time at Stony Brook. The conference center we’re meeting in is named for him.

You might have to zoom in to see that, though.

I wasn’t involved in organizing the conference, so it was interesting seeing differences between this and other birthday conferences. Other conferences focus on the birthday prof’s “family tree”: their advisor, their students, and some of their postdocs. We’ve had several talks from Mike’s postdocs, and one from his advisor, but only one from a student. Including him and me, three of Mike’s students are here: another two have had their work mentioned but aren’t speaking or attending.

Most of the speakers have collaborated with Mike, but only for a few papers each. All of them emphasized a broader debt though, for discussions and inspiration outside of direct collaboration. The message, again and again, is that Mike’s work has been broad enough to touch a wide range of people. He’s worked on branes and the landscape of different string theory universes, pure mathematics and computation, neuroscience and recently even machine learning. The talks generally begin with a few anecdotes about Mike, before pivoting into research talks on the speakers’ recent work. The recent-ness of the work is perhaps another difference from some birthday conferences: as one speaker said, this wasn’t just a celebration of Mike’s past, but a “welcome back” after his return from the finance world.

One thing I don’t know is how much this conference might have been limited by coming together on short notice. For other birthday conferences impacted by COVID (and I’m thinking of one in particular), it might be nice to have enough time to have most of the birthday prof’s friends and “academic family” there in person. As-is, though, Mike seems to be having fun regardless.

Happy Birthday Mike!

Gateway Hobbies

When biologists tell stories of their childhoods, they’re full of trails of ants and fireflies in jars. Lots of writers start young, telling stories on the playground and making skits with their friends. And the mere existence of “chemistry sets” tells you exactly how many chemists get started. Many fields have these “gateway hobbies”, like gateway drugs for careers, ways that children and teenagers get hooked and gain experience.

Physics is a little different, though. While kids can play with magnets and electricity, there aren’t a whole lot of other “physics hobbies”, especially for esoteric corners like particle physics. Instead, the “gateway hobbies” of physics are more varied, drawing from many different fields.

First, of course, even if a child can’t “do physics”, they can always read about it. Kids will memorize the names of quarks, read about black holes, or watch documentaries about string theory. I’m not counting this as a “physics hobby” because it isn’t really: physics isn’t a collection of isolated facts, but of equations: frameworks you can use to make predictions. Reading about the Big Bang is a good way to get motivated and excited, it’s a great thing to do…but it doesn’t prepare you for the “science part” of the science.

A few efforts at physics popularization get a bit more hands-on. Many come in the form of video games. You can get experience with relativity through Velocity Raptor, quantum mechanics through Quantum Chess, or orbital mechanics through Kerbal Space Program. All of these get just another bit closer to “doing physics” rather than merely reading about it.

One can always gain experience in other fields, and that can be surprisingly relevant. Playing around with a chemistry set gives first-hand experience of the kinds of things that motivated quantum mechanics, and some things that still motivate condensed matter research. Circuits are physics, more directly, even if they’re also engineering: and for some physicists, designing electronic sensors is a huge part of what they do.

Astronomy has a special place, both in the history of physics and the pantheon of hobbies. There’s a huge amateur astronomy community, one that both makes real discoveries and reaches out to kids of all ages. Many physicists got their start looking at the heavens, using it like Newton’s contemporaries as a first glimpse into the mechanisms of nature.

More and more research in physics involves at least some programming, and programming is another activity kids have access to in spades, from Logo to robotics competitions. Learning how to program isn’t just an important skill: it’s also a way for young people to experience a world bound by clear laws and logic, another motivation to study physics.

Of course, if you’re interested in rules and logic, why not go all the way? Plenty of physicists grew up doing math competitions. I have fond memories of Oregon’s Pentagames, and the more “serious” activities go all the way up to the famously challenging Putnam Competition.

Finally, there are physics competitions too, at least in the form of the International Physics Olympiad, where high school students compete in physics prowess.

Not every physicist did these sorts of things, of course: some got hooked later. Others did more than one. A friend of mine who’s always been “Mr. Science” got almost the whole package, with a youth spent exploring the wild west of the early internet, working at a planetarium, and discovering just how easy it is to get legal access to dangerous and radioactive chemicals. There are many paths in to physics, so even if kids can’t “do physics” the same way they “do chemistry”, there’s still plenty to do!

Answering Questions: Virtue or Compulsion?

I was talking to a colleague about this blog. I mentioned worries I’ve had about email conversations with readers: worries about whether I’m communicating well, whether the readers are really understanding. For the colleague though, something else stood out:

“You sure are generous with your time.”

Am I?

I’d never really thought about it that way before. It’s not like I drop everything to respond to a comment, or a message. I leave myself a reminder, and get to it when I have time. To the extent that I have a time budget, I don’t spend it freely, I prioritize work before chatting with my readers, as nice as you folks are.

At the same time, though, I think my colleague was getting at a real difference there. It’s true that I don’t answer questions right away. But I do answer them eventually. I can’t imagine being asked a question, and just never answering it.

There are exceptions, of course. If you’re obviously just trolling, just insulting me or messing with me or asking the same question over and over, yeah I’ll skip your question. And if I don’t understand what you’re asking, there’s only so much effort I’m going to put in to try to decipher it. Even in those cases, though, I have a certain amount of regret. I have to take a deep breath and tell myself no, I can really skip this one.

On the one hand, this feels like a moral obligation, a kind of intellectual virtue. If knowledge, truth, information are good regardless of anything else, then answering questions is just straightforwardly good. People ought to know more, asking questions is how you learn, and that can’t work unless we’re willing to teach. Even if there’s something you need to keep secret, you can at least say something, if only to explain why you can’t answer. Just leaving a question hanging feels like something bad people do.

On the other hand, I think this might just be a compulsion, a weird quirk of my personality. It may even be more bad than good, an urge that makes me “waste my time”, or makes me too preoccupied with what others say, drafting responses in my head until I find release by writing them down. I think others are much more comfortable just letting a question lie, and moving on. It feels a bit like the urge to have the last word in a conversation, just more specific: if someone asks me to have the last word, I feel like I have to oblige!

I know this has to have its limits. The more famous bloggers get so many questions they can’t possibly respond to all of them. I’ve seen how people like Neil Gaiman describe responding to questions on tumblr, just opening a giant pile of unread messages, picking a few near the top, and then going back to their day. I can barely stand leaving unread messages in my email. If I got that famous, I don’t know how I’d deal with that. But I’d probably figure something out.

Am I too generous with you guys? Should people always answer questions? And does the fact that I ended this post with questions mean I’ll get more comments?

Of Snowmass and SAGEX

arXiv-watchers might have noticed an avalanche of papers with the word Snowmass in the title. (I contributed to one of them.)

Snowmass is a place, an area in Colorado known for its skiing. It’s also an event in that place, the Snowmass Community Planning Exercise for the American Physical Society’s Division of Particles and Fields. In plain terms, it’s what happens when particle physicists from across the US get together in a ski resort to plan their future.

Usually someone like me wouldn’t be involved in that. (And not because it’s a ski resort.) In the past, these meetings focused on plans for new colliders and detectors. They got contributions from experimentalists, and a few theorists heavily focused on their work, but not the more “formal” theorists beyond.

This Snowmass is different. It’s different because of Corona, which changed it from a big meeting in a resort to a spread-out series of meetings and online activities. It’s also different because they invited theorists to contribute, and not just those interested in particle colliders. The theorists involved study everything from black holes and quantum gravity to supersymmetry and the mathematics of quantum field theory. Groups focused on each topic submit “white papers” summarizing the state of their area. These white papers in turn get organized and summarized into a few subfields, which in turn contribute to the planning exercise. No-one I’ve talked to is entirely clear on how this works, how much the white papers will actually be taken into account or by whom. But it seems like a good chance to influence US funding agencies, like the Department of Energy, and see if we can get them to prioritize our type of research.

Europe has something similar to Snowmass, called the European Strategy for Particle Physics. It also has smaller-scale groups, with their own purposes, goals, and funding sources. One such group is called SAGEX: Scattering Amplitudes: from Geometry to EXperiment. SAGEX is an Innovative Training Network, an organization funded by the EU to train young researchers, in this case in scattering amplitudes. Its fifteen students are finishing their PhDs and ready to take the field by storm. Along the way, they spent a little time in industry internships (mostly at Maple and Mathematica), and quite a bit of time working on outreach.

They have now summed up that outreach work in an online exhibition. I’ve had fun exploring it over the last couple days. They’ve got a lot of good content there, from basic explanations of relativity and quantum mechanics, to detailed games involving Feynman diagrams and associahedra, to a section that uses solitons as a gentle introduction to integrability. If you’re in the target audience, you should check it out!

How Expert Is That Expert?

The blog Astral Codex Ten had an interesting post a while back, about when to trust experts. Rather than thinking of some experts as “trustworthy” and some as “untrustworthy”, the post suggests an approach of “bounded distrust”. Even if an expert is biased or a news source sometimes lies, there are certain things you can still expect them to tell the truth about. If you are familiar enough with their work, you can get an idea of which kinds of claims you can trust and which you can’t, in a consistent and reliable way. Knowing how to do this is a skill, one you can learn to get better at.

In my corner of science, I can’t think of anyone who outright lies. Nonetheless, some claims are worth more trust than others. Sometimes experts have solid backing for what they say, direct experience that’s hard to contradict. Other times they’re speaking mostly from general impressions, and bias could easily creep in. Luckily, it’s not so hard to tell the difference. In this post, I’ll try to teach you how.

For an example, I’ll use something I saw at a conference last week. A speaker gave a talk describing the current state of cosmology: the new tools we have to map the early universe, and the challenges in using them to their full potential. After the talk, I remember her answering three questions. In each case, she seemed to know what she was talking about, but for different reasons. If she was contradicted by a different expert, I’d use these reasons to figure out which one to trust.

First, sometimes an expert gives what is an informed opinion, but just an informed opinion. As scientists, we are expected to know a fairly broad range of background behind our work, and be able to say something informed about it. We see overview talks and hear our colleagues’ takes, and get informed opinions about topics we otherwise don’t work on. This speaker fielded a question about quantum gravity, and her answer made it clear that the topic falls into this category for her. Her answer didn’t go into much detail, mentioning a few terms but no specific scientific results, and linked back in the end to a different question closer to her expertise. That’s generally how we speak on this kind of topic: vaguely enough to show what we know without overstepping.

The second question came from a different kind of knowledge, which I might call journal club knowledge. Many scientists have what are called “journal clubs”. We meet on a regular basis, read recent papers, and talk about them. The papers go beyond what we work on day-to-day, but not by that much, because the goal is to keep an eye open for future research topics. We read papers in close-by areas, watching for elements that could be useful, answers to questions we have or questions we know how to answer. The kind of “journal club knowledge” we have covers a fair amount of detail: these aren’t topics we are working on right now, but if we spent more time on it they could be. Here, the speaker answered a question about the Hubble tension, a discrepancy between two different ways of measuring the expansion of the universe. The way she answered focused on particular results: someone did X, there was a paper showing Y, this telescope is planning to measure Z. That kind of answer is a good way to tell that someone is answering from “journal club knowledge”. It’s clearly an area she could get involved in if she wanted to, one where she knows the important questions and which papers to read, with some of her own work close enough to the question to give an important advantage. But it was also clear that she hadn’t developed a full argument on one “side” or the other, and as such there are others I’d trust a bit more on that aspect of the question.

Finally, experts are the most trustworthy when we speak about our own work. In this speaker’s case, the questions about machine learning were where her expertise clearly shone through. Her answers there were detailed in a different way than her answers about the Hubble tension: not just papers, but personal experience. They were full of phrases like “I tried that, but it doesn’t work…” or “when we do this, we prefer to do it this way”. They also had the most technical terms of any of her answers, terms that clearly drew distinctions relevant to those who work in the field. In general, when an expert talks about what they do in their own work, and uses a lot of appropriate technical terms, you have especially good reason to trust them.

These cues can help a lot when evaluating experts. An expert who makes a generic claim, like “no evidence for X”, might not know as much as an expert who cites specific papers, and in turn they might not know as much as an expert who describes what they do in their own research. The cues aren’t perfect: one risk is that someone may be an expert on their own work, but that work may be irrelevant to the question you’re asking. But they help: rather than distrusting everyone, they help you towards “bounded distrust”, knowing which claims you can trust and which are riskier.