Tag Archives: cosmology

Guest Post: On the Real Inhomogeneous Universe and the Weirdness of ‘Dark Energy’

A few weeks ago, I mentioned a paper by a colleague of mine, Mohamed Rameez, that generated some discussion. Since I wasn’t up for commenting on the paper’s scientific content, I thought it would be good to give Rameez a chance to explain it in his own words, in a guest post. Here’s what he has to say:


In an earlier post, 4gravitons had contemplated the question of ‘when to trust the contrarians’, in the context of our about-to-be-published paper in which we argue that accounting for the effects of the bulk flow in the local Universe, there is no evidence for any isotropic cosmic acceleration, which would be required to claim some sort of ‘dark energy’.

In the following I would like to emphasize that this is a reasonable view, and not a contrarian one. To do so I will examine the bulk flow of the local Universe and the historical evolution of what appears to be somewhat dodgy supernova data. I will present a trivial solution (from data) to the claimed ‘Hubble tension’.  I will then discuss inhomogeneous cosmology, and the 2011 Nobel prize in Physics. I will proceed to make predictions that can be falsified with future data. I will conclude with some questions that should be frequently asked.

Disclaimer: The views expressed here are not necessarily shared by my collaborators. 

The bulk flow of the local Universe:

The largest anisotropy in the Cosmic Microwave Background is the dipole, believed to be caused by our motion with respect to the ‘rest frame’ of the CMB with a velocity of ~369 km s^-1. Under this view, all matter in the local Universe appear to be flowing. At least out to ~300 Mpc, this flow continues to be directionally coherent, to within ~40 degrees of the CMB dipole, and the scale at which the average relative motion between matter and radiation converges to zero has so far not been found.

This is one of the most widely accepted results in modern cosmology, to the extent that SN1a data come pre ‘corrected’ for it.

Such a flow has covariant consequences under general relativity and this is what we set out to test.

Supernova data, directions in the sky and dodgyness:

Both Riess et al 1998 and Perlmutter et al 1999 used samples of supernovae down to redshifts of 0.01, in which almost all SNe at redshifts below 0.1 were in the direction of the flow.

Subsequently in Astier et al 2006, Kowalsky et al 2008, Amanullah et al 2010 and Suzuki et al 2011, it is reported that a process of outlier rejection was adopted in which data points >3\sigma from the Hubble diagram were discarded. This was done using a highly questionable statistical method that involves adjusting an intrinsic dispersion term \sigma_{\textrm{int}} by hand until a \chi^2/\textrm{ndof} of 1 is obtained to the assumed \LambdaCDM model. The number of outliers rejected is however far in excess of 0.3% – which is the 3\sigma expectation. As the sky coverage became less skewed, supernovae with redshift less than ~0.023 were excluded for being outside the Hubble flow. While the Hubble diagram so far had been inferred from heliocentric redshifts and magnitudes, with the introduction of SDSS supernovae that happened to be in the direction opposite to the flow, peculiar velocity ‘corrections’ were adopted in the JLA catalogue and supernovae down to extremely low redshifts were reintroduced. While the early claims of a cosmological constant were stated as ‘high redshift supernovae were found to be dimmer (15% in flux) than the low redshift supernovae (compared to what would be expected in a \Lambda=0 universe)’, it is worth noting that the peculiar velocity corrections change the redshifts and fluxes of low redshift supernovae by up to ~20 %.

When it was observed that even with this ‘corrected’ sample of 740 SNe, any evidence for isotropic acceleration using a principled Maximum Likelihood Estimator is less than 3\sigma , it was claimed that by adding 12 additional parameters (to the 10 parameter model) to allow for redshift and sample dependence of the light curve fitting parameters, the evidence was greater than 4\sigma .

As we discuss in Colin et al. 2019, these corrections also appear to be arbitrary, and betray an ignorance of the fundamentals of both basic statistical analysis and relativity. With the Pantheon compilation, heliocentric observables were no longer public and these peculiar velocity corrections initially extended far beyond the range of any known flow model of the Local Universe. When this bug was eventually fixed, both the heliocentric redshifts and magnitudes of the SDSS SNe that filled in the ‘redshift desert’ between low and high redshift SNe were found to be alarmingly discrepant. The authors have so far not offered any clarification of these discrepancies.

Thus it seems to me that the latest generation of ‘publicly available’ supernova data are not aiding either open science or progress in cosmology.

A trivial solution to the ‘Hubble tension’?

The apparent tension between the Hubble parameter as inferred from the Cosmic Microwave Background and low redshift tracers has been widely discussed, and recent studies suggest that redshift errors as low as 0.0001 can have a significant impact. Redshift discrepancies as big as 0.1 have been reported. The shifts reported between JLA and Pantheon appear to be sufficient to lower the Hubble parameter from ~73 km s^-1 Mpc^-1 to ~68 km s^-1 Mpc^-1.

On General Relativity, cosmology, metric expansion and inhomogeneities:

In the maximally symmetric Friedmann-Lemaitre-Robertson-Walker solution to general relativity, there is only one meaningful global notion of distance and it expands at the same rate everywhere. However, the late time Universe has structure on all scales, and one may only hope for statistical (not exact) homogeneity. The Universe is expected to be lumpy. A background FLRW metric is not expected to exist and quantities analogous to the Hubble and deceleration parameters will vary across the sky.  Peculiar velocities may be more precisely thought of as variations in the expansion rate of the Universe. At what rate does a real Universe with structure expand? The problems of defining a meaningful average notion of volume, its dynamical evolution, and connecting it to observations are all conceptually open.

On the 2011 Nobel Prize in Physics:

The Fitting Problem in cosmology was written in 1987. In the context of this work and the significant theoretical difficulties involved in inferring fundamental physics from the real Universe, any claims of having measured a cosmological constant from directionally skewed, sparse samples of intrinsically scattered observations should have been taken with a grain of salt.  By honouring this claim with a Nobel Prize, the Swedish Academy may have induced runaway prestige bias in favour of some of the least principled analyses in science, strengthening the confirmation bias that seems prevalent in cosmology.

This has resulted in the generation of a large body of misleading literature, while normalizing the practice of ‘massaging’ scientific data. In her recent video about gravitational waves, Sabine Hossenfelder says “We should not hand out Nobel Prizes if we don’t know how the predictions were fitted to the data”. What about when the data was fitted (in 1998-1999) using a method that has been discredited in 1989 to a toy model that has been cautioned against in 1987, leading to a ‘discovery’ of profound significance to fundamental physics?

A prediction with future cosmological data:

With the advent of high statistics cosmological data in the future, such as from the Large Synoptic Survey Telescope, I predict that the Hubble and deceleration parameters inferred from supernovae in hemispheres towards and away from the CMB dipole will be found to be different in a statistically significant (>5\sigma ) way. Depending upon the criterion for selection and blind analyses of data that can be agreed upon, I would be willing to bet a substantial amount of money on this prediction.

Concluding : on the amusing sociology of ‘Dark Energy’ and manufactured concordance:

Of the two authors of the well-known cosmology textbook ‘The Early Universe’, Edward Kolb writes these interesting papers questioning dark energy while Michael Turner is credited with coining the term ‘Dark Energy’.  Reasonable scientific perspectives have to be presented as ‘Dark Energy without dark energy’. Papers questioning the need to invoke such a mysterious content that makes up ‘68% of the Universe’ are quickly targeted by inane articles by non-experts or perhaps well-meant but still misleading YouTube videos. Much of this is nothing more than a spectacle.

In summary, while the theoretical debate about whether what has been observed as Dark Energy is the effect of inhomogeneities is ongoing, observers appear to have been actively using the most inhomogeneous feature of the local Universe through opaque corrections to data, to continue claiming that this ‘dark energy’ exists.

It is heartening to see that recent works lean toward a breaking of this manufactured concordance and speak of a crisis for cosmology.

Questions that should be frequently asked:

Q. Is there a Hubble frame in the late time Universe?

A. The Hubble frame is a property of the FLRW exact solution, and in the late time Universe in which galaxies and clusters have peculiar motions with respect to each other, an equivalent notion does not exist. While popular inference treats the frame in which the CMB dipole vanishes as the Hubble frame, the scale at which the bulk flow of the local Universe converges to that frame has never been found. We are tilted observers.

Q. I am about to perform blinded analyses on new cosmological data. Should I correct all my redshifts towards the CMB rest frame?

A. No. Correcting all your redshifts towards a frame that has never been found is a good way to end up with ‘dark energy’. It is worth noting that while the CMB dipole has been known since 1994, supernova data have been corrected towards the CMB rest frame only after 2010, for what appear to be independent reasons.

Q. Can I combine new data with existing Supernova data?

A. No. The current generation of publicly available supernova data suffer from the natural biases that are to be expected when data are compiled incrementally through a human mediated process. It would be better to start fresh with a new sample.

Q. Is ‘dark energy’ fundamental or new physics?

A. Given that general relativity is a 100+ year old theory and significant difficulties exist in describing the late time Universe with it, it is unnecessary to invoke new fundamental physics when confronting any apparent acceleration of the real Universe. All signs suggest that what has been ascribed to dark energy are the result of a community that is hell bent on repeating what Einstein supposedly called his greatest mistake.

Digging deeper:

The inquisitive reader may explore the resources on inhomogeneous cosmology, as well as the works of George Ellis, Thomas Buchert and David Wiltshire.

When to Trust the Contrarians

One of my colleagues at the NBI had an unusual experience: one of his papers took a full year to get through peer review. This happens often in math, where reviewers will diligently check proofs for errors, but it’s quite rare in physics: usually the path from writing to publication is much shorter. Then again, the delays shouldn’t have been too surprising for him, given what he was arguing.

My colleague Mohamed Rameez, along with Jacques Colin, Roya Mohayaee, and Subir Sarkar, wants to argue against one of the most famous astronomical discoveries of the last few decades: that the expansion of our universe is accelerating, and thus that an unknown “dark energy” fills the universe. They argue that one of the key pieces of evidence used to prove acceleration is mistaken: that a large region of the universe around us is in fact “flowing” in one direction, and that tricked astronomers into thinking its expansion was accelerating. You might remember a paper making a related argument back in 2016. I didn’t like the media reaction to that paper, and my post triggered a response by the authors, one of whom (Sarkar) is on this paper as well.

I’m not an astronomer or an astrophysicist. I’m not qualified to comment on their argument, and I won’t. I’d still like to know whether they’re right, though. And that means figuring out which experts to trust.

Pick anything we know in physics, and you’ll find at least one person who disagrees. I don’t mean a crackpot, though they exist too. I mean an actual expert who is convinced the rest of the field is wrong. A contrarian, if you will.

I used to be very unsympathetic to these people. I was convinced that the big results of a field are rarely wrong, because of how much is built off of them. I thought that even if a field was using dodgy methods or sloppy reasoning, the big results are used in so many different situations that if they were wrong they would have to be noticed. I’d argue that if you want to overturn one of these big claims you have to disprove not just the result itself, but every other success the field has ever made.

I still believe that, somewhat. But there are a lot of contrarians here at the Niels Bohr Institute. And I’ve started to appreciate what drives them.

The thing is, no scientific result is ever as clean as it ought to be. Everything we do is jury-rigged. We’re almost never experts in everything we’re trying to do, so we often don’t know the best method. Instead, we approximate and guess, we find rough shortcuts and don’t check if they make sense. This can take us far sometimes, sure…but it can also backfire spectacularly.

The contrarians I’ve known got their inspiration from one of those backfires. They saw a result, a respected mainstream result, and they found a glaring screw-up. Maybe it was an approximation that didn’t make any sense, or a statistical measure that was totally inappropriate. Whatever it was, it got them to dig deeper, and suddenly they saw screw-ups all over the place. When they pointed out these problems, at best the people they accused didn’t understand. At worst they got offended. Instead of cooperation, the contrarians are told they can’t possibly know what they’re talking about, and ignored. Eventually, they conclude the entire sub-field is broken.

Are they right?

Not always. They can’t be, for every claim you can find a contrarian, believing them all would be a contradiction.

But sometimes?

Often, they’re right about the screw-ups. They’re right that there’s a cleaner, more proper way to do that calculation, a statistical measure more suited to the problem. And often, doing things right raises subtleties, means that the big important result everyone believed looks a bit less impressive.

Still, that’s not the same as ruling out the result entirely. And despite all the screw-ups, the main result is still often correct. Often, it’s justified not by the original, screwed-up argument, but by newer evidence from a different direction. Often, the sub-field has grown to a point that the original screwed-up argument doesn’t really matter anymore.

Often, but again, not always.

I still don’t know whether to trust the contrarians. I still lean towards expecting fields to sort themselves out, to thinking that error alone can’t sustain long-term research. But I’m keeping a more open mind now. I’m waiting to see how far the contrarians go.

Congratulations to James Peebles, Michel Mayor, and Didier Queloz!

The 2019 Physics Nobel Prize was announced this week, awarded to James Peebles for work in cosmology and to Michel Mayor and Didier Queloz for the first observation of an exoplanet.

Peebles introduced quantitative methods to cosmology. He figured out how to use the Cosmic Microwave Background (light left over from the Big Bang) to understand how matter is distributed in our universe, including the presence of still-mysterious dark matter and dark energy. Mayor and Queloz were the first team to observe a planet outside of our solar system (an “exoplanet”), in 1995. By careful measurement of the spectrum of light coming from a star they were able to find a slight wobble, caused by a Jupiter-esque planet in orbit around it. Their discovery opened the floodgates of observation. Astronomers found many more planets than expected, showing that, far from a rare occurrence, exoplanets are quite common.

It’s a bit strange that this Nobel was awarded to two very different types of research. This isn’t the first time the prize was divided between two different discoveries, but all of the cases I can remember involve discoveries in closely related topics. This one didn’t, and I’m curious about the Nobel committee’s logic. It might have been that neither discovery “merited a Nobel” on its own, but I don’t think we’re supposed to think of shared Nobels as “lesser” than non-shared ones. It would make sense if the Nobel committee thought they had a lot of important results to “get through” and grouped them together to get through them faster, but if anything I have the impression it’s the opposite: that at least in physics, it’s getting harder and harder to find genuinely important discoveries that haven’t been acknowledged. Overall, this seems like a very weird pairing, and the Nobel committee’s citation “for contributions to our understanding of the evolution of the universe and Earth’s place in the cosmos” is a pretty loose justification.

Amplitudes 2019

It’s that time of year again, and I’m at Amplitudes, my field’s big yearly conference. This year we’re in Dublin, hosted by Trinity.

Which also hosts the Book of Kells, and the occasional conference reception just down the hall from the Book of Kells

Increasingly, the organizers of Amplitudes have been setting aside a few slots for talks from people in other fields. This year the “closest” such speaker was Kirill Melnikov, who pointed out some of the hurdles that make it difficult to have useful calculations to compare to the LHC. Many of these hurdles aren’t things that amplitudes-people have traditionally worked on, but are still things that might benefit from our particular expertise. Another such speaker, Maxwell Hansen, is from a field called Lattice QCD. While amplitudeologists typically compute with approximations, order by order in more and more complicated diagrams, Lattice QCD instead simulates particle physics on supercomputers, chopping up their calculations on a grid. This allows them to study much stronger forces, including the messy interactions of quarks inside protons, but they have a harder time with the situations we’re best at, where two particles collide from far away. Apparently, though, they are making progress on that kind of calculation, with some clever tricks to connect it to calculations they know how to do. While I was a bit worried that this would let them fire all the amplitudeologists and replace us with supercomputers, they’re not quite there yet, nonetheless they are doing better than I would have expected. Other speakers from other fields included Leron Borsten, who has been applying the amplitudes concept of the “double copy” to M theory and Andrew Tolley, who uses the kind of “positivity” properties that amplitudeologists find interesting to restrict the kinds of theories used in cosmology.

The biggest set of “non-traditional-amplitudes” talks focused on using amplitudes techniques to calculate the behavior not of particles but of black holes, to predict the gravitational wave patterns detected by LIGO. This year featured a record six talks on the topic, a sixth of the conference. Last year I commented that the research ideas from amplitudeologists on gravitational waves had gotten more robust, with clearer proposals for how to move forward. This year things have developed even further, with several initial results. Even more encouragingly, while there are several groups doing different things they appear to be genuinely listening to each other: there were plenty of references in the talks both to other amplitudes groups and to work by more traditional gravitational physicists. There’s definitely still plenty of lingering confusion that needs to be cleared up, but it looks like the community is robust enough to work through it.

I’m still busy with the conference, but I’ll say more when I’m back next week. Stay tuned for square roots, clusters, and Nima’s travel schedule. And if you’re a regular reader, please fill out last week’s poll if you haven’t already!

Book Review: We Have No Idea

I have no idea how I’m going to review this book.

Ok fine, I have some idea.

Jorge Cham writes Piled Higher and Deeper, a webcomic with possibly the most accurate depiction of grad school available. Daniel Whiteson is a professor at the University of California, Irvine, and a member of the ATLAS collaboration (one of the two big groups that make measurements at the Large Hadron Collider). Together, they’ve written a popular science book covering everything we don’t know about fundamental physics.

Writing a book about what we don’t know is an unusual choice, and there was a real risk it would end up as just a superficial gimmick. The pie chart on the cover presents the most famous “things physicists don’t know”, dark matter and dark energy. If they had just stuck to those this would have been a pretty ordinary popular physics book.

Refreshingly, they don’t do that. After blazing through dark matter and dark energy in the first three chapters, the rest of the book focuses on a variety of other scientific mysteries.

The book contains a mix of problems that get serious research attention (matter-antimatter asymmetry, high-energy cosmic rays) and more blue-sky “what if” questions (does matter have to be made out of particles?). As a theorist, I’m not sure that all of these questions are actually mysterious (we do have some explanation of the weird “1/3” charges of quarks, and I’d like to think we understand why mass includes binding energy), but even in these cases what we really know is that they follow from “sensible assumptions”, and one could just as easily ask “what if” about those assumptions instead. Overall, these “what if” questions make the book unique, and it would be a much weaker book without them.

“We Have No Idea” is strongest when the authors actually have some idea, i.e. when Whiteson is discussing experimental particle physics. It gets weaker on other topics, where the authors seem to rely more on others’ popular treatments (their discussion of “pixels of space-time” motivated me to write this post). Still, they at least seem to have asked the right people, and their accounts are on the more accurate end of typical pop science. (Closer to Quanta than IFLScience.)

The book’s humor really ties it together, often in surprisingly subtle ways. Each chapter has its own running joke, initially a throwaway line that grows into metaphors for everything the chapter discusses. It’s a great way to help the audience visualize without introducing too many new concepts at once. If there’s one thing cartoonists can teach science communicators, it’s the value of repetition.

I liked “We Have No Idea”. It could have been more daring, or more thorough, but it was still charming and honest and fun. If you’re looking for a Christmas present to explain physics to your relatives, you won’t go wrong with this book.

Cosmology, or Cosmic Horror?

Around Halloween, I have a tradition of posting about the “spooky” side of physics. This year, I’ll be comparing two no doubt often confused topics, Cosmic Horror and Cosmology.

cthulhu_and_r27lyeh

Pro tip: if this guy shows up, it’s probably Cosmic Horror

Cosmic Horror

Cosmology

Started in the 1920’s with the work of Howard Phillips Lovecraft Started in the 1920’s with the work of Alexander Friedmann
Unimaginably ancient universe Precisely imagined ancient universe
In strange ages even death may die Strange ages, what redshift is that?
An expedition to Antarctica uncovers ruins of a terrifying alien civilization An expedition to Antarctica uncovers…actually, never mind, just dust
Alien beings may propagate in hidden dimensions Gravitons may propagate in hidden dimensions
Cultists compete to be last to be eaten by the Elder Gods Grad students compete to be last to realize there are no jobs
Oceanic “deep ones” breed with humans Have you seen daycare costs in a university town? No way.
Variety of inventive and bizarre creatures, inspiring libraries worth of copycat works Fritz Zwicky
Hollywood adaptations are increasingly popular, not very faithful to source material Actually this is exactly the same
Can waste hours on an ultimately fruitless game of Arkham Horror Can waste hours on an ultimately fruitless argument with Paul Steinhardt
No matter what we do, eventually Azathoth will kill us all No matter what we do, eventually vacuum decay will kill us all

Current Themes 2018

I’m at Current Themes in High Energy Physics and Cosmology this week, the yearly conference of the Niels Bohr International Academy. (I talked about their trademark eclectic mix of topics last year.)

This year, the “current theme” was broadly gravitational (though with plenty of exceptions!).

IMG_20180815_180435532

For example, almost getting kicked out of the Botanical Garden

There were talks on phenomena we observe gravitationally, like dark matter. There were talks on calculating amplitudes in gravity theories, both classical and quantum. There were talks about black holes, and the overall shape of the universe. Subir Sarkar talked about his suspicion that the expansion of the universe isn’t actually accelerating, and while I still think the news coverage of it was overblown I sympathize a bit more with his point. He’s got a fairly specific worry, that we’re in a region that’s moving unusually with respect to the surrounding universe, that hasn’t really been investigated in much detail before. I don’t think he’s found anything definitive yet, but it will be interesting as more data accumulates to see what happens.

Of course, current themes can’t stick to just one theme, so there were non-gravitational talks as well. Nima Arkani-Hamed’s talk covered some results he’s talked about in the past, a geometric picture for constraining various theories, but with an interesting new development: while most of the constraints he found restrict things to be positive, one type of constraint he investigated allowed for a very small negative region, around thirty orders of magnitude smaller than the positive part. The extremely small size of the negative region was the most surprising part of the story, as it’s quite hard to get that kind of extremely small scale out of the math we typically invoke in physics (a similar sense of surprise motivates the idea of “naturalness” in particle physics).

There were other interesting talks, which I might talk about later. They should have slides up online soon in case any of you want to have a look.