Category Archives: Astrophysics/Cosmology

Black Holes, Neutron Stars, and the Power of Love

What’s the difference between a black hole and a neutron star?

When a massive star nears the end of its life, it starts running out of nuclear fuel. Without the support of a continuous explosion, the star begins to collapse, crushed under its own weight.

What happens then depends on how much weight that is. The most massive stars collapse completely, into the densest form anything can take: a black hole. Einstein’s equations say a black hole is a single point, infinitely dense: get close enough and nothing, not even light, can escape. A quantum theory of gravity would change this, but not a lot: a quantum black hole would still be as dense as quantum matter can get, still equipped with a similar “point of no return”.

A slightly less massive star collapses, not to a black hole, but to a neutron star. Matter in a neutron star doesn’t collapse to a single point, but it does change dramatically. Each electron in the old star is crushed together with a proton until it becomes a neutron, a forced reversal of the more familiar process of Beta decay. Instead of a ball of hydrogen and helium, the star then ends up like a single atomic nucleus, one roughly the size of a city.

Not kidding about the “city” thing…and remember, this is more massive than the Sun

Now, let me ask a slightly different question: how do you tell the difference between a black hole and a neutron star?

Sometimes, you can tell this through ordinary astronomy. Neutron stars do emit light, unlike black holes, though for most neutron stars this is hard to detect. In the past, astronomers would use other objects instead, looking at light from matter falling in, orbiting, or passing by a black hole or neutron star to estimate its mass and size.

Now they have another tool: gravitational wave telescopes. Maybe you’ve heard of LIGO, or its European cousin Virgo: massive machines that do astronomy not with light but by detecting ripples in space and time. In the future, these will be joined by an even bigger setup in space, called LISA. When two black holes or neutron stars collide they “ring” the fabric of space and time like a bell, sending out waves in every direction. By analyzing the frequency of these waves, scientists can learn something about what made them: in particular, whether the waves were made by black holes or neutron stars.

One big difference between black holes and neutron stars lies in something called their “Love numbers“. From far enough away, you can pretend both black holes and neutron stars are single points, like fundamental particles. Try to get more precise, and this picture starts to fail, but if you’re smart you can include small corrections and keep things working. Some of those corrections, called Love numbers, measure how much one object gets squeezed and stretched by the other’s gravitational field. They’re called Love numbers not because they measure how hug-able a neutron star is, but after the mathematician who first proposed them, A. E. H. Love.

What can we learn from Love numbers? Quite a lot. More impressively, there are several different types of questions Love numbers can answer. There are questions about our theories, questions about the natural world, and questions about fundamental physics.

You might have heard that black holes “have no hair”. A black hole in space can be described by just two numbers: its mass, and how much it spins. A star is much more complicated, with sunspots and solar flares and layers of different gases in different amounts. For a black hole, all of that is compressed down to nothing, reduced to just those two numbers and nothing else.

With that in mind, you might think a black hole should have zero Love numbers: it should be impossible to squeeze it or stretch it. This is fundamentally a question about a theory, Einstein’s theory of relativity. If we took that theory for granted, and didn’t add anything to it, what would the consequences be? Would black holes have zero Love number, or not?

It turns out black holes do have zero Love number, if they aren’t spinning. If they are, things are more complicated: a few calculations made it look like spinning black holes also had zero Love number, but just last year a more detailed proof showed that this doesn’t hold. Somehow, despite having “no hair”, you can actually “squeeze” a spinning black hole.

(EDIT: Folks on twitter pointed out a wrinkle here: more recent papers are arguing that spinning black holes actually do have zero Love number as well, and that the earlier papers confused Love numbers with a different effect. All that is to say this is still very much an active area of research!)

The physics behind neutron stars is in principle known, but in practice hard to understand. When they are formed, almost every type of physics gets involved: gas and dust, neutrino blasts, nuclear physics, and general relativity holding it all together.

Because of all this complexity, the structure of neutron stars can’t be calculated from “first principles” alone. Finding it out isn’t a question about our theories, but a question about the natural world. We need to go out and measure how neutron stars actually behave.

Love numbers are a promising way to do that. Love numbers tell you how an object gets squeezed and stretched in a gravitational field. Learning the Love numbers of neutron stars will tell us something about their structure: namely, how squeezable and stretchable they are. Already, LIGO and Virgo have given us some information about this, and ruled out a few possibilities. In future, the LISA telescope will show much more.

Returning to black holes, you might wonder what happens if we don’t stick to Einstein’s theory of relativity. Physicists expect that relativity has to be modified to account for quantum effects, to make a true theory of quantum gravity. We don’t quite know how to do that yet, but there are a few proposals on the table.

Asking for the true theory of quantum gravity isn’t just a question about some specific part of the natural world, it’s a question about the fundamental laws of physics. Can Love numbers help us answer it?

Maybe. Some theorists think that quantum gravity will change the Love numbers of black holes. Fewer, but still some, think they will change enough to be detectable, with future gravitational wave telescopes like LISA. I get the impression this is controversial, both because of the different proposals involved and the approximations used to understand them. Still, it’s fun that Love numbers can answer so many different types of questions, and teach us so many different things about physics.

Unrelated: For those curious about what I look/sound like, I recently gave a talk of outreach advice for the Max Planck Institute for Physics, and they posted it online here.

What Tells Your Story

I watched Hamilton on Disney+ recently. With GIFs and songs from the show all over social media for the last few years, there weren’t many surprises. One thing that nonetheless struck me was the focus on historical evidence. The musical Hamilton is based on Ron Chernow’s biography of Alexander Hamilton, and it preserves a surprising amount of the historian’s care for how we know what we know, hidden within the show’s other themes. From the refrain of “who tells your story”, to the importance of Eliza burning her letters with Hamilton (not just the emotional gesture but the “gap in the narrative” it created for historians), to the song “The Room Where It Happens” (which looked from GIFsets like it was about Burr’s desire for power, but is mostly about how much of history is hidden in conversations we can only partly reconstruct), the show keeps the puzzle of reasoning from incomplete evidence front-and-center.

Any time we try to reason about the past, we are faced with these kinds of questions. They don’t just apply to history, but to the so-called historical sciences as well, sciences that study the past. Instead of asking “who” told the story, such scientists must keep in mind “what” is telling the story. For example, paleontologists reason from fossils, and thus are limited by what does and doesn’t get preserved. As a result after a century of studying dinosaurs, only in the last twenty years did it become clear they had feathers.

Astronomy, too, is a historical science. Whenever astronomers look out at distant stars, they are looking at the past. And just like historians and paleontologists, they are limited by what evidence happened to be preserved, and what part of that evidence they can access.

These limitations lead to mysteries, and often controversies. Before LIGO, astronomers had an idea of what the typical mass of a black hole was. After LIGO, a new slate of black holes has been observed, with much higher mass. It’s still unclear why.

Try to reason about the whole universe, and you end up asking similar questions. When we see the movement of “standard candle” stars, is that because the universe’s expansion is accelerating, or are the stars moving as a group?

Push far enough back and the evidence doesn’t just lead to controversy, but to hard limits on what we can know. No matter how good our telescopes are, we won’t see light older than the cosmic microwave background: before that background was emitted the universe was filled with plasma, which would have absorbed any earlier light, erasing anything we could learn from it. Gravitational waves may one day let us probe earlier, and make discoveries as surprising as feathered dinosaurs. But there is yet a stronger limit to how far back we can go, beyond which any evidence has been so diluted that it is indistinguishable from random noise. We can never quite see into “the room where it happened”.

It’s gratifying to see questions of historical evidence in a Broadway musical, in the same way it was gratifying to hear fractals mentioned in a Disney movie. It’s important to think about who, and what, is telling the stories we learn. Spreading that lesson helps all of us reason better.

Discovering the Rules, Discovering the Consequences

Two big physics experiments consistently make the news. The Large Hadron Collider, or LHC, and the Laser Interferometer Gravitational-Wave Observatory, or LIGO. One collides protons, the other watches colliding black holes and neutron stars. But while this may make the experiments sound quite similar, their goals couldn’t be more different.

The goal of the LHC, put simply, is to discover the rules that govern reality. Should the LHC find a new fundamental particle, it will tell us something we didn’t know about the laws of physics, a newly discovered fact that holds true everywhere in the universe. So far, it has discovered the Higgs boson, and while that particular rule was expected we didn’t know the details until they were tested. Now physicists hope to find something more, a deviation from the Standard Model that hints at a new law of nature altogether.

LIGO, in contrast, isn’t really for discovering the rules of the universe. Instead, it discovers the consequences of those rules, on a grand scale. Even if we knew the laws of physics completely, we can’t calculate everything from those first principles. We can simulate some things, and approximate others, but we need experiments to tweak those simulations and test those approximations. LIGO fills that role. We can try to estimate how common black holes are, and how large, but LIGO’s results were still a surprise, suggesting medium-sized black holes are more common than researchers expected. In the future, gravitational wave telescopes might discover more of these kinds of consequences, from the shape of neutron stars to the aftermath of cosmic inflation.

There are a few exceptions for both experiments. The LHC can also discover the consequences of the laws of physics, especially when those consequences are very difficult to calculate, finding complicated arrangements of known particles, like pentaquarks and glueballs. And it’s possible, though perhaps not likely, that LIGO could discover something about quantum gravity. Quantum gravity’s effects are expected to be so small that these experiments won’t see them, but some have speculated that an unusually large effect could be detected by a gravitational wave telescope.

As scientists, we want to know everything we can about everything we find. We want to know the basic laws that govern the universe, but we also want to know the consequences of those laws, the story of how our particular universe came to be the way it is today. And luckily, we have experiments for both.

4gravitons, Spinning Up

I had a new paper out last week, with Michèle Levi and Andrew McLeod. But to explain it, I’ll need to clarify something about our last paper.

Two weeks ago, I told you that Andrew and Michèle and I had written a paper, predicting what gravitational wave telescopes like LIGO see when black holes collide. You may remember that LIGO doesn’t just see colliding black holes: it sees colliding neutron stars too. So why didn’t we predict what happens when neutron stars collide?

Actually, we did. Our calculation doesn’t just apply to black holes. It applies to neutron stars too. And not just neutron stars: it applies to anything of roughly the right size and shape. Black holes, neutron stars, very large grapefruits…

LIGO’s next big discovery

That’s the magic of Effective Field Theory, the “zoom lens” of particle physics. Zoom out far enough, and any big, round object starts looking like a particle. Black holes, neutron stars, grapefruits, we can describe them all using the same math.

Ok, so we can describe both black holes and neutron stars. Can we tell the difference between them?

In our last calculation, no. In this one, yes!

Effective Field Theory isn’t just a zoom lens, it’s a controlled approximation. That means that when we “zoom out” we don’t just throw out anything “too small to see”. Instead, we approximate it, estimating how big of an effect it can have. Depending on how precise we want to be, we can include more and more of these approximated effects. If our estimates are good, we’ll include everything that matters, and get a good approximation for what we’re trying to observe.

At the precision of our last calculation, a black hole and a neutron star still look exactly the same. Our new calculation aims for a bit higher precision though. (For the experts: we’re at a higher order in spin.) The higher precision means that we can actually see the difference: our result changes for two colliding black holes versus two colliding grapefruits.

So does that mean I can tell you what happens when two neutron stars collide, according to our calculation? Actually, no. That’s not because we screwed up the calculation: it’s because some of the properties of neutron stars are unknown.

The Effective Field Theory of neutron stars has what we call “free parameters”, unknown variables. People have tried to estimate some of these (called “Love numbers” after the mathematician A. E. H. Love), but they depend on the details of how neutron stars work: what stuff they contain, how that stuff is shaped, and how it can move. To find them out, we probably can’t just calculate: we’ll have to measure, observe an actual neutron star collision and see what the numbers actually are.

That’s one of the purposes of gravitational wave telescopes. It’s not (as far as I know) something LIGO can measure. But future telescopes, with more precision, should be able to. By watching two colliding neutron stars and comparing to a high-precision calculation, physicists will better understand what those neutron stars are made of. In order to do that, they will need someone to do that high-precision calculation. And that’s why people like me are involved.

4gravitons Exchanges a Graviton

I had a new paper up last Friday with Michèle Levi and Andrew McLeod, on a topic I hadn’t worked on before: colliding black holes.

I am an “amplitudeologist”. I work on particle physics calculations, computing “scattering amplitudes” to find the probability that fundamental particles bounce off each other. This sounds like the farthest thing possible from black holes. Nevertheless, the two are tightly linked, through the magic of something called Effective Field Theory.

Effective Field Theory is a kind of “zoom knob” for particle physics. You “zoom out” to some chosen scale, and write down a theory that describes physics at that scale. Your theory won’t be a complete description: you’re ignoring everything that’s “too small to see”. It will, however, be an effective description: one that, at the scale you’re interested in, is effectively true.

Particle physicists usually use Effective Field Theory to go between different theories of particle physics, to zoom out from strings to quarks to protons and neutrons. But you can zoom out even further, all the way out to astronomical distances. Zoom out far enough, and even something as massive as a black hole looks like just another particle.

Just click the “zoom X10” button fifteen times, and you’re there!

In this picture, the force of gravity between black holes looks like particles (specifically, gravitons) going back and forth. With this picture, physicists can calculate what happens when two black holes collide with each other, making predictions that can be checked with new gravitational wave telescopes like LIGO.

Researchers have pushed this technique quite far. As the calculations get more and more precise (more and more “loops”), they have gotten more and more challenging. This is particularly true when the black holes are spinning, an extra wrinkle in the calculation that adds a surprising amount of complexity.

That’s where I came in. I can’t compete with the experts on black holes, but I certainly know a thing or two about complicated particle physics calculations. Amplitudeologists, like Andrew McLeod and me, have a grab-bag of tricks that make these kinds of calculations a lot easier. With Michèle Levi’s expertise working with spinning black holes in Effective Field Theory, we were able to combine our knowledge to push beyond the state of the art, to a new level of precision.

This project has been quite exciting for me, for a number of reasons. For one, it’s my first time working with gravitons: despite this blog’s name, I’d never published a paper on gravity before. For another, as my brother quipped when he heard about it, this is by far the most “applied” paper I’ve ever written. I mostly work with a theory called N=4 super Yang-Mills, a toy model we use to develop new techniques. This paper isn’t a toy model: the calculation we did should describe black holes out there in the sky, in the real world. There’s a decent chance someone will use this calculation to compare with actual data, from LIGO or a future telescope. That, in particular, is an absurdly exciting prospect.

Because this was such an applied calculation, it was an opportunity to explore the more applied part of my own field. We ended up using well-known techniques from that corner, but I look forward to doing something more inventive in future.

Guest Post: On the Real Inhomogeneous Universe and the Weirdness of ‘Dark Energy’

A few weeks ago, I mentioned a paper by a colleague of mine, Mohamed Rameez, that generated some discussion. Since I wasn’t up for commenting on the paper’s scientific content, I thought it would be good to give Rameez a chance to explain it in his own words, in a guest post. Here’s what he has to say:


In an earlier post, 4gravitons had contemplated the question of ‘when to trust the contrarians’, in the context of our about-to-be-published paper in which we argue that accounting for the effects of the bulk flow in the local Universe, there is no evidence for any isotropic cosmic acceleration, which would be required to claim some sort of ‘dark energy’.

In the following I would like to emphasize that this is a reasonable view, and not a contrarian one. To do so I will examine the bulk flow of the local Universe and the historical evolution of what appears to be somewhat dodgy supernova data. I will present a trivial solution (from data) to the claimed ‘Hubble tension’.  I will then discuss inhomogeneous cosmology, and the 2011 Nobel prize in Physics. I will proceed to make predictions that can be falsified with future data. I will conclude with some questions that should be frequently asked.

Disclaimer: The views expressed here are not necessarily shared by my collaborators. 

The bulk flow of the local Universe:

The largest anisotropy in the Cosmic Microwave Background is the dipole, believed to be caused by our motion with respect to the ‘rest frame’ of the CMB with a velocity of ~369 km s^-1. Under this view, all matter in the local Universe appear to be flowing. At least out to ~300 Mpc, this flow continues to be directionally coherent, to within ~40 degrees of the CMB dipole, and the scale at which the average relative motion between matter and radiation converges to zero has so far not been found.

This is one of the most widely accepted results in modern cosmology, to the extent that SN1a data come pre ‘corrected’ for it.

Such a flow has covariant consequences under general relativity and this is what we set out to test.

Supernova data, directions in the sky and dodgyness:

Both Riess et al 1998 and Perlmutter et al 1999 used samples of supernovae down to redshifts of 0.01, in which almost all SNe at redshifts below 0.1 were in the direction of the flow.

Subsequently in Astier et al 2006, Kowalsky et al 2008, Amanullah et al 2010 and Suzuki et al 2011, it is reported that a process of outlier rejection was adopted in which data points >3\sigma from the Hubble diagram were discarded. This was done using a highly questionable statistical method that involves adjusting an intrinsic dispersion term \sigma_{\textrm{int}} by hand until a \chi^2/\textrm{ndof} of 1 is obtained to the assumed \LambdaCDM model. The number of outliers rejected is however far in excess of 0.3% – which is the 3\sigma expectation. As the sky coverage became less skewed, supernovae with redshift less than ~0.023 were excluded for being outside the Hubble flow. While the Hubble diagram so far had been inferred from heliocentric redshifts and magnitudes, with the introduction of SDSS supernovae that happened to be in the direction opposite to the flow, peculiar velocity ‘corrections’ were adopted in the JLA catalogue and supernovae down to extremely low redshifts were reintroduced. While the early claims of a cosmological constant were stated as ‘high redshift supernovae were found to be dimmer (15% in flux) than the low redshift supernovae (compared to what would be expected in a \Lambda=0 universe)’, it is worth noting that the peculiar velocity corrections change the redshifts and fluxes of low redshift supernovae by up to ~20 %.

When it was observed that even with this ‘corrected’ sample of 740 SNe, any evidence for isotropic acceleration using a principled Maximum Likelihood Estimator is less than 3\sigma , it was claimed that by adding 12 additional parameters (to the 10 parameter model) to allow for redshift and sample dependence of the light curve fitting parameters, the evidence was greater than 4\sigma .

As we discuss in Colin et al. 2019, these corrections also appear to be arbitrary, and betray an ignorance of the fundamentals of both basic statistical analysis and relativity. With the Pantheon compilation, heliocentric observables were no longer public and these peculiar velocity corrections initially extended far beyond the range of any known flow model of the Local Universe. When this bug was eventually fixed, both the heliocentric redshifts and magnitudes of the SDSS SNe that filled in the ‘redshift desert’ between low and high redshift SNe were found to be alarmingly discrepant. The authors have so far not offered any clarification of these discrepancies.

Thus it seems to me that the latest generation of ‘publicly available’ supernova data are not aiding either open science or progress in cosmology.

A trivial solution to the ‘Hubble tension’?

The apparent tension between the Hubble parameter as inferred from the Cosmic Microwave Background and low redshift tracers has been widely discussed, and recent studies suggest that redshift errors as low as 0.0001 can have a significant impact. Redshift discrepancies as big as 0.1 have been reported. The shifts reported between JLA and Pantheon appear to be sufficient to lower the Hubble parameter from ~73 km s^-1 Mpc^-1 to ~68 km s^-1 Mpc^-1.

On General Relativity, cosmology, metric expansion and inhomogeneities:

In the maximally symmetric Friedmann-Lemaitre-Robertson-Walker solution to general relativity, there is only one meaningful global notion of distance and it expands at the same rate everywhere. However, the late time Universe has structure on all scales, and one may only hope for statistical (not exact) homogeneity. The Universe is expected to be lumpy. A background FLRW metric is not expected to exist and quantities analogous to the Hubble and deceleration parameters will vary across the sky.  Peculiar velocities may be more precisely thought of as variations in the expansion rate of the Universe. At what rate does a real Universe with structure expand? The problems of defining a meaningful average notion of volume, its dynamical evolution, and connecting it to observations are all conceptually open.

On the 2011 Nobel Prize in Physics:

The Fitting Problem in cosmology was written in 1987. In the context of this work and the significant theoretical difficulties involved in inferring fundamental physics from the real Universe, any claims of having measured a cosmological constant from directionally skewed, sparse samples of intrinsically scattered observations should have been taken with a grain of salt.  By honouring this claim with a Nobel Prize, the Swedish Academy may have induced runaway prestige bias in favour of some of the least principled analyses in science, strengthening the confirmation bias that seems prevalent in cosmology.

This has resulted in the generation of a large body of misleading literature, while normalizing the practice of ‘massaging’ scientific data. In her recent video about gravitational waves, Sabine Hossenfelder says “We should not hand out Nobel Prizes if we don’t know how the predictions were fitted to the data”. What about when the data was fitted (in 1998-1999) using a method that has been discredited in 1989 to a toy model that has been cautioned against in 1987, leading to a ‘discovery’ of profound significance to fundamental physics?

A prediction with future cosmological data:

With the advent of high statistics cosmological data in the future, such as from the Large Synoptic Survey Telescope, I predict that the Hubble and deceleration parameters inferred from supernovae in hemispheres towards and away from the CMB dipole will be found to be different in a statistically significant (>5\sigma ) way. Depending upon the criterion for selection and blind analyses of data that can be agreed upon, I would be willing to bet a substantial amount of money on this prediction.

Concluding : on the amusing sociology of ‘Dark Energy’ and manufactured concordance:

Of the two authors of the well-known cosmology textbook ‘The Early Universe’, Edward Kolb writes these interesting papers questioning dark energy while Michael Turner is credited with coining the term ‘Dark Energy’.  Reasonable scientific perspectives have to be presented as ‘Dark Energy without dark energy’. Papers questioning the need to invoke such a mysterious content that makes up ‘68% of the Universe’ are quickly targeted by inane articles by non-experts or perhaps well-meant but still misleading YouTube videos. Much of this is nothing more than a spectacle.

In summary, while the theoretical debate about whether what has been observed as Dark Energy is the effect of inhomogeneities is ongoing, observers appear to have been actively using the most inhomogeneous feature of the local Universe through opaque corrections to data, to continue claiming that this ‘dark energy’ exists.

It is heartening to see that recent works lean toward a breaking of this manufactured concordance and speak of a crisis for cosmology.

Questions that should be frequently asked:

Q. Is there a Hubble frame in the late time Universe?

A. The Hubble frame is a property of the FLRW exact solution, and in the late time Universe in which galaxies and clusters have peculiar motions with respect to each other, an equivalent notion does not exist. While popular inference treats the frame in which the CMB dipole vanishes as the Hubble frame, the scale at which the bulk flow of the local Universe converges to that frame has never been found. We are tilted observers.

Q. I am about to perform blinded analyses on new cosmological data. Should I correct all my redshifts towards the CMB rest frame?

A. No. Correcting all your redshifts towards a frame that has never been found is a good way to end up with ‘dark energy’. It is worth noting that while the CMB dipole has been known since 1994, supernova data have been corrected towards the CMB rest frame only after 2010, for what appear to be independent reasons.

Q. Can I combine new data with existing Supernova data?

A. No. The current generation of publicly available supernova data suffer from the natural biases that are to be expected when data are compiled incrementally through a human mediated process. It would be better to start fresh with a new sample.

Q. Is ‘dark energy’ fundamental or new physics?

A. Given that general relativity is a 100+ year old theory and significant difficulties exist in describing the late time Universe with it, it is unnecessary to invoke new fundamental physics when confronting any apparent acceleration of the real Universe. All signs suggest that what has been ascribed to dark energy are the result of a community that is hell bent on repeating what Einstein supposedly called his greatest mistake.

Digging deeper:

The inquisitive reader may explore the resources on inhomogeneous cosmology, as well as the works of George Ellis, Thomas Buchert and David Wiltshire.

Still Traveling, and a Black Hole

I’m still at the conference in Natal this week, so I don’t have time for a long post. The big news this week was the Event Horizon Telescope’s close-up of the black hole at the center of galaxy M87. If you’re hungry for coverage of that, Matt Strassler has some of his trademark exceptionally clear posts on the topic, while Katie Mack has a nice twitter thread.

Pictured: Not a black hole

Cosmology, or Cosmic Horror?

Around Halloween, I have a tradition of posting about the “spooky” side of physics. This year, I’ll be comparing two no doubt often confused topics, Cosmic Horror and Cosmology.

cthulhu_and_r27lyeh

Pro tip: if this guy shows up, it’s probably Cosmic Horror

Cosmic Horror

Cosmology

Started in the 1920’s with the work of Howard Phillips Lovecraft Started in the 1920’s with the work of Alexander Friedmann
Unimaginably ancient universe Precisely imagined ancient universe
In strange ages even death may die Strange ages, what redshift is that?
An expedition to Antarctica uncovers ruins of a terrifying alien civilization An expedition to Antarctica uncovers…actually, never mind, just dust
Alien beings may propagate in hidden dimensions Gravitons may propagate in hidden dimensions
Cultists compete to be last to be eaten by the Elder Gods Grad students compete to be last to realize there are no jobs
Oceanic “deep ones” breed with humans Have you seen daycare costs in a university town? No way.
Variety of inventive and bizarre creatures, inspiring libraries worth of copycat works Fritz Zwicky
Hollywood adaptations are increasingly popular, not very faithful to source material Actually this is exactly the same
Can waste hours on an ultimately fruitless game of Arkham Horror Can waste hours on an ultimately fruitless argument with Paul Steinhardt
No matter what we do, eventually Azathoth will kill us all No matter what we do, eventually vacuum decay will kill us all

The Physics Isn’t New, We Are

Last week, I mentioned the announcement from the IceCube, Fermi-LAT, and MAGIC collaborations of high-energy neutrinos and gamma rays detected from the same source, the blazar TXS 0506+056. Blazars are sources of gamma rays, thought to be enormous spinning black holes that act like particle colliders vastly more powerful than the LHC. This one, near Orion’s elbow, is “aimed” roughly at Earth, allowing us to detect the light and particles it emits. On September 22, a neutrino with energy around 300 TeV was detected by IceCube (a kilometer-wide block of Antarctic ice stuffed with detectors), coming from the direction of TXS 0506+056. Soon after, the satellite Fermi-LAT and ground-based telescope MAGIC were able to confirm that the blazar TXS 0506+056 was flaring at the time. The IceCube team then looked back, and found more neutrinos coming from the same source in earlier years. There are still lingering questions (Why didn’t they see this kind of behavior from other, closer blazars?) but it’s still a nice development in the emerging field of “multi-messenger” astronomy.

It also got me thinking about a conversation I had a while back, before one of Perimeter’s Public Lectures. An elderly fellow was worried about the LHC. He wondered if putting all of that energy in the same place, again and again, might do something unprecedented: weaken the fabric of space and time, perhaps, until it breaks? He acknowledged this didn’t make physical sense, but what if we’re wrong about the physics? Do we really want to take that risk?

At the time, I made the same point that gets made to counter fears of the LHC creating a black hole: that the energy of the LHC is less than the energy of cosmic rays, particles from space that collide with our atmosphere on a regular basis. If there was any danger, it would have already happened. Now, knowing about blazars, I can make a similar point: there are “galactic colliders” with energies so much higher than any machine we can build that there’s no chance we could screw things up on that kind of scale: if we could, they already would have.

This connects to a broader point, about how to frame particle physics. Each time we build an experiment, we’re replicating something that’s happened before. Our technology simply isn’t powerful enough to do something truly unprecedented in the universe: we’re not even close! Instead, the point of an experiment is to reproduce something where we can see it. It’s not the physics itself, but our involvement in it, our understanding of it, that’s genuinely new.

The IceCube experiment itself is a great example of this: throughout Antarctica, neutrinos collide with ice. The only difference is that in IceCube’s ice, we can see them do it. More broadly, I have to wonder how much this is behind the “unreasonable effectiveness of mathematics”: if mathematics is just the most precise way humans have to communicate with each other, then of course it will be effective in physics, since the goal of physics is to communicate the nature of the world to humans!

There may well come a day when we’re really able to do something truly unprecedented, that has never been done before in the history of the universe. Until then, we’re playing catch-up, taking laws the universe has tested extensively and making them legible, getting humanity that much closer to understanding physics that, somewhere out there, already exists.

Bubbles of Nothing

I recently learned about a very cool concept, called a bubble of nothing.

Read about physics long enough, and you’ll hear all sorts of cosmic disaster scenarios. If the Higgs vacuum decays, and the Higgs field switches to a different value, then the masses of most fundamental particles would change. It would be the end of physics, and life, as we know it.

A bubble of nothing is even more extreme. In a bubble of nothing, space itself ceases to exist.

The idea was first explored by Witten in 1982. Witten started with a simple model, a world with our four familiar dimensions of space and time, plus one curled-up extra dimension. What he found was that this simple world is unstable: quantum mechanics (and, as was later found, thermodynamics) lets it “tunnel” to another world, one that contains a small “bubble”, a sphere in which nothing at all exists.

giphy

Except perhaps the Nowhere Man

A bubble of nothing might sound like a black hole, but it’s quite different. Throw a particle into a black hole and it will fall in, never to return. Throw it into a bubble of nothing, though, and something more interesting happens. As you get closer, the extra dimension of space gets smaller and smaller. Eventually, it stops, smoothly closing off. The particle you threw in will just bounce back, smoothly, off the outside of the bubble. Essentially, it reached the edge of the universe.

The bubble starts out small, comparable to the size of the curled-up dimension. But it doesn’t stay that way. In Witten’s setup, the bubble grows, faster and faster, until it’s moving at the speed of light, erasing the rest of the universe from existence.

You probably shouldn’t worry about this happening to us. As far as I’m aware, nobody has written down a realistic model that can transform into a bubble of nothing.

Still, it’s an evocative concept, and one I’m surprised isn’t used more often in science fiction. I could see writers using a bubble of nothing as a risk from an experimental FTL drive, or using a stable (or slowly growing) bubble as the relic of some catastrophic alien war. The idea of a bubble of literal nothing is haunting enough that it ought to be put to good use.