Category Archives: Misc

Halloween Post: Superstimuli for Physicists

For Halloween, this blog has a tradition of covering “the spooky side” of physics. This year, I’m bringing in a concept from biology to ask a spooky physics “what if?”

In the 1950’s, biologists discovered that birds were susceptible to a worryingly effective trick. By giving them artificial eggs larger and brighter than their actual babies, they found that the birds focused on the new eggs to the exclusion of their own. They couldn’t help trying to hatch the fake eggs, even if they were so large that they would fall off when they tried to sit on them. The effect, since observed in other species, became known as a supernormal stimulus, or superstimulus.

Can this happen to humans? Some think so. They worry about junk food we crave more than actual nutrients, or social media that eclipses our real relationships. Naturally, this idea inspires horror writers, who write about haunting music you can’t stop listening to, or holes in a wall that “fit” so well you’re compelled to climb in.

(And yes, it shows up in porn as well.)

But this is a physics blog, not a biology blog. What kind of superstimulus would work on physicists?

Abstruse goose knows what’s up

Well for one, this sounds a lot like some criticisms of string theory. Instead of a theory that just unifies some forces, why not unify all the forces? Instead of just learning some advanced mathematics, why not learn more, and more? And if you can’t be falsified by any experiment, well, all that would do is spoil the fun, right?

But it’s not just string theory you could apply this logic to. Astrophysicists study not just one world but many. Cosmologists study the birth and death of the entire universe. Particle physicists study the fundamental pieces that make up the fundamental pieces. We all partake in the euphoria of problem-solving, a perpetual rush where each solution leads to yet another question.

Do I actually think that string theory is a superstimulus, that astrophysics or particle physics is a superstimulus? In a word, no. Much as it might look that way from the news coverage, most physicists don’t work on these big, flashy questions. Far from being lured in by irresistible super-scale problems, most physicists work with tabletop experiments and useful materials. For those of us who do look up at the sky or down at the roots of the world, we do it not just because it’s compelling but because it has a good track record: physics wouldn’t exist if Newton hadn’t cared about the orbits of the planets. We study extremes because they advance our understanding of everything else, because they give us steam engines and transistors and change everyone’s lives for the better.

Then again, if I had fallen victim to a superstimulus, I’d say that anyway, right?

*cue spooky music*

Congratulations to Roger Penrose, Reinhard Genzel, and Andrea Ghez!

The 2020 Physics Nobel Prize was announced last week, awarded to Roger Penrose for his theorems about black holes and Reinhard Genzel and Andrea Ghez for discovering the black hole at the center of our galaxy.

Of the three, I’m most familiar with Penrose’s work. People had studied black holes before Penrose, but only the simplest of situations, like an imaginary perfectly spherical star. Some wondered whether black holes in nature were limited in this way, if they could only exist under perfectly balanced conditions. Penrose showed that wasn’t true: he proved mathematically that black holes not only can form, they must form, in very general situations. He’s also worked on a wide variety of other things. He came up with “twistor space”, an idea intended for a new theory of quantum gravity that ended up as a useful tool for “amplitudeologists” like me to study particle physics. He discovered a set of four types of tiles such that if you tiled a floor with them the pattern would never repeat. And he has some controversial hypotheses about quantum gravity and consciousness.

I’m less familiar with Genzel and Ghez, but by now everyone should be familiar with what they found. Genzel and Ghez led two teams that peered into the center of our galaxy. By carefully measuring the way stars moved deep in the core, they figured out something we now teach children: that our beloved Milky Way has a dark and chewy center, an enormous black hole around which everything else revolves. These appear to be a common feature of galaxies, and many others have been shown to orbit black holes as well.

Like last year, I find it a bit odd that the Nobel committee decided to lump these two prizes together. Both discoveries concern black holes, so they’re more related than last year’s laureates, but the contexts are quite different: it’s not as if Penrose predicted the black hole in the center of our galaxy. Usually the Nobel committee avoids mathematical work like Penrose’s, except when it’s tied to a particular experimental discovery. It doesn’t look like anyone has gotten a Nobel prize for discovering that black holes exist, so maybe that’s the intent of this one…but Genzel and Ghez were not the first people to find evidence of a black hole. So overall I’m confused. I’d say that Penrose deserved a Nobel Prize, and that Genzel and Ghez did as well, but I’m not sure why they needed to split one with each other.

Pseudonymity Matters. I Stand With Slate Star Codex.

Slate Star Codex is one of the best blogs on the net. Written under the pseudonym Scott Alexander, the blog covers a wide variety of topics with a level of curiosity and humility that the rest of us bloggers can only aspire to.

Recently, this has all been jeopardized. A reporter at the New York Times, writing an otherwise positive article, told Scott he was going to reveal his real name publicly. In a last-ditch effort to stop this, Scott deleted his blog.

I trust Scott. When he says that revealing his identity would endanger his psychiatric practice, not to mention the safety of friends and loved ones, I believe him. What’s more, I think working under a pseudonym makes him a better blogger: some of his best insights have come from talking to people who don’t think of him as “the Slate Star Codex guy”.

I don’t know why the Times thinks revealing Scott’s name is a good idea. I do know that there are people out there who view anyone under a pseudonym with suspicion. Compared to Scott, my pseudonym is paper-thin: it’s very easy to find who I am. Still, I have met people who are irked just by that, by the bare fact that I don’t print my real name on this blog.

I think this might be a generational thing. My generation grew up alongside the internet. We’re used to the idea that very little is truly private, that anything made public somewhere risks becoming public everywhere. In that world, writing under a pseudonym is like putting curtains on a house. It doesn’t make us unaccountable: if you break the law behind your curtains the police can get a warrant, similarly Scott’s pseudonym wouldn’t stop a lawyer from tracking him down. All it is, is a filter: a way to have a life of our own, shielded just a little from the whirlwind of the web.

I know there are journalists who follow this blog. If you have contacts in the Times tech section, or know someone who does, please reach out. I want to hope that someone there is misunderstanding the situation, that when things are fully explained they will back down. We have to try.

The Wolfram Physics Project Makes Me Queasy

Stephen Wolfram is…Stephen Wolfram.

Once a wunderkind student of Feynman, Wolfram is now best known for his software, Mathematica, a tool used by everyone from scientists to lazy college students. Almost all of my work is coded in Mathematica, and while it has some flaws (can someone please speed up the linear solver? Maple’s is so much better!) it still tends to be the best tool for the job.

Wolfram is also known for being a very strange person. There’s his tendency to name, or rename, things after himself. (There’s a type of Mathematica file that used to be called “.m”. Now by default they’re “.wl”, “Wolfram Language” files.) There’s his live-streamed meetings. And then there’s his physics.

In 2002, Wolfram wrote a book, “A New Kind of Science”, arguing that computational systems called cellular automata were going to revolutionize science. A few days ago, he released an update: a sprawling website for “The Wolfram Physics Project”. In it, he claims to have found a potential “theory of everything”, unifying general relativity and quantum physics in a cellular automata-like form.

If that gets your crackpot klaxons blaring, yeah, me too. But Wolfram was once a very promising physicist. And he has collaborators this time, who are currently promising physicists. So I should probably give him a fair reading.

On the other hand, his introduction for a technical audience is 448 pages long. I may have more time now due to COVID-19, but I still have a job, and it isn’t reading that.

So I compromised. I didn’t read his 448-page technical introduction. I read his 90-ish page blog post. The post is written for a non-technical audience, so I know it isn’t 100% accurate. But by seeing how someone chooses to promote their work, I can at least get an idea of what they value.

I started out optimistic, or at least trying to be. Wolfram starts with simple mathematical rules, and sees what kinds of structures they create. That’s not an unheard of strategy in theoretical physics, including in my own field. And the specific structures he’s looking at look weirdly familiar, a bit like a generalization of cluster algebras.

Reading along, though, I got more and more uneasy. That unease peaked when I saw him describe how his structures give rise to mass.

Wolfram had already argued that his structures obey special relativity. (For a critique of this claim, see this twitter thread.) He found a way to define energy and momentum in his system, as “fluxes of causal edges”. He picks out a particular “flux of causal edges”, one that corresponds to “just going forward in time”, and defines it as mass. Then he “derives” E=mc^2, saying,

Sometimes in the standard formalism of physics, this relation by now seems more like a definition than something to derive. But in our model, it’s not just a definition, and in fact we can successfully derive it.

In “the standard formalism of physics”, E=mc^2 means “mass is the energy of an object at rest”. It means “mass is the energy of an object just going forward in time”. If the “standard formalism of physics” “just defines” E=mc^2, so does Wolfram.

I haven’t read his technical summary. Maybe this isn’t really how his “derivation” works, maybe it’s just how he decided to summarize it. But it’s a pretty misleading summary, one that gives the reader entirely the wrong idea about some rather basic physics. It worries me, because both as a physicist and a blogger, he really should know better. I’m left wondering whether he meant to mislead, or whether instead he’s misleading himself.

That feeling kept recurring as I kept reading. There was nothing else as extreme as that passage, but a lot of pieces that felt like they were making a big deal about the wrong things, and ignoring what a physicist would find the most important questions.

I was tempted to get snarkier in this post, to throw in a reference to Lewis’s trilemma or some variant of the old quip that “what is new is not good; and what is good is not new”. For now, I’ll just say that I probably shouldn’t have read a 90 page pop physics treatise before lunch, and end the post with that.

This Is What an Exponential Feels Like

Most people, when they picture exponential growth, think of speed. They think of something going faster and faster, more and more out of control. But in the beginning, exponential growth feels slow. A little bit leads to a little bit more, leads to a little bit more. It sneaks up on you.

When the first cases of COVID-19 were observed in China in December, I didn’t hear about it. If it was in the news, it wasn’t news I read.

I’d definitely heard about it by the end of January. A friend of mine had just gotten back from a trip to Singapore. At the time, Singapore had a few cases from China, but no local transmission. She decided to work from home for two weeks anyway, just to be safe. The rest of us chatted around tea at work, shocked at the measures China was taking to keep the virus under control.

Italy reached our awareness in February. My Italian friends griped and joked about the situation. Denmark’s first case was confirmed on February 27, a traveler returning from Italy. He was promptly quarantined.

I was scheduled to travel on March 8, to a conference in Hamburg. On March 2, six days before, they decided to postpone. I was surprised: Hamburg is on the opposite side of Germany from Italy.

That week, my friend who went to Singapore worked from home again. This time, she wasn’t worried she brought the virus from Singapore: she was worried she might pick it up in Denmark. I was surprised: with so few cases (23 by March 6) in a country with a track record of thorough quarantines, I didn’t think we had anything to worry about. She disagreed. She remembered what happened in Singapore.

That was Saturday, March 7. Monday evening, she messaged me again. The number of cases had risen to 90. Copenhagen University asked everyone who traveled to a “high-risk” region to stay home for fourteen days.

On Wednesday, the university announced new measures. They shut down social events, large meetings, and work-related travel. Classes continued, but students were asked to sit as far as possible from each other. The Niels Bohr Institute was more strict: employees were asked to work from home, and classes were asked to switch online. The canteen would stay open, but would only sell packaged food.

The new measures lasted a day. On Thursday, the government of Denmark announced a lockdown, starting Friday. Schools were closed for two weeks, and public sector employees were sent to work from home. On Saturday, they closed the borders. There were 836 confirmed cases.

Exponential growth is the essence of life…but not of daily life. It’s been eerie, seeing the world around me change little by little and then lots by lots. I’m not worried for my own health. I’m staying home regardless. I know now what an exponential feels like.

P.S.: This blog has a no-politics policy. Please don’t comment on what different countries or politicians should be doing, or who you think should be blamed. Viruses have enough effect on the world right now, let’s keep viral arguments out of the comment section.

Valentine’s Day Physics Poem 2020

It’s Valentine’s Day, time for my traditional physics poem. I’m trying a new format this year, let me know what you think!

Cherish the Effective

Self-styled wise men waste away, pining for the Ultimate Theory.
I tell you now: spurn their fate.
Scorn the Ultimate.
Cherish the Effective.
 
When you dream of an Ultimate Theory, what do you see?
An answer to your every question?
Every worry,
Every weakness,
Resolved?
A thing of beauty?
A thing of
       your notion
              and only your notion
of beauty?
 
Nature, she has her own worries.
Science, she never stops asking.
Your fairytale ending?
You won’t get it.
And you’ll hurt, and be hurt, in the trying.
 
You need a theory that isn’t an ending.
A theory you
              only
                   start
                          understanding
But can always discover.
No rigid, final truth,
But gentle corrections.
And as you push
                The scale
                           The energy
Your theory always has room for something new.
 
A theory like that, we call Effective.
A theory you can live
                      your
                           life
                                with.
It’s worth more than you think.

Math Is the Art of Stating Things Clearly

Why do we use math?

In physics we describe everything, from the smallest of particles to the largest of galaxies, with the language of mathematics. Why should that one field be able to describe so much? And why don’t we use something else?

The truth is, this is a trick question. Mathematics isn’t a language like English or French, where we can choose whichever translation we want. We use mathematics because it is, almost by definition, the best choice. That is because mathematics is the art of stating things clearly.

An infinite number of mathematicians walk into a bar. The first orders a beer. The second orders half a beer. The third orders a quarter. The bartender stops them, pours two beers, and says “You guys should know your limits.”

That was an (old) joke about infinite series of numbers. You probably learned in high school that if you add up one plus a half plus a quarter…you eventually get two. To be a bit more precise:

\sum_{i=0}^\infty \frac{1}{2^i} = 1+\frac{1}{2}+\frac{1}{4}+\ldots=2

We say that this infinite sum limits to two.

But what does it actually mean for an infinite sum to limit to a number? What does it mean to sum infinitely many numbers, let alone infinitely many beers ordered by infinitely many mathematicians?

You’re asking these questions because I haven’t yet stated the problem clearly. Those of you who’ve learned a bit more mathematics (maybe in high school, maybe in college) will know another way of stating it.

You know how to sum a finite set of beers. You start with one beer, then one and a half, then one and three-quarters. Sum N beers, and you get

\sum_{i=0}^N \frac{1}{2^i}

What does it mean for the sum to limit to two?

Let’s say you just wanted to get close to two. You want to get \epsilon close, where epsilon is the Greek letter we use for really small numbers.

For every \epsilon>0 you choose, no matter how small, I can pick a (finite!) N and get at least that close. That means that, with higher and higher N, I can get as close to two as a I want.

As it turns out, that’s what it means for a sum to limit to two. It’s saying the same thing, but more clearly, without sneaking in confusing claims about infinity.

These sort of proofs, with \epsilon (and usually another variable, \delta) form what mathematicians view as the foundations of calculus. They’re immortalized in story and song.

And they’re not even the clearest way of stating things! Go down that road, and you find more mathematics: definitions of numbers, foundations of logic, rabbit holes upon rabbit holes, all from the effort to state things clearly.

That’s why I’m not surprised that physicists use mathematics. We have to. We need clarity, if we want to understand the world. And mathematicians, they’re the people who spend their lives trying to state things clearly.

Congratulations to James Peebles, Michel Mayor, and Didier Queloz!

The 2019 Physics Nobel Prize was announced this week, awarded to James Peebles for work in cosmology and to Michel Mayor and Didier Queloz for the first observation of an exoplanet.

Peebles introduced quantitative methods to cosmology. He figured out how to use the Cosmic Microwave Background (light left over from the Big Bang) to understand how matter is distributed in our universe, including the presence of still-mysterious dark matter and dark energy. Mayor and Queloz were the first team to observe a planet outside of our solar system (an “exoplanet”), in 1995. By careful measurement of the spectrum of light coming from a star they were able to find a slight wobble, caused by a Jupiter-esque planet in orbit around it. Their discovery opened the floodgates of observation. Astronomers found many more planets than expected, showing that, far from a rare occurrence, exoplanets are quite common.

It’s a bit strange that this Nobel was awarded to two very different types of research. This isn’t the first time the prize was divided between two different discoveries, but all of the cases I can remember involve discoveries in closely related topics. This one didn’t, and I’m curious about the Nobel committee’s logic. It might have been that neither discovery “merited a Nobel” on its own, but I don’t think we’re supposed to think of shared Nobels as “lesser” than non-shared ones. It would make sense if the Nobel committee thought they had a lot of important results to “get through” and grouped them together to get through them faster, but if anything I have the impression it’s the opposite: that at least in physics, it’s getting harder and harder to find genuinely important discoveries that haven’t been acknowledged. Overall, this seems like a very weird pairing, and the Nobel committee’s citation “for contributions to our understanding of the evolution of the universe and Earth’s place in the cosmos” is a pretty loose justification.

Reader Background Poll 2.0

Back in 2015, I did a poll asking how much physics background you guys had. Now four years and many new readers later, I’d like to revisit the question. I’ll explain the categories below the poll:

Amplitudeologist: You have published a paper about scattering amplitudes in quantum field theories, or expect to publish one within the next year or so.

Physics (or related field) PhD: You have a PhD in physics, or in a field with related background such as astronomy or some parts of mathematics.

Physics (or related field) Grad Student: You are a graduate student in physics or a related field. Specifically, you are either a PhD student, or a Master’s student in a research-focused program.

Undergrad or Lower: You are currently an undergraduate student (studying for a Bachelor’s degree) or are in an earlier stage of education (for example a high school student).

Physics Autodidact: Included by popular demand from the last poll: while you don’t have a physics PhD, you have taught yourself about the subject extensively beyond your formal schooling.

Other Academic: You work in Academia, but not in physics or a closely related field.

Other Technical Profession: You work in a technical profession, such as engineering, medicine, or STEM teaching.

None of the Above: Something else.

If you fit more than one category, pick the first that matches you: for example, if you are an undergrad with a published paper in Amplitudes, list yourself as an Amplitudeologist (also, well done!)

Things I’d Like to Know More About

This is an accountability post, of sorts.

As a kid, I wanted to know everything. Eventually, I realized this was a little unrealistic. Doomed to know some things and not others, I picked physics as a kind of triage. Other fields I could learn as an outsider: not well enough to compete with the experts, but enough to at least appreciate what they were doing. After watching a few string theory documentaries, I realized this wasn’t the case for physics: if I was going to ever understand what those string theorists were up to, I would have to go to grad school in string theory.

Over time, this goal lost focus. I’ve become a very specialized creature, an “amplitudeologist”. I didn’t have time or energy for my old questions. In an irony that will surprise no-one, a career as a physicist doesn’t leave much time for curiosity about physics.

One of the great things about this blog is how you guys remind me of those old questions, bringing me out of my overspecialized comfort zone. In that spirit, in this post I’m going to list a few things in physics that I really want to understand better. The idea is to make a public commitment: within a year, I want to understand one of these topics at least well enough to write a decent blog post on it.

Wilsonian Quantum Field Theory:

When you first learn quantum field theory as a physicist, you learn how unsightly infinite results get covered up via an ad-hoc-looking process called renormalization. Eventually you learn a more modern perspective, that these infinite results show up because we’re ignorant of the complete theory at high energies. You learn that you can think of theories at a particular scale, and characterize them by what happens when you “zoom” in and out, in an approach codified by the physicist Kenneth Wilson.

While I understand the basics of Wilson’s approach, the courses I took in grad school skipped the deeper implications. This includes the idea of theories that are defined at all energies, “flowing” from an otherwise scale-invariant theory perturbed with extra pieces. Other physicists are much more comfortable thinking in these terms, and the topic is important for quite a few deep questions, including what it means to properly define a theory and where laws of nature “live”. If I’m going to have an informed opinion on any of those topics, I’ll need to go back and learn the Wilsonian approach properly.

Wormholes:

If you’re a fan of science fiction, you probably know that wormholes are the most realistic option for faster-than-light travel, something that is at least allowed by the equations of general relativity. “Most realistic” isn’t the same as “realistic”, though. Opening a wormhole and keeping it stable requires some kind of “exotic matter”, and that matter needs to violate a set of restrictions, called “energy conditions”, that normal matter obeys. Some of these energy conditions are just conjectures, some we even know how to violate, while others are proven to hold for certain types of theories. Some energy conditions don’t rule out wormholes, but instead restrict their usefulness: you can have non-traversable wormholes (basically, two inescapable black holes that happen to meet in the middle), or traversable wormholes where the distance through the wormhole is always longer than the distance outside.

I’ve seen a few talks on this topic, but I’m still confused about the big picture: which conditions have been proven, what assumptions were needed, and what do they all imply? I haven’t found a publicly-accessible account that covers everything. I owe it to myself as a kid, not to mention everyone who’s a kid now, to get a satisfactory answer.

Quantum Foundations:

Quantum Foundations is a field that many physicists think is a waste of time. It deals with the questions that troubled Einstein and Bohr, questions about what quantum mechanics really means, or why the rules of quantum mechanics are the way they are. These tend to be quite philosophical questions, where it’s hard to tell if people are making progress or just arguing in circles.

I’m more optimistic about philosophy than most physicists, at least when it’s pursued with enough analytic rigor. I’d like to at least understand the leading arguments for different interpretations, what the constraints on interpretations are and the main loopholes. That way, if I end up concluding the field is a waste of time at least I’d be making an informed decision.