In physics we describe everything, from the smallest of particles to the largest of galaxies, with the language of mathematics. Why should that one field be able to describe so much? And why don’t we use something else?

The truth is, this is a trick question. Mathematics isn’t a language like English or French, where we can choose whichever translation we want. We use mathematics because it is, almost by definition, the best choice. That is because mathematics is the art of stating things clearly.

That was an (old) joke about infinite series of numbers. You probably learned in high school that if you add up one plus a half plus a quarter…you eventually get two. To be a bit more precise:

We say that this infinite sum limits to two.

But what does it actually mean for an infinite sum to limit to a number? What does it mean to sum infinitely many numbers, let alone infinitely many beers ordered by infinitely many mathematicians?

You’re asking these questions because I haven’t yet stated the problem clearly. Those of you who’ve learned a bit more mathematics (maybe in high school, maybe in college) will know another way of stating it.

You know how to sum a finite set of beers. You start with one beer, then one and a half, then one and three-quarters. Sum beers, and you get

What does it mean for the sum to limit to two?

Let’s say you just wanted to get close to two. You want to get close, where epsilon is the Greek letter we use for really small numbers.

For every you choose, no matter how small, I can pick a (finite!) and get at least that close. That means that, with higher and higher , I can get as close to two as a I want.

As it turns out, that’s what it means for a sum to limit to two. It’s saying the same thing, but more clearly, without sneaking in confusing claims about infinity.

These sort of proofs, with (and usually another variable, ) form what mathematicians view as the foundations of calculus. They’re immortalized in story and song.

And they’re not even the clearest way of stating things! Go down that road, and you find more mathematics: definitions of numbers, foundations of logic, rabbit holes upon rabbit holes, all from the effort to state things clearly.

That’s why I’m not surprised that physicists use mathematics. We have to. We need clarity, if we want to understand the world. And mathematicians, they’re the people who spend their lives trying to state things clearly.

Science is by definition empirical. We discover how the world works not by sitting and thinking, but by going out and observing the world. But sometimes, all the observing we can do can’t possibly answer a question. In those situations, we might need “non-empirical science”.

The blog Slate Star Codex had a seriesof posts on this topic recently. He hangs out with a crowd that supports the many-worlds interpretation of quantum mechanics: the idea that quantum events are not truly random, but instead that all outcomes happen, the universe metaphorically splitting into different possible worlds. These metaphorical universes can’t be observed, so no empirical test can tell the difference between this and other interpretations of quantum mechanics: if we could ever know the difference, it would have to be for “non-empirical” reasons.

What reasons are those? Slate Star Codex teases out a few possible intuitions. He points out that we reject theories that have “unnecessary” ideas. He imagines a world where chemists believe that mixing an acid and a base also causes a distant star to go supernova, and a creationist world where paleontologists believe fossils are placed by the devil. In both cases, there might be no observable difference between their theories and ours, but because their theories have “extra pieces” (the distant star, the devil), we reject them for non-empirical reasons. Slate Star Codex asks if this supports many-worlds: without the extra assumption that quantum events randomly choose one outcome, isn’t quantum mechanics simpler?

Ultimately, we trust science because it allows us to do things. If we understand the world, we can interact with it: we can build technology, design new experiments, and propose new theories. With this in mind, we can judge scientific theories by how well they help us do these things. A good scientific theory is one that gives us more power to interact with the world. It can do this by making correct predictions, but it can also do this by explaining things, making it easier for us to reason about them. Beyond empiricism, we can judge science by how well it teaches us.

This gives us an objection to the “supernova theory” of Slate Star Codex’s imagined chemists: it’s much more confusing to teach. To teach chemistry in that world you also have to teach the entire life cycle of stars, a subject that students won’t use in any other part of the course. The creationists’ “devil theory” of paleontology has the same problem: if their theory really makes the right predictions they’d have to teach students everything our paleontologists do: every era of geologic history, every theory of dinosaur evolution, plus an extra course in devil psychology. They end up with a mix that only makes it harder to understand the subject.

Many-worlds may seem simpler than other interpretations of quantum mechanics, but that doesn’t make it more useful, or easier to teach. You still need to teach students how to predict the results of experiments, and those results will still be random. If you teach them many-worlds, you need to add more discussion much earlier on, advanced topics like self-localizing uncertainty and decoherence. You need a quite extensive set of ideas, many of which won’t be used again, to justify rules another interpretation could have introduced much more simply. This would be fine if those ideas made additional predictions, but they don’t: like every interpretation of quantum mechanics, you end up doing the same experiments and building the same technology in the end.

I’m not saying I know many-worlds is false, or that I know another interpretation is true. All I’m saying is that, when physicists criticize many-worlds, they’re not just blindly insisting on empiricism. They’re rejecting many-worlds, in part, because all it does is make their work harder. And that, more than elegance or simplicity, is how we judge theories.

Earlier this year, I made a list of topics I wanted to understand. The most abstract and technical of them was something called “Wilsonian effective field theory”. I still don’t understand Wilsonian effective field theory. But while thinking about it, I noticed something that seemed weird. It’s something I think many physicists already understand, but that hasn’t really sunk in with the public yet.

There’s an old problem in particle physics, described in many different ways over the years. Take our theories and try to calculate some reasonable number (say, the angle an electron turns in a magnetic field), and instead of that reasonable number we get infinity. We fix this problem with a process called renormalization that hides that infinity away, changing the “normalization” of some constant like a mass or a charge. While renormalization first seemed like a shady trick, physicists eventually understood it better. First, we thought of it as a way to work around our ignorance, that the true final theory would have no infinities at all. Later, physicists instead thought about renormalization in terms of scaling.

Imagine looking at the world on a camera screen. You can zoom in, or zoom out. The further you zoom out, the more details you’ll miss: they’re just too small to be visible on your screen. You can guess what they might be, but your picture will be different depending on how you zoom.

In particle physics, many of our theories are like that camera. They come with a choice of “zoom setting”, a minimum scale where they still effectively tell the whole story. We call theories like these effective field theories. Some physicists argue that these are all we can ever have: since our experiments are never perfect, there will always be a scale so small we have no evidence about it.

One theory like this is Quantum Chromodynamics (or QCD), the theory of quarks and gluons. Zoom in, and the theory looks pretty much the same, with one crucial change: the force between particles get weaker. There’s a number, called the “coupling constant“, that describes how strong a force is, think of it as sort of like an electric charge. As you zoom in to quarks and gluons, you find you can still describe them with QCD, just with a smaller coupling constant. If you could zoom “all the way in”, the constant (and thus the force between particles) would be zero.

This makes QCD a rare kind of theory: one that could be complete to any scale. No matter how far you zoom in, QCD still “makes sense”. It never gives contradictions or nonsense results. That doesn’t mean it’s actually true: it interacts with other forces, like gravity, that don’t have complete theories, so it probably isn’t complete either. But if we didn’t have gravity or electricity or magnetism, if all we had were quarks and gluons, then QCD could have been the final theory that described them.

And this starts feeling a little weird, when you think about reductionism.

Philosophers define reductionism in many different ways. I won’t be that sophisticated. Instead, I’ll suggest the following naive definition: Reductionism is the claim that theories on larger scales reduce to theories on smaller scales.

Here “reduce to” is intentionally a bit vague. It might mean “are caused by” or “can be derived from” or “are explained by”. I’m gesturing at the sort of thing people mean when they say that biology reduces to chemistry, or chemistry to physics.

What happens when we think about QCD, with this intuition?

QCD on larger scales does indeed reduce to QCD on smaller scales. If you want to ask why QCD on some scale has some coupling constant, you can explain it by looking at the (smaller) QCD coupling constant on a smaller scale. If you have equations for QCD on a smaller scale, you can derive the right equations for a larger scale. In some sense, everything you observe in your larger-scale theory of QCD is caused by what happens in your smaller-scale theory of QCD.

But this isn’t quite the reductionism you’re used to. When we say biology reduces to chemistry, or chemistry reduces to physics, we’re thinking of just a few layers: one specific theory reduces to another specific theory. Here, we have an infinite number of layers, every point on the scale from large to small, each one explained by the next.

Maybe you think you can get out of this, by saying that everything should reduce to the smallest scale. But remember, the smaller the scale the smaller our “coupling constant”, and the weaker the forces between particles. At “the smallest scale”, the coupling constant is zero, and there is no force. It’s only when you put your hand on the zoom nob and start turning that the force starts to exist.

It’s reductionism, perhaps, but not as we know it.

Now that I understand this a bit better, I get some of the objections to my post about naturalness a while back. I was being too naive about this kind of thing, as some of the commenters (particularly Jacques Distler) noted. I believe there’s a way to rephrase the argument so that it still works, but I’d have to think harder about how.

I also get why I was uneasy about Sabine Hossenfelder’s FQXi essay on reductionism. She considered a more complicated case, where the chain from large to small scale could be broken, a more elaborate variant of a problem in Quantum Electrodynamics. But if I’m right here, then it’s not clear that scaling in effective field theories is even the right way to think about this. When you have an infinite series of theories that reduce to other theories, you’re pretty far removed from what most people mean by reductionism.

Finally, this is the clearest reason I can find why you can’t do science without an observer. The “zoom” is just a choice we scientists make, an arbitrary scale describing our ignorance. But without it, there’s no way to describe QCD. The notion of scale is an inherent and inextricable part of the theory, and it doesn’t have to mean our theory is incomplete.

Experts, please chime in here if I’m wrong on the physics here. As I mentioned at the beginning, I still don’t think I understand Wilsonian effective field theory. If I’m right though, this seems genuinely weird, and something more of the public should appreciate.

I’ve been reading a biography of James Clerk Maxwell, who formulated the theory of electromagnetism. Nowadays, we think about the theory in terms of fields: we think there is an “electromagnetic field”, filling space and time. At the time, though, this was a very unusual way to think, and not even Maxwell was comfortable with it. He felt that he had to present a “physical model” to justify the theory: a picture of tiny gears and ball bearings, somehow occupying the same space as ordinary matter.

Maxwell didn’t think space was literally filled with ball bearings. He did, however, believe he needed a picture that was sufficiently “physical”, that wasn’t just “mathematics”. Later, when he wrote down a theory that looked more like modern field theory, he still thought of it as provisional: a way to use Lagrange’s mathematics to ignore the unknown “real physical mechanism” and just describe what was observed. To Maxwell, field theory was a description, but not an explanation.

This attitude surprised me. I would have thought physicists in Maxwell’s day could have accepted fields. After all, they had accepted Newton.

In his time, there was quite a bit of controversy about whether Newton’s theory of gravity was “physical”. When rival models described planets driven around by whirlpools, Newton simply described the mathematics of the force, an “action at a distance”. Newton famously insisted hypotheses non fingo, “I feign no hypotheses”, and insisted that he wasn’t saying anything about why gravity worked, merely how it worked. Over time, as the whirlpool models continued to fail, people gradually accepted that gravity could be explained as action at a distance.

You’d think that this would make them able to accept fields as well. Instead, by Maxwell’s day the options for a “physical explanation” had simply been enlarged by one. Now instead of just explaining something with mechanical parts, you could explain it with action at a distance as well. Indeed, many physicists tried to explain electricity and magnetism with some sort of gravity-like action at a distance. They failed, though. You really do need fields.

The author of the biography is an engineer, not a physicist, so I find his perspective unusual at times. After discussing Maxwell’s discomfort with fields, the author says that today physicists are different: instead of insisting on a physical explanation, they accept that there are some things they just cannot know.

At first, I wanted to object: we do have physical explanations, we explain things with fields! We have electromagnetic fields and electron fields, gluon fields and Higgs fields, even a gravitational field for the shape of space-time. These fields aren’t papering over some hidden mechanism, they are the mechanism!

Are they, though?

Fields aren’t quite like the whirlpools and ball bearings of historical physicists. Sometimes fields that look different are secretly the same: the two “different explanations” will give the same result for any measurement you could ever perform. In my area of physics, we try to avoid this by focusing on the measurements instead, building as much as we can out of observable quantities instead of fields. In effect we’re going back yet another layer, another dose of hypotheses non fingo.

Physicists still ask for “physical explanations”, and still worry that some picture might be “just mathematics”. But what that means has changed, and continues to change. I don’t think we have a common standard right now, at least nothing as specific as “mechanical parts or action at a distance, and nothing else”. Somehow, we still care about whether we’ve given an explanation, or just a description, even though we can’t define what an explanation is.

Think of a therapist, and you might picture a pipe-smoking Freudian, interrogating you about repressed feelings. These days, you’re more likely to meet a more modern form of therapy, like cognitive behavioral therapy (or CBT for short). CBT focuses on correcting distorted thoughts and maladaptive behaviors: basically, helping you reason through your problems. It’s supposed to be one of the types of therapy that has the most actual scientific evidence behind it.

What impresses me about CBT isn’t just the scientific evidence for it, but the way it tries to teach something like a scientific worldview. If you’re depressed or anxious, a common problem is obsessive thoughts about what others think of you. Maybe you worry that everyone is just putting up with you out of pity, or that you’re hopelessly behind your peers. For many scientists, these are familiar worries.

The standard CBT advice for these worries is as obvious as it is scary: if you worry what others think of you, ask!

This is, at its heart, a very scientific thing to do. If you’re curious about something, and you can test it, just test it! Of course, there are risks to doing this, both in your personal life and in your science, but typical CBT advice applies surprisingly well to both.

If you constantly ask your friends what they think about you, you end up annoying them. Similarly, if you perform the same experiment over and over, you can keep going until you get the result you want. In both cases, the solution is to commit to trusting your initial results: just like scientists pre-registering a study, if you ask your friends what they think you need to trust them and not second-guess what they say. If they say they’re happy with you, trust that. If they criticize, take their criticism seriously and see if you can improve.

Even then, you may be tempted to come up with reasons why you can’t trust what your friends say. You’ll come up with reasons why they might be forced to be polite, while they secretly still hate you. Similarly, as a scientist you can always come up with theories that get around the evidence: no matter what you observe, a complicated enough chain of logic can make it consistent with anything you want. In both cases, the solution is a dose of Occam’s Razor: don’t fixate on an extremely complicated explanation when a simpler one already fits. If your friends say they like you, they probably do.

I was talking with some other physicists about my “Black Box Theory” thought experiment, where theorists have to compete with an impenetrable block of computer code. Even if the theorists come up with a “better” theory, that theory won’t predict anything that the code couldn’t already. If “predicting something new” is an essential part of science, then the theorists can no longer do science at all.

One of my colleagues made an interesting point: in the thought experiment, the theorists can’t predict new behaviors of reality. But they can predict new behaviors of the code.

Even when we have the right theory to describe the world, we can’t always calculate its consequences. Often we’re stuck in the same position as the theorists in the thought experiment, trying to understand the output of a theory that might as well be a black box. Increasingly, we are employing a kind of “experimental theoretical physics”. We try to predict the result of new calculations, just as experimentalists try to predict the result of new experiments.

This experimental approach seems to be a genuine cultural difference between physics and mathematics. There is such a thing as experimental mathematics, to be clear. And while mathematicians prefer proof, they’re not averse to working from a good conjecture. But when mathematicians calculate and conjecture, they still try to set a firm foundation. They’re precise about what they mean, and careful about what they imply.

“Experimental theoretical physics”, on the other hand, is much more like experimental physics itself. Physicists look for plausible patterns in the “data”, seeing if they make sense in some “physical” way. The conjectures aren’t always sharply posed, and the leaps of reasoning are often more reckless than the leaps of experimental mathematicians. We try to use intuition gleaned from a history of experiments on, and calculations about, the physical world.

There’s a real danger here, because mathematical formulas don’t behave like nature does. When we look at nature, we expect it to behave statistically. If we look at a large number of examples, we get more and more confident that they represent the behavior of the whole. This is sometimes dangerous in nature, but it’s even more dangerous in mathematics, because it’s often not clear what a good “sample” even is. Proving something is true “most of the time” is vastly different from proving it is true all of the time, especially when you’re looking at an infinity of possible examples. We can’t meet our favorite “five sigma” level of statistical confidence, or even know if we’re close.

At the same time, experimental theoretical physics has real power. Experience may be a bad guide to mathematics, but it’s a better guide to the mathematics that specifically shows up in physics. And in practice, our recklessness can accomplish great things, uncovering behaviors mathematicians would never have found by themselves.

The key is to always keep in mind that the two fields are different. “Experimental theoretical physics” isn’t mathematics, and it isn’t pretending to be, any more than experimental physics is pretending to be theoretical physics. We’re gathering data and advancing tentative explanations, but we’re fully aware that they may not hold up when examined with full rigor. We want to inspire, to raise questions and get people to think about the principles that govern the messy physical theories we use to describe our world. Experimental physics, theoretical physics, and mathematics are all part of a shared ecosystem, and each has its role to play.

As a kid, I wanted to know everything. Eventually, I realized this was a little unrealistic. Doomed to know some things and not others, I picked physics as a kind of triage. Other fields I could learn as an outsider: not well enough to compete with the experts, but enough to at least appreciate what they were doing. After watching a few string theory documentaries, I realized this wasn’t the case for physics: if I was going to ever understand what those string theorists were up to, I would have to go to grad school in string theory.

Over time, this goal lost focus. I’ve become a very specialized creature, an “amplitudeologist”. I didn’t have time or energy for my old questions. In an irony that will surprise no-one, a career as a physicist doesn’t leave much time for curiosity about physics.

One of the great things about this blog is how you guys remind me of those old questions, bringing me out of my overspecialized comfort zone. In that spirit, in this post I’m going to list a few things in physics that I really want to understand better. The idea is to make a public commitment: within a year, I want to understand one of these topics at least well enough to write a decent blog post on it.

Wilsonian Quantum Field Theory:

When you first learn quantum field theory as a physicist, you learn how unsightly infinite results get covered up via an ad-hoc-looking process called renormalization. Eventually you learn a more modern perspective, that these infinite results show up because we’re ignorant of the complete theory at high energies. You learn that you can think of theories at a particular scale, and characterize them by what happens when you “zoom” in and out, in an approach codified by the physicist Kenneth Wilson.

While I understand the basics of Wilson’s approach, the courses I took in grad school skipped the deeper implications. This includes the idea of theories that are defined at all energies, “flowing” from an otherwise scale-invariant theory perturbed with extra pieces. Other physicists are much more comfortable thinking in these terms, and the topic is important for quite a few deep questions, including what it means to properly define a theory and where laws of nature “live”. If I’m going to have an informed opinion on any of those topics, I’ll need to go back and learn the Wilsonian approach properly.

Wormholes:

If you’re a fan of science fiction, you probably know that wormholes are the most realistic option for faster-than-light travel, something that is at least allowed by the equations of general relativity. “Most realistic” isn’t the same as “realistic”, though. Opening a wormhole and keeping it stable requires some kind of “exotic matter”, and that matter needs to violate a set of restrictions, called “energy conditions”, that normal matter obeys. Some of these energy conditions are just conjectures, some we even know how to violate, while others are proven to hold for certain types of theories. Some energy conditions don’t rule out wormholes, but instead restrict their usefulness: you can have non-traversable wormholes (basically, two inescapable black holes that happen to meet in the middle), or traversable wormholes where the distance through the wormhole is always longer than the distance outside.

I’ve seen a few talks on this topic, but I’m still confused about the big picture: which conditions have been proven, what assumptions were needed, and what do they all imply? I haven’t found a publicly-accessible account that covers everything. I owe it to myself as a kid, not to mention everyone who’s a kid now, to get a satisfactory answer.

Quantum Foundations:

Quantum Foundations is a field that many physicists think is a waste of time. It deals with the questions that troubled Einstein and Bohr, questions about what quantum mechanics really means, or why the rules of quantum mechanics are the way they are. These tend to be quite philosophical questions, where it’s hard to tell if people are making progress or just arguing in circles.

I’m more optimistic about philosophy than most physicists, at least when it’s pursued with enough analytic rigor. I’d like to at least understand the leading arguments for different interpretations, what the constraints on interpretations are and the main loopholes. That way, if I end up concluding the field is a waste of time at least I’d be making an informed decision.