Tag Archives: gravity

Newtonmas in Uncertain Times

Three hundred and eighty-two years ago today (depending on which calendars you use), Isaac Newton was born. For a scientist, that’s a pretty good reason to celebrate.

Reason’s Greetings Everyone!

Last month, our local nest of science historians at the Niels Bohr Archive hosted a Zoom talk by Jed Z. Buchwald, a Newton scholar at Caltech. Buchwald had a story to tell about experimental uncertainty, one where Newton had an important role.

If you’ve ever had a lab course in school, you know experiments never quite go like they’re supposed to. Set a room of twenty students to find Newton’s constant, and you’ll get forty different answers. Whether you’re reading a ruler or clicking a stopwatch, you can never measure anything with perfect accuracy. Each time you measure, you introduce a little random error.

Textbooks worth of statistical know-how has cropped up over the centuries to compensate for this error and get closer to the truth. The simplest trick though, is just to average over multiple experiments. It’s so obvious a choice, taking a thousand little errors and smoothing them out, that you might think people have been averaging in this way through history.

They haven’t though. As far as Buchwald had found, the first person to average experiments in this way was Isaac Newton.

What did people do before Newton?

Well, what might you do, if you didn’t have a concept of random error? You can still see that each time you measure you get a different result. But you would blame yourself: if you were more careful with the ruler, quicker with the stopwatch, you’d get it right. So you practice, you do the experiment many times, just as you would if you were averaging. But instead of averaging, you just take one result, the one you feel you did carefully enough to count.

Before Newton, this was almost always what scientists did. If you were an astronomer mapping the stars, the positions you published would be the last of a long line of measurements, not an average of the rest. Some other tricks existed. Tycho Brahe for example folded numbers together pair by pair, averaging the first two and then averaging that average with the next one, getting a final result weighted to the later measurements. But, according to Buchwald, Newton was the first to just add everything together.

Even Newton didn’t yet know why this worked. It would take later research, theorems of statistics, to establish the full justification. It seems Newton and his later contemporaries had a vague physics analogy in mind, finding a sort of “center of mass” of different experiments. This doesn’t make much sense – but it worked, well enough for physics as we know it to begin.

So this Newtonmas, let’s thank the scientists of the past. Working piece by piece, concept by concept, they gave use the tools to navigate our uncertain times.

QCD Meets Gravity 2020, Retrospective

I was at a Zoomference last week, called QCD Meets Gravity, about the many ways gravity can be thought of as the “square” of other fundamental forces. I didn’t have time to write much about the actual content of the conference, so I figured I’d say a bit more this week.

A big theme of this conference, as in the past few years, was gravitational waves. From LIGO’s first announcement of a successful detection, amplitudeologists have been developing new methods to make predictions for gravitational waves more efficient. It’s a field I’ve dabbled in a bit myself. Last year’s QCD Meets Gravity left me impressed by how much progress had been made, with amplitudeologists already solidly part of the conversation and able to produce competitive results. This year felt like another milestone, in that the amplitudeologists weren’t just catching up with other gravitational wave researchers on the same kinds of problems. Instead, they found new questions that amplitudes are especially well-suited to answer. These included combining two pieces of these calculations (“potential” and “radiation”) that the older community typically has to calculate separately, using an old quantum field theory trick, finding the gravitational wave directly from amplitudes, and finding a few nice calculations that can be used to “generate” the rest.

A large chunk of the talks focused on different “squaring” tricks (or as we actually call them, double-copies). There were double-copies for cosmology and conformal field theory, for the celestial sphere, and even some version of M theory. There were new perspectives on the double-copy, new building blocks and algebraic structures that lie behind it. There were talks on the so-called classical double-copy for space-times, where there have been some strange discoveries (an extra dimension made an appearance) but also a more rigorous picture of where the whole thing comes from, using twistor space. There were not one, but two talks linking the double-copy to the Navier-Stokes equation describing fluids, from two different groups. (I’m really curious whether these perspectives are actually useful for practical calculations about fluids, or just fun to think about.) Finally, while there wasn’t a talk scheduled on this paper, the authors were roped in by popular demand to talk about their work. They claim to have made progress on a longstanding puzzle, how to show that double-copy works at the level of the Lagrangian, and the community was eager to dig into the details.

From there, a grab-bag of talks covered other advancements. There were talks from string theorists and ambitwistor string theorists, from Effective Field Theorists working on gravity and the Standard Model, from calculations in N=4 super Yang-Mills, QCD, and scalar theories. Simon Caron-Huot delved into how causality constrains the theories we can write down, showing an interesting case where the common assumption that all parameters are close to one is actually justified. Nima Arkani-Hamed began his talk by saying he’d surprise us, which he certainly did (and not by keeping on time). It’s tricky to explain why his talk was exciting. Comparing to his earlier discovery of the Amplituhedron, which worked for a toy model, this is a toy calculation in a toy model. While the Amplituhedron wasn’t based on Feynman diagrams, this can’t even be compared with Feynman diagrams. Instead of expanding in a small coupling constant, this expands in a parameter that by all rights should be equal to one. And instead of positivity conditions, there are negativity conditions. All I can say is that with all of that in mind, it looks like real progress on an important and difficult problem from a totally unanticipated direction. In a speech summing up the conference, Zvi Bern mentioned a few exciting words from Nima’s talk: “nonplanar”, “integrated”, “nonperturbative”. I’d add “differential equations” and “infinite sums of ladder diagrams”. Nima and collaborators are trying to figure out what happens when you sum up all of the Feynman diagrams in a theory. I’ve made progress in the past for diagrams with one “direction”, a ladder that grows as you add more loops, but I didn’t know how to add “another direction” to the ladder. In very rough terms, Nima and collaborators figured out how to add that direction.

I’ve probably left things out here, it was a packed conference! It’s been really fun seeing what the community has cooked up, and I can’t wait to see what happens next.

Discovering the Rules, Discovering the Consequences

Two big physics experiments consistently make the news. The Large Hadron Collider, or LHC, and the Laser Interferometer Gravitational-Wave Observatory, or LIGO. One collides protons, the other watches colliding black holes and neutron stars. But while this may make the experiments sound quite similar, their goals couldn’t be more different.

The goal of the LHC, put simply, is to discover the rules that govern reality. Should the LHC find a new fundamental particle, it will tell us something we didn’t know about the laws of physics, a newly discovered fact that holds true everywhere in the universe. So far, it has discovered the Higgs boson, and while that particular rule was expected we didn’t know the details until they were tested. Now physicists hope to find something more, a deviation from the Standard Model that hints at a new law of nature altogether.

LIGO, in contrast, isn’t really for discovering the rules of the universe. Instead, it discovers the consequences of those rules, on a grand scale. Even if we knew the laws of physics completely, we can’t calculate everything from those first principles. We can simulate some things, and approximate others, but we need experiments to tweak those simulations and test those approximations. LIGO fills that role. We can try to estimate how common black holes are, and how large, but LIGO’s results were still a surprise, suggesting medium-sized black holes are more common than researchers expected. In the future, gravitational wave telescopes might discover more of these kinds of consequences, from the shape of neutron stars to the aftermath of cosmic inflation.

There are a few exceptions for both experiments. The LHC can also discover the consequences of the laws of physics, especially when those consequences are very difficult to calculate, finding complicated arrangements of known particles, like pentaquarks and glueballs. And it’s possible, though perhaps not likely, that LIGO could discover something about quantum gravity. Quantum gravity’s effects are expected to be so small that these experiments won’t see them, but some have speculated that an unusually large effect could be detected by a gravitational wave telescope.

As scientists, we want to know everything we can about everything we find. We want to know the basic laws that govern the universe, but we also want to know the consequences of those laws, the story of how our particular universe came to be the way it is today. And luckily, we have experiments for both.

What You Don’t Know, You Can Parametrize

In physics, what you don’t know can absolutely hurt you. If you ignore that planets have their own gravity, or that metals conduct electricity, you’re going to calculate a lot of nonsense. At the same time, as physicists we can’t possibly know everything. Our experiments are never perfect, our math never includes all the details, and even our famous Standard Model is almost certainly not the whole story. Luckily, we have another option: instead of ignoring what we don’t know, we can parametrize it, and estimate its effect.

Estimating the unknown is something we physicists have done since Newton. You might think Newton’s big discovery was the inverse-square law for gravity, but others at the time, like Robert Hooke, had also been thinking along those lines. Newton’s big discovery was that gravity was universal: that you need to know the effect of gravity, not just from the sun, but from all the other planets as well. The trouble was, Newton didn’t know how to calculate the motion of all of the planets at once (in hindsight, we know he couldn’t have). Instead, he estimated, using what he knew to guess how big the effect of what he didn’t would be. It was the accuracy of those guesses, not just the inverse square law by itself, that convinced the world that Newton was right.

If you’ve studied electricity and magnetism, you get to the point where you can do simple calculations with a few charges in your sleep. The world doesn’t have just a few charges, though: it has many charges, protons and electrons in every atom of every object. If you had to keep all of them in your calculations you’d never pass freshman physics, but luckily you can once again parametrize what you don’t know. Often you can hide those charges away, summarizing their effects with just a few numbers. Other times, you can treat materials as boundaries, and summarize everything beyond in terms of what happens on the edge. The equations of the theory let you do this, but this isn’t true for every theory: for the Navier-Stokes equation, which we use to describe fluids, it still isn’t known whether you can do this kind of trick.

Parametrizing what we don’t know isn’t just a trick for college physics, it’s key to the cutting edge as well. Right now we have a picture for how all of particle physics works, called the Standard Model, but we know that picture is incomplete. There are a million different theories you could write to go beyond the Standard Model, with a million different implications. Instead of having to use all those theories, physicists can summarize them all with what we call an effective theory: one that keeps track of the effect of all that new physics on the particles we already know. By summarizing those effects with a few parameters, we can see what they would have to be to be compatible with experimental results, ruling out some possibilities and suggesting others.

In a world where we never know everything, there’s always something that can hurt us. But if we’re careful and estimate what we don’t know, if we write down numbers and parameters and keep our options open, we can keep from getting burned. By focusing on what we do know, we can still manage to understand the world.

4gravitons, Spinning Up

I had a new paper out last week, with Michèle Levi and Andrew McLeod. But to explain it, I’ll need to clarify something about our last paper.

Two weeks ago, I told you that Andrew and Michèle and I had written a paper, predicting what gravitational wave telescopes like LIGO see when black holes collide. You may remember that LIGO doesn’t just see colliding black holes: it sees colliding neutron stars too. So why didn’t we predict what happens when neutron stars collide?

Actually, we did. Our calculation doesn’t just apply to black holes. It applies to neutron stars too. And not just neutron stars: it applies to anything of roughly the right size and shape. Black holes, neutron stars, very large grapefruits…

LIGO’s next big discovery

That’s the magic of Effective Field Theory, the “zoom lens” of particle physics. Zoom out far enough, and any big, round object starts looking like a particle. Black holes, neutron stars, grapefruits, we can describe them all using the same math.

Ok, so we can describe both black holes and neutron stars. Can we tell the difference between them?

In our last calculation, no. In this one, yes!

Effective Field Theory isn’t just a zoom lens, it’s a controlled approximation. That means that when we “zoom out” we don’t just throw out anything “too small to see”. Instead, we approximate it, estimating how big of an effect it can have. Depending on how precise we want to be, we can include more and more of these approximated effects. If our estimates are good, we’ll include everything that matters, and get a good approximation for what we’re trying to observe.

At the precision of our last calculation, a black hole and a neutron star still look exactly the same. Our new calculation aims for a bit higher precision though. (For the experts: we’re at a higher order in spin.) The higher precision means that we can actually see the difference: our result changes for two colliding black holes versus two colliding grapefruits.

So does that mean I can tell you what happens when two neutron stars collide, according to our calculation? Actually, no. That’s not because we screwed up the calculation: it’s because some of the properties of neutron stars are unknown.

The Effective Field Theory of neutron stars has what we call “free parameters”, unknown variables. People have tried to estimate some of these (called “Love numbers” after the mathematician A. E. H. Love), but they depend on the details of how neutron stars work: what stuff they contain, how that stuff is shaped, and how it can move. To find them out, we probably can’t just calculate: we’ll have to measure, observe an actual neutron star collision and see what the numbers actually are.

That’s one of the purposes of gravitational wave telescopes. It’s not (as far as I know) something LIGO can measure. But future telescopes, with more precision, should be able to. By watching two colliding neutron stars and comparing to a high-precision calculation, physicists will better understand what those neutron stars are made of. In order to do that, they will need someone to do that high-precision calculation. And that’s why people like me are involved.

4gravitons Exchanges a Graviton

I had a new paper up last Friday with Michèle Levi and Andrew McLeod, on a topic I hadn’t worked on before: colliding black holes.

I am an “amplitudeologist”. I work on particle physics calculations, computing “scattering amplitudes” to find the probability that fundamental particles bounce off each other. This sounds like the farthest thing possible from black holes. Nevertheless, the two are tightly linked, through the magic of something called Effective Field Theory.

Effective Field Theory is a kind of “zoom knob” for particle physics. You “zoom out” to some chosen scale, and write down a theory that describes physics at that scale. Your theory won’t be a complete description: you’re ignoring everything that’s “too small to see”. It will, however, be an effective description: one that, at the scale you’re interested in, is effectively true.

Particle physicists usually use Effective Field Theory to go between different theories of particle physics, to zoom out from strings to quarks to protons and neutrons. But you can zoom out even further, all the way out to astronomical distances. Zoom out far enough, and even something as massive as a black hole looks like just another particle.

Just click the “zoom X10” button fifteen times, and you’re there!

In this picture, the force of gravity between black holes looks like particles (specifically, gravitons) going back and forth. With this picture, physicists can calculate what happens when two black holes collide with each other, making predictions that can be checked with new gravitational wave telescopes like LIGO.

Researchers have pushed this technique quite far. As the calculations get more and more precise (more and more “loops”), they have gotten more and more challenging. This is particularly true when the black holes are spinning, an extra wrinkle in the calculation that adds a surprising amount of complexity.

That’s where I came in. I can’t compete with the experts on black holes, but I certainly know a thing or two about complicated particle physics calculations. Amplitudeologists, like Andrew McLeod and me, have a grab-bag of tricks that make these kinds of calculations a lot easier. With Michèle Levi’s expertise working with spinning black holes in Effective Field Theory, we were able to combine our knowledge to push beyond the state of the art, to a new level of precision.

This project has been quite exciting for me, for a number of reasons. For one, it’s my first time working with gravitons: despite this blog’s name, I’d never published a paper on gravity before. For another, as my brother quipped when he heard about it, this is by far the most “applied” paper I’ve ever written. I mostly work with a theory called N=4 super Yang-Mills, a toy model we use to develop new techniques. This paper isn’t a toy model: the calculation we did should describe black holes out there in the sky, in the real world. There’s a decent chance someone will use this calculation to compare with actual data, from LIGO or a future telescope. That, in particular, is an absurdly exciting prospect.

Because this was such an applied calculation, it was an opportunity to explore the more applied part of my own field. We ended up using well-known techniques from that corner, but I look forward to doing something more inventive in future.

QCD Meets Gravity 2019

I’m at UCLA this week for QCD Meets Gravity, a conference about the surprising ways that gravity is “QCD squared”.

When I attended this conference two years ago, the community was branching out into a new direction: using tools from particle physics to understand the gravitational waves observed at LIGO.

At this year’s conference, gravitational waves have grown from a promising new direction to a large fraction of the talks. While there were still the usual talks about quantum field theory and string theory (everything from bootstrap methods to a surprising application of double field theory), gravitational waves have clearly become a major focus of this community.

This was highlighted before the first talk, when Zvi Bern brought up a recent paper by Thibault Damour. Bern and collaborators had recently used particle physics methods to push beyond the state of the art in gravitational wave calculations. Damour, an expert in the older methods, claims that Bern et al’s result is wrong, and in doing so also questions an earlier result by Amati, Ciafaloni, and Veneziano. More than that, Damour argued that the whole approach of using these kinds of particle physics tools for gravitational waves is misguided.

There was a lot of good-natured ribbing of Damour in the rest of the conference, as well as some serious attempts to confront his points. Damour’s argument so far is somewhat indirect, so there is hope that a more direct calculation (which Damour is currently pursuing) will resolve the matter. In the meantime, Julio Parra-Martinez described a reproduction of the older Amati/Ciafaloni/Veneziano result with more Damour-approved techniques, as well as additional indirect arguments that Bern et al got things right.

Before the QCD Meets Gravity community worked on gravitational waves, other groups had already built a strong track record in the area. One encouraging thing about this conference was how much the two communities are talking to each other. Several speakers came from the older community, and there were a lot of references in both groups’ talks to the other group’s work. This, more than even the content of the talks, felt like the strongest sign that something productive is happening here.

Many talks began by trying to motivate these gravitational calculations, usually to address the mysteries of astrophysics. Two talks were more direct, with Ramy Brustein and Pierre Vanhove speculating about new fundamental physics that could be uncovered by these calculations. I’m not the kind of physicist who does this kind of speculation, and I confess both talks struck me as rather strange. Vanhove in particular explicitly rejects the popular criterion of “naturalness”, making me wonder if his work is the kind of thing critics of naturalness have in mind.

Amplitudes 2019

It’s that time of year again, and I’m at Amplitudes, my field’s big yearly conference. This year we’re in Dublin, hosted by Trinity.

Which also hosts the Book of Kells, and the occasional conference reception just down the hall from the Book of Kells

Increasingly, the organizers of Amplitudes have been setting aside a few slots for talks from people in other fields. This year the “closest” such speaker was Kirill Melnikov, who pointed out some of the hurdles that make it difficult to have useful calculations to compare to the LHC. Many of these hurdles aren’t things that amplitudes-people have traditionally worked on, but are still things that might benefit from our particular expertise. Another such speaker, Maxwell Hansen, is from a field called Lattice QCD. While amplitudeologists typically compute with approximations, order by order in more and more complicated diagrams, Lattice QCD instead simulates particle physics on supercomputers, chopping up their calculations on a grid. This allows them to study much stronger forces, including the messy interactions of quarks inside protons, but they have a harder time with the situations we’re best at, where two particles collide from far away. Apparently, though, they are making progress on that kind of calculation, with some clever tricks to connect it to calculations they know how to do. While I was a bit worried that this would let them fire all the amplitudeologists and replace us with supercomputers, they’re not quite there yet, nonetheless they are doing better than I would have expected. Other speakers from other fields included Leron Borsten, who has been applying the amplitudes concept of the “double copy” to M theory and Andrew Tolley, who uses the kind of “positivity” properties that amplitudeologists find interesting to restrict the kinds of theories used in cosmology.

The biggest set of “non-traditional-amplitudes” talks focused on using amplitudes techniques to calculate the behavior not of particles but of black holes, to predict the gravitational wave patterns detected by LIGO. This year featured a record six talks on the topic, a sixth of the conference. Last year I commented that the research ideas from amplitudeologists on gravitational waves had gotten more robust, with clearer proposals for how to move forward. This year things have developed even further, with several initial results. Even more encouragingly, while there are several groups doing different things they appear to be genuinely listening to each other: there were plenty of references in the talks both to other amplitudes groups and to work by more traditional gravitational physicists. There’s definitely still plenty of lingering confusion that needs to be cleared up, but it looks like the community is robust enough to work through it.

I’m still busy with the conference, but I’ll say more when I’m back next week. Stay tuned for square roots, clusters, and Nima’s travel schedule. And if you’re a regular reader, please fill out last week’s poll if you haven’t already!

Things I’d Like to Know More About

This is an accountability post, of sorts.

As a kid, I wanted to know everything. Eventually, I realized this was a little unrealistic. Doomed to know some things and not others, I picked physics as a kind of triage. Other fields I could learn as an outsider: not well enough to compete with the experts, but enough to at least appreciate what they were doing. After watching a few string theory documentaries, I realized this wasn’t the case for physics: if I was going to ever understand what those string theorists were up to, I would have to go to grad school in string theory.

Over time, this goal lost focus. I’ve become a very specialized creature, an “amplitudeologist”. I didn’t have time or energy for my old questions. In an irony that will surprise no-one, a career as a physicist doesn’t leave much time for curiosity about physics.

One of the great things about this blog is how you guys remind me of those old questions, bringing me out of my overspecialized comfort zone. In that spirit, in this post I’m going to list a few things in physics that I really want to understand better. The idea is to make a public commitment: within a year, I want to understand one of these topics at least well enough to write a decent blog post on it.

Wilsonian Quantum Field Theory:

When you first learn quantum field theory as a physicist, you learn how unsightly infinite results get covered up via an ad-hoc-looking process called renormalization. Eventually you learn a more modern perspective, that these infinite results show up because we’re ignorant of the complete theory at high energies. You learn that you can think of theories at a particular scale, and characterize them by what happens when you “zoom” in and out, in an approach codified by the physicist Kenneth Wilson.

While I understand the basics of Wilson’s approach, the courses I took in grad school skipped the deeper implications. This includes the idea of theories that are defined at all energies, “flowing” from an otherwise scale-invariant theory perturbed with extra pieces. Other physicists are much more comfortable thinking in these terms, and the topic is important for quite a few deep questions, including what it means to properly define a theory and where laws of nature “live”. If I’m going to have an informed opinion on any of those topics, I’ll need to go back and learn the Wilsonian approach properly.

Wormholes:

If you’re a fan of science fiction, you probably know that wormholes are the most realistic option for faster-than-light travel, something that is at least allowed by the equations of general relativity. “Most realistic” isn’t the same as “realistic”, though. Opening a wormhole and keeping it stable requires some kind of “exotic matter”, and that matter needs to violate a set of restrictions, called “energy conditions”, that normal matter obeys. Some of these energy conditions are just conjectures, some we even know how to violate, while others are proven to hold for certain types of theories. Some energy conditions don’t rule out wormholes, but instead restrict their usefulness: you can have non-traversable wormholes (basically, two inescapable black holes that happen to meet in the middle), or traversable wormholes where the distance through the wormhole is always longer than the distance outside.

I’ve seen a few talks on this topic, but I’m still confused about the big picture: which conditions have been proven, what assumptions were needed, and what do they all imply? I haven’t found a publicly-accessible account that covers everything. I owe it to myself as a kid, not to mention everyone who’s a kid now, to get a satisfactory answer.

Quantum Foundations:

Quantum Foundations is a field that many physicists think is a waste of time. It deals with the questions that troubled Einstein and Bohr, questions about what quantum mechanics really means, or why the rules of quantum mechanics are the way they are. These tend to be quite philosophical questions, where it’s hard to tell if people are making progress or just arguing in circles.

I’m more optimistic about philosophy than most physicists, at least when it’s pursued with enough analytic rigor. I’d like to at least understand the leading arguments for different interpretations, what the constraints on interpretations are and the main loopholes. That way, if I end up concluding the field is a waste of time at least I’d be making an informed decision.

Don’t Marry Your Arbitrary

This fall, I’m TAing a course on General Relativity. I haven’t taught in a while, so it’s been a good opportunity to reconnect with how students think.

This week, one problem left several students confused. The problem involved Christoffel symbols, the bane of many a physics grad student, but the trick that they had to use was in the end quite simple. It’s an example of a broader trick, a way of thinking about problems that comes up all across physics.

To see a simplified version of the problem, imagine you start with this sum:

g(j)=\Sigma_{i=0}^n ( f(i,j)-f(j,i) )

Now, imagine you want to sum the function g(j) over j. You can write:

\Sigma_{j=0}^n g(j) = \Sigma_{j=0}^n \Sigma_{i=0}^n ( f(i,j)-f(j,i) )

Let’s break this up into two terms, for later convenience:

\Sigma_{j=0}^n g(j) = \Sigma_{j=0}^n \Sigma_{i=0}^n f(i,j) - \Sigma_{j=0}^n \Sigma_{i=0}^n f(j,i)

Without telling you anything about f(i,j), what do you know about this sum?

Well, one thing you know is that i and j are arbitrary.

i and j are letters you happened to use. You could have used different letters, x and y, or \alpha and \beta. You could even use different letters in each term, if you wanted to. You could even just pick one term, and swap i and j.

\Sigma_{j=0}^n g(j) = \Sigma_{j=0}^n \Sigma_{i=0}^n f(i,j) - \Sigma_{i=0}^n \Sigma_{j=0}^n f(i,j) = 0

And now, without knowing anything about f(i,j), you know that \Sigma_{j=0}^n g(j) is zero.

In physics, it’s extremely important to keep track of what could be really physical, and what is merely your arbitrary choice. In general relativity, your choice of polar versus spherical coordinates shouldn’t affect your calculation. In quantum field theory, your choice of gauge shouldn’t matter, and neither should your scheme for regularizing divergences.

Ideally, you’d do your calculation without making any of those arbitrary choices: no coordinates, no choice of gauge, no regularization scheme. In practice, sometimes you can do this, sometimes you can’t. When you can’t, you need to keep that arbitrariness in the back of your mind, and not get stuck assuming your choice was the only one. If you’re careful with arbitrariness, it can be one of the most powerful tools in physics. If you’re not, you can stare at a mess of Christoffel symbols for hours, and nobody wants that.