Tag Archives: mathematics

Which Things Exist in Quantum Field Theory

If you ever think metaphysics is easy, learn a little quantum field theory.

Someone asked me recently about virtual particles. When talking to the public, physicists sometimes explain the behavior of quantum fields with what they call “virtual particles”. They’ll describe forces coming from virtual particles going back and forth, or a bubbling sea of virtual particles and anti-particles popping out of empty space.

The thing is, this is a metaphor. What’s more, it’s a metaphor for an approximation. As physicists, when we draw diagrams with more and more virtual particles, we’re trying to use something we know how to calculate with (particles) to understand something tougher to handle (interacting quantum fields). Virtual particles, at least as you’re probably picturing them, don’t really exist.

I don’t really blame physicists for talking like that, though. Virtual particles are a metaphor, sure, a way to talk about a particular calculation. But so is basically anything we can say about quantum field theory. In quantum field theory, it’s pretty tough to say which things “really exist”.

I’ll start with an example, neutrino oscillation.

You might have heard that there are three types of neutrinos, corresponding to the three “generations” of the Standard Model: electron-neutrinos, muon-neutrinos, and tau-neutrinos. Each is produced in particular kinds of reactions: electron-neutrinos, for example, get produced by beta-plus decay, when a proton turns into a neutron, an anti-electron, and an electron-neutrino.

Leave these neutrinos alone though, and something strange happens. Detect what you expect to be an electron-neutrino, and it might have changed into a muon-neutrino or a tau-neutrino. The neutrino oscillated.

Why does this happen?

One way to explain it is to say that electron-neutrinos, muon-neutrinos, and tau-neutrinos don’t “really exist”. Instead, what really exists are neutrinos with specific masses. These don’t have catchy names, so let’s just call them neutrino-one, neutrino-two, and neutrino-three. What we think of as electron-neutrinos, muon-neutrinos, and tau-neutrinos are each some mix (a quantum superposition) of these “really existing” neutrinos, specifically the mixes that interact nicely with electrons, muons, and tau leptons respectively. When you let them travel, it’s these neutrinos that do the traveling, and due to quantum effects that I’m not explaining here you end up with a different mix than you started with.

This probably seems like a perfectly reasonable explanation. But it shouldn’t. Because if you take one of these mass-neutrinos, and interact with an electron, or a muon, or a tau, then suddenly it behaves like a mix of the old electron-neutrinos, muon-neutrinos, and tau-neutrinos.

That’s because both explanations are trying to chop the world up in a way that can’t be done consistently. There aren’t electron-neutrinos, muon-neutrinos, and tau-neutrinos, and there aren’t neutrino-ones, neutrino-twos, and neutrino-threes. There’s a mathematical object (a vector space) that can look like either.

Whether you’re comfortable with that depends on whether you think of mathematical objects as “things that exist”. If you aren’t, you’re going to have trouble thinking about the quantum world. Maybe you want to take a step back, and say that at least “fields” should exist. But that still won’t do: we can redefine fields, add them together or even use more complicated functions, and still get the same physics. The kinds of things that exist can’t be like this. Instead you end up invoking another kind of mathematical object, equivalence classes.

If you want to be totally rigorous, you have to go a step further. You end up thinking of physics in a very bare-bones way, as the set of all observations you could perform. Instead of describing the world in terms of “these things” or “those things”, the world is a black box, and all you’re doing is finding patterns in that black box.

Is there a way around this? Maybe. But it requires thought, and serious philosophy. It’s not intuitive, it’s not easy, and it doesn’t lend itself well to 3d animations in documentaries. So in practice, whenever anyone tells you about something in physics, you can be pretty sure it’s a metaphor. Nice describable, non-mathematical things typically don’t exist.

To Elliptics and Beyond!

I’ve been busy running a conference this week, Elliptics and Beyond.

After Amplitudes was held online this year, a few of us at the Niels Bohr Institute were inspired. We thought this would be the perfect time to hold a small online conference, focused on the Calabi-Yaus that have been popping up lately in Feynman diagrams. Then we heard from the organizers of Elliptics 2020. They had been planning to hold a conference in Mainz about elliptic integrals in Feynman diagrams, but had to postpone it due to the pandemic. We decided to team up and hold a joint conference on both topics: the elliptic integrals that are just starting to be understood, and the mysterious integrals that lie beyond. Hence, Elliptics and Beyond.

I almost suggested Buzz Lightyear for the logo but I chickened out

The conference has been fun thus far. There’s been a mix of review material bringing people up to speed on elliptic integrals and exciting new developments. Some are taking methods that have been successful in other areas and generalizing them to elliptic integrals, others have been honing techniques for elliptics to make them “production-ready”. A few are looking ahead even further, to higher-genus amplitudes in string theory and Calabi-Yaus in Feynman diagrams.

We organized the conference along similar lines to Zoomplitudes, but with a few experiments of our own. Like Zoomplitudes, we made a Slack space for the conference, so people could chat physics outside the talks. Ours was less active, though. I suspect that kind of space needs a critical mass of people, and with a smaller conference we may just not have gotten there. Having fewer people did allow us a more relaxed schedule, which in turn meant we could mostly keep things on-time. We had discussion sessions in the morning (European time), with talks in the afternoon, so almost everyone could make the talks at least. We also had a “conference dinner”, which went much better than I would have expected. We put people randomly into Zoom Breakout Rooms of five or six, to emulate the tables of an in-person conference, and folks chatted while eating their (self-brought of course) dinner. People seemed to really enjoy the chance to just chat casually with the other folks at the conference. If you’re organizing an online conference soon, I’d recommend trying it!

Holding a conference online means that a lot of people can attend who otherwise couldn’t. We had over a hundred people register, and while not all of them showed up there were typically fifty or sixty people on the Zoom session. Some of these were specialists in elliptics or Calabi-Yaus who wouldn’t ordinarily make it to a conference like this. Others were people from the rest of the amplitudes field who joined for parts of the conference that caught their eye. But surprisingly many weren’t even amplitudeologists, but students and young researchers in a variety of topics from all over the world. Some seemed curious and eager to learn, others I suspect just needed to say they had been to a conference. Both are responding to a situation where suddenly conference after conference is available online, free to join. It will be interesting to see if, and how, the world adapts.

Zoomplitudes Retrospective

During Zoomplitudes (my field’s big yearly conference, this year on Zoom) I didn’t have time to write a long blog post. I said a bit about the format, but didn’t get a chance to talk about the science. I figured this week I’d go back and give a few more of my impressions. As always, conference posts are a bit more technical than my usual posts, so regulars be warned!

The conference opened with a talk by Gavin Salam, there as an ambassador for LHC physics. Salam pointed out that, while a decent proportion of speakers at Amplitudes mention the LHC in their papers, that fraction has fallen over the years. (Another speaker jokingly wondered which of those mentions were just in the paper’s introduction.) He argued that there is still useful work for us, LHC measurements that will require serious amplitudes calculations to understand. He also brought up what seems like the most credible argument for a new, higher-energy collider: that there are important properties of the Higgs, in particular its interactions, that we still have not observed.

The next few talks hopefully warmed Salam’s heart, as they featured calculations for real-world particle physics. Nathaniel Craig and Yael Shadmi in particular covered the link between amplitudes and Standard Model Effective Field Theory (SMEFT), a method to systematically characterize corrections beyond the Standard Model. Shadmi’s talk struck me because the kind of work she described (building the SMEFT “amplitudes-style”, directly from observable information rather than more complicated proxies) is something I’d seen people speculate about for a while, but which hadn’t been done until quite recently. Now, several groups have managed it, and look like they’ve gotten essentially “all the way there”, rather than just partial results that only manage to replicate part of the SMEFT. Overall it’s much faster progress than I would have expected.

After Shadmi’s talk was a brace of talks on N=4 super Yang-Mills, featuring cosmic Galois theory and an impressively groan-worthy “origin story” joke. The final talk of the day, by Hofie Hannesdottir, covered work with some of my colleagues at the NBI. Due to coronavirus I hadn’t gotten to hear about this in person, so it was good to hear a talk on it, a blend of old methods and new priorities to better understand some old discoveries.

The next day focused on a topic that has grown in importance in our community, calculations for gravitational wave telescopes like LIGO. Several speakers focused on new methods for collisions of spinning objects, where a few different approaches are making good progress (Radu Roiban’s proposal to use higher-spin field theory was particularly interesting) but things still aren’t quite “production-ready”. The older, post-Newtonian method is still very much production-ready, as evidenced by Michele Levi’s talk that covered, among other topics, our recent collaboration. Julio Parra-Martinez discussed some interesting behavior shared by both supersymmetric and non-supersymmetric gravity theories. Thibault Damour had previously expressed doubts about use of amplitudes methods to answer this kind of question, and part of Parra-Martinez’s aim was to confirm the calculation with methods Damour would consider more reliable. Damour (who was actually in the audience, which I suspect would not have happened at an in-person conference) had already recanted some related doubts, but it’s not clear to me whether that extended to the results Parra-Martinez discussed (or whether Damour has stated the problem with his old analysis).

There were a few talks that day that didn’t relate to gravitational waves, though this might have been an accident, since both speakers also work on that topic. Zvi Bern’s talk linked to the previous day’s SMEFT discussion, with a calculation using amplitudes methods of direct relevance to SMEFT researchers. Clifford Cheung’s talk proposed a rather strange/fun idea, conformal symmetry in negative dimensions!

Wednesday was “amplituhedron day”, with a variety of talks on positive geometries and cluster algebras. Featured in several talks was “tropicalization“, a mathematical procedure that can simplify complicated geometries while still preserving essential features. Here, it was used to trim down infinite “alphabets” conjectured for some calculations into a finite set, and in doing so understand the origin of “square root letters”. The day ended with a talk by Nima Arkani-Hamed, who despite offering to bet that he could finish his talk within the half-hour slot took almost twice that. The organizers seemed to have planned for this, since there was one fewer talk that day, and as such the day ended at roughly the usual time regardless.

We also took probably the most unique conference photo I will ever appear in.

For lack of a better name, I’ll call Thursday’s theme “celestial”. The day included talks by cosmologists (including approaches using amplitudes-ish methods from Daniel Baumann and Charlotte Sleight, and a curiously un-amplitudes-related talk from Daniel Green), talks on “celestial amplitudes” (amplitudes viewed from the surface of an infinitely distant sphere), and various talks with some link to string theory. I’m including in that last category intersection theory, which has really become its own thing. This included a talk by Simon Caron-Huot about using intersection theory more directly in understanding Feynman integrals, and a talk by Sebastian Mizera using intersection theory to investigate how gravity is Yang-Mills squared. Both gave me a much better idea of the speakers’ goals. In Mizera’s case he’s aiming for something very ambitious. He wants to use intersection theory to figure out when and how one can “double-copy” theories, and might figure out why the procedure “got stuck” at five loops. The day ended with a talk by Pedro Vieira, who gave an extremely lucid and well-presented “blackboard-style” talk on bootstrapping amplitudes.

Friday was a grab-bag of topics. Samuel Abreu discussed an interesting calculation using the numerical unitarity method. It was notable in part because renormalization played a bigger role than it does in most amplitudes work, and in part because they now have a cool logo for their group’s software, Caravel. Claude Duhr and Ruth Britto gave a two-part talk on their work on a Feynman integral coaction. I’d had doubts about the diagrammatic coaction they had worked on in the past because it felt a bit ad-hoc. Now, they’re using intersection theory, and have a clean story that seems to tie everything together. Andrew McLeod talked about our work on a Feynman diagram Calabi-Yau “bestiary”, while Cristian Vergu had a more rigorous understanding of our “traintrack” integrals.

There are two key elements of a conference that are tricky to do on Zoom. You can’t do a conference dinner, so you can’t do the traditional joke-filled conference dinner speech. The end of the conference is also tricky: traditionally, this is when everyone applauds the organizers and the secretaries are given flowers. As chair for the last session, Lance Dixon stepped up to fill both gaps, with a closing speech that was both a touching tribute to the hard work of organizing the conference and a hilarious pile of in-jokes, including a participation award to Arkani-Hamed for his (unprecedented, as far as I’m aware) perfect attendance.

The Sum of Our Efforts

I got a new paper out last week, with Andrew McLeod, Henrik Munch, and Georgios Papathanasiou.

A while back, some collaborators and I found an interesting set of Feynman diagrams that we called “Omega”. These Omega diagrams were fun because they let us avoid one of the biggest limitations of particle physics: that we usually have to compute approximations, diagram by diagram, rather than finding an exact answer. For these Omegas, we figured out how to add all the infinite set of Omega diagrams up together, with no approximation.

One implication of this was that, in principle, we now knew the answer for each individual Omega diagram, far past what had been computed before. However, writing down these answers was easier said than done. After some wrangling, we got the answer for each diagram in terms of an infinite sum. But despite tinkering with it for a while, even our resident infinite sum expert Georgios Papathanasiou couldn’t quite sum them up.

Naturally, this made me think the sums would make a great Master’s project.

When Henrik Munch showed up looking for a project, Andrew McLeod and I gave him several options, but he settled on the infinite sums. Impressively, he ended up solving the problem in two different ways!

First, he found an old paper none of us had seen before, that gave a general method for solving that kind of infinite sum. When he realized that method was really annoying to program, he took the principle behind it, called telescoping, and came up with his own, simpler method, for our particular case.

Picture an old-timey folding telescope. It might be long when fully extended, but when you fold it up each piece fits inside the previous one, resulting in a much smaller object. Telescoping a sum has the same spirit. If each pair of terms in a sum “fit together” (if their difference is simple), you can rearrange them so that most of the difficulty “cancels out” and you’re left with a much simpler sum.

Henrik’s telescoping idea worked even better than expected. We found that we could do, not just the Omega sums, but other sums in particle physics as well. Infinite sums are a very well-studied field, so it was interesting to find something genuinely new.

The rest of us worked to generalize the result, to check the examples and to put it in context. But the core of the work was Henrik’s. I’m really proud of what he accomplished. If you’re looking for a PhD student, he’s on the market!

This Is What an Exponential Feels Like

Most people, when they picture exponential growth, think of speed. They think of something going faster and faster, more and more out of control. But in the beginning, exponential growth feels slow. A little bit leads to a little bit more, leads to a little bit more. It sneaks up on you.

When the first cases of COVID-19 were observed in China in December, I didn’t hear about it. If it was in the news, it wasn’t news I read.

I’d definitely heard about it by the end of January. A friend of mine had just gotten back from a trip to Singapore. At the time, Singapore had a few cases from China, but no local transmission. She decided to work from home for two weeks anyway, just to be safe. The rest of us chatted around tea at work, shocked at the measures China was taking to keep the virus under control.

Italy reached our awareness in February. My Italian friends griped and joked about the situation. Denmark’s first case was confirmed on February 27, a traveler returning from Italy. He was promptly quarantined.

I was scheduled to travel on March 8, to a conference in Hamburg. On March 2, six days before, they decided to postpone. I was surprised: Hamburg is on the opposite side of Germany from Italy.

That week, my friend who went to Singapore worked from home again. This time, she wasn’t worried she brought the virus from Singapore: she was worried she might pick it up in Denmark. I was surprised: with so few cases (23 by March 6) in a country with a track record of thorough quarantines, I didn’t think we had anything to worry about. She disagreed. She remembered what happened in Singapore.

That was Saturday, March 7. Monday evening, she messaged me again. The number of cases had risen to 90. Copenhagen University asked everyone who traveled to a “high-risk” region to stay home for fourteen days.

On Wednesday, the university announced new measures. They shut down social events, large meetings, and work-related travel. Classes continued, but students were asked to sit as far as possible from each other. The Niels Bohr Institute was more strict: employees were asked to work from home, and classes were asked to switch online. The canteen would stay open, but would only sell packaged food.

The new measures lasted a day. On Thursday, the government of Denmark announced a lockdown, starting Friday. Schools were closed for two weeks, and public sector employees were sent to work from home. On Saturday, they closed the borders. There were 836 confirmed cases.

Exponential growth is the essence of life…but not of daily life. It’s been eerie, seeing the world around me change little by little and then lots by lots. I’m not worried for my own health. I’m staying home regardless. I know now what an exponential feels like.

P.S.: This blog has a no-politics policy. Please don’t comment on what different countries or politicians should be doing, or who you think should be blamed. Viruses have enough effect on the world right now, let’s keep viral arguments out of the comment section.

Understanding Is Translation

Kernighan’s Law states, “Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you are, by definition, not smart enough to debug it.” People sometimes make a similar argument about philosophy of mind: “The attempt of the mind to analyze itself [is] an effort analogous to one who would lift himself by his own bootstraps.”

Both points operate on a shared kind of logic. They picture understanding something as modeling it in your mind, with every detail clear. If you’ve already used all your mind’s power to design code, you won’t be able to model when it goes wrong. And modeling your own mind is clearly nonsense, you would need an even larger mind to hold the model.

The trouble is, this isn’t really how understanding works. To understand something, you don’t need to hold a perfect model of it in your head. Instead, you translate it into something you can more easily work with. Like explanations, these translations can be different for different people.

To understand something, I need to know the algorithm behind it. I want to know how to calculate it, the pieces that go in and where they come from. I want to code it up, to test it out on odd cases and see how it behaves, to get a feel for what it can do.

Others need a more physical picture. They need to know where the particles are going, or how energy and momentum are conserved. They want entropy to be increased, action to be minimized, scales to make sense dimensionally.

Others in turn are more mathematical. They want to start with definitions and axioms. To understand something, they want to see it as an example of a broader class of thing, groups or algebras or categories, to fit it into a bigger picture.

Each of these are a kind of translation, turning something into code-speak or physics-speak or math-speak. They don’t require modeling every detail, but when done well they can still explain every detail.

So while yes, it is good practice not to write code that is too “smart”, and too hard to debug…it’s not impossible to debug your smartest code. And while you can’t hold an entire mind inside of yours, you don’t actually need to do that to understand the brain. In both cases, all you need is a translation.

You Can’t Anticipate a Breakthrough

As a scientist, you’re surrounded by puzzles. For every test and every answer, ten new questions pop up. You can spend a lifetime on question after question, never getting bored.

But which questions matter? If you want to change the world, if you want to discover something deep, which questions should you focus on? And which should you ignore?

Last year, my collaborators and I completed a long, complicated project. We were calculating the chance fundamental particles bounce off each other in a toy model of nuclear forces, pushing to very high levels of precision. We managed to figure out a lot, but as always, there were many questions left unanswered in the end.

The deepest of these questions came from number theory. We had noticed surprising patterns in the numbers that showed up in our calculation, reminiscent of the fancifully-named Cosmic Galois Theory. Certain kinds of numbers never showed up, while others appeared again and again. In order to see these patterns, though, we needed an unusual fudge factor: an unexplained number multiplying our result. It was clear that there was some principle at work, a part of the physics intimately tied to particular types of numbers.

There were also questions that seemed less deep. In order to compute our result, we compared to predictions from other methods: specific situations where the question becomes simpler and there are other ways of calculating the answer. As we finished writing the paper, we realized we could do more with some of these predictions. There were situations we didn’t use that nonetheless simplified things, and more predictions that it looked like we could make. By the time we saw these, we were quite close to publishing, so most of us didn’t have the patience to follow these new leads. We just wanted to get the paper out.

At the time, I expected the new predictions would lead, at best, to more efficiency. Maybe we could have gotten our result faster, or cleaned it up a bit. They didn’t seem essential, and they didn’t seem deep.

Fast forward to this year, and some of my collaborators (specifically, Lance Dixon and Georgios Papathanasiou, along with Benjamin Basso) have a new paper up: “The Origin of the Six-Gluon Amplitude in Planar N=4 SYM”. The “origin” in their title refers to one of those situations: when the variables in the problem are small, and you’re close to the “origin” of a plot in those variables. But the paper also sheds light on the origin of our calculation’s mysterious “Cosmic Galois” behavior.

It turns out that the origin (of the plot) can be related to another situation, when the paths of two particles in our calculation almost line up. There, the calculation can be done with another method, called the Pentagon Operator Product Expansion, or POPE. By relating the two, Basso, Dixon, and Papathanasiou were able to predict not only how our result should have behaved near the origin, but how more complicated as-yet un-calculated results should behave.

The biggest surprise, though, lurked in the details. Building their predictions from the POPE method, they found their calculation separated into two pieces: one which described the physics of the particles involved, and a “normalization”. This normalization, predicted by the POPE method, involved some rather special numbers…the same as the “fudge factor” we had introduced earlier! Somehow, the POPE’s physics-based setup “knows” about Cosmic Galois Theory!

It seems that, by studying predictions in this specific situation, Basso, Dixon, and Papathanasiou have accomplished something much deeper: a strong hint of where our mysterious number patterns come from. It’s rather humbling to realize that, were I in their place, I never would have found this: I had assumed “the origin” was just a leftover detail, perhaps useful but not deep.

I’m still digesting their result. For now, it’s a reminder that I shouldn’t try to pre-judge questions. If you want to learn something deep, it isn’t enough to sit thinking about it, just focusing on that one problem. You have to follow every lead you have, work on every problem you can, do solid calculation after solid calculation. Sometimes, you’ll just make incremental progress, just fill in the details. But occasionally, you’ll have a breakthrough, something that justifies the whole adventure and opens your door to something strange and new. And I’m starting to think that when it comes to breakthroughs, that’s always been the only way there.

Math Is the Art of Stating Things Clearly

Why do we use math?

In physics we describe everything, from the smallest of particles to the largest of galaxies, with the language of mathematics. Why should that one field be able to describe so much? And why don’t we use something else?

The truth is, this is a trick question. Mathematics isn’t a language like English or French, where we can choose whichever translation we want. We use mathematics because it is, almost by definition, the best choice. That is because mathematics is the art of stating things clearly.

An infinite number of mathematicians walk into a bar. The first orders a beer. The second orders half a beer. The third orders a quarter. The bartender stops them, pours two beers, and says “You guys should know your limits.”

That was an (old) joke about infinite series of numbers. You probably learned in high school that if you add up one plus a half plus a quarter…you eventually get two. To be a bit more precise:

\sum_{i=0}^\infty \frac{1}{2^i} = 1+\frac{1}{2}+\frac{1}{4}+\ldots=2

We say that this infinite sum limits to two.

But what does it actually mean for an infinite sum to limit to a number? What does it mean to sum infinitely many numbers, let alone infinitely many beers ordered by infinitely many mathematicians?

You’re asking these questions because I haven’t yet stated the problem clearly. Those of you who’ve learned a bit more mathematics (maybe in high school, maybe in college) will know another way of stating it.

You know how to sum a finite set of beers. You start with one beer, then one and a half, then one and three-quarters. Sum N beers, and you get

\sum_{i=0}^N \frac{1}{2^i}

What does it mean for the sum to limit to two?

Let’s say you just wanted to get close to two. You want to get \epsilon close, where epsilon is the Greek letter we use for really small numbers.

For every \epsilon>0 you choose, no matter how small, I can pick a (finite!) N and get at least that close. That means that, with higher and higher N, I can get as close to two as a I want.

As it turns out, that’s what it means for a sum to limit to two. It’s saying the same thing, but more clearly, without sneaking in confusing claims about infinity.

These sort of proofs, with \epsilon (and usually another variable, \delta) form what mathematicians view as the foundations of calculus. They’re immortalized in story and song.

And they’re not even the clearest way of stating things! Go down that road, and you find more mathematics: definitions of numbers, foundations of logic, rabbit holes upon rabbit holes, all from the effort to state things clearly.

That’s why I’m not surprised that physicists use mathematics. We have to. We need clarity, if we want to understand the world. And mathematicians, they’re the people who spend their lives trying to state things clearly.

Rooting out the Answer

I have a new paper out today, with Jacob Bourjaily, Andrew McLeod, Matthias Wilhelm, Cristian Vergu and Matthias Volk.

There’s a story I’ve told before on this blog, about a kind of “alphabet” for particle physics predictions. When we try to make a prediction in particle physics, we need to do complicated integrals. Sometimes, these integrals simplify dramatically, in unexpected ways. It turns out we can understand these simplifications by writing the integrals in a sort of “alphabet”, breaking complicated mathematical “periods” into familiar logarithms. If we want to simplify an integral, we can use relations between logarithms like these:

\log(a b)=\log(a)+\log(b),\quad \log(a^n)=n\log(a)

to factor our “alphabet” into pieces as simple as possible.

The simpler the alphabet, the more progress you can make. And in the nice toy model theory we’re working with, the alphabets so far have been simple in one key way. Expressed in the right variables, they’re rational. For example, they contain no square roots.

Would that keep going? Would we keep finding rational alphabets? Or might the alphabets, instead, have square roots?

After some searching, we found a clean test case. There was a calculation we could do with just two Feynman diagrams. All we had to do was subtract one from the other. If they still had square roots in their alphabet, we’d have proven that the nice, rational alphabets eventually had to stop.

Easy-peasy

So we calculated these diagrams, doing the complicated integrals. And we found they did indeed have square roots in their alphabet, in fact many more than expected. They even had square roots of square roots!

You’d think that would be the end of the story. But square roots are trickier than you’d expect.

Remember that to simplify these integrals, we break them up into an alphabet, and factor the alphabet. What happens when we try to do that with an alphabet that has square roots?

Suppose we have letters in our alphabet with \sqrt{-5}. Suppose another letter is the number 9. You might want to factor it like this:

9=3\times 3

Simple, right? But what if instead you did this:

9=(2+ \sqrt{-5} )\times(2- \sqrt{-5} )

Once you allow \sqrt{-5} in the game, you can factor 9 in two different ways. The central assumption, that you can always just factor your alphabet, breaks down. In mathematical terms, you no longer have a unique factorization domain.

Instead, we had to get a lot more mathematically sophisticated, factoring into something called prime ideals. We got that working and started crunching through the square roots in our alphabet. Things simplified beautifully: we started with a result that was ten million terms long, and reduced it to just five thousand. And at the end of the day, after subtracting one integral from the other…

We found no square roots!

After all of our simplifications, all the letters we found were rational. Our nice test case turned out much, much simpler than we expected.

It’s been a long road on this calculation, with a lot of false starts. We were kind of hoping to be the first to find square root letters in these alphabets; instead it looks like another group will beat us to the punch. But we developed a lot of interesting tricks along the way, and we thought it would be good to publish our “null result”. As always in our field, sometimes surprising simplifications are just around the corner.

Calabi-Yaus in Feynman Diagrams: Harder and Easier Than Expected

I’ve got a new paper up, about the weird geometrical spaces we keep finding in Feynman diagrams.

With Jacob Bourjaily, Andrew McLeod, and Matthias Wilhelm, and most recently Cristian Vergu and Matthias Volk, I’ve been digging up odd mathematics in particle physics calculations. In several calculations, we’ve found that we need a type of space called a Calabi-Yau manifold. These spaces are often studied by string theorists, who hope they represent how “extra” dimensions of space are curled up. String theorists have found an absurdly large number of Calabi-Yau manifolds, so many that some are trying to sift through them with machine learning. We wanted to know if our situation was quite that ridiculous: how many Calabi-Yaus do we really need?

So we started asking around, trying to figure out how to classify our catch of Calabi-Yaus. And mostly, we just got confused.

It turns out there are a lot of different tools out there for understanding Calabi-Yaus, and most of them aren’t all that useful for what we’re doing. We went in circles for a while trying to understand how to desingularize toric varieties, and other things that will sound like gibberish to most of you. In the end, though, we noticed one small thing that made our lives a whole lot simpler.

It turns out that all of the Calabi-Yaus we’ve found are, in some sense, the same. While the details of the physics varies, the overall “space” is the same in each case. It’s a space we kept finding for our “Calabi-Yau bestiary”, but it turns out one of the “traintrack” diagrams we found earlier can be written in the same way. We found another example too, a “wheel” that seems to be the same type of Calabi-Yau.

And that actually has a sensible name

We also found many examples that we don’t understand. Add another rung to our “traintrack” and we suddenly can’t write it in the same space. (Personally, I’m quite confused about this one.) Add another spoke to our wheel and we confuse ourselves in a different way.

So while our calculation turned out simpler than expected, we don’t think this is the full story. Our Calabi-Yaus might live in “the same space”, but there are also physics-related differences between them, and these we still don’t understand.

At some point, our abstract included the phrase “this paper raises more questions than it answers”. It doesn’t say that now, but it’s still true. We wrote this paper because, after getting very confused, we ended up able to say a few new things that hadn’t been said before. But the questions we raise are if anything more important. We want to inspire new interest in this field, toss out new examples, and get people thinking harder about the geometry of Feynman integrals.