Category Archives: General QFT

Lessons From Neutrinos, Part II

Last week I talked about the history of neutrinos. Neutrinos come in three types, or “flavors”. Electron neutrinos are the easiest: they’re produced alongside electrons and positrons in the different types of beta decay. Electrons have more massive cousins, called muon and tau particles. As it turns out, each of these cousins has a corresponding flavor of neutrino: muon neutrinos, and tau neutrinos.

For quite some time, physicists thought that all of these neutrinos had zero mass.

(If the idea of a particle with zero mass confuses you, think about photons. A particle with zero mass travels, like a photon, at the speed of light. This doesn’t make them immune to gravity: just as no light can escape a black hole, neither can any other massless particle. It turns out that once you take into account Einstein’s general theory of relativity, gravity cares about energy, not just mass.)

Eventually, physicists started to realize they were wrong, and neutrinos had a small non-zero mass after all. Their reason why might seem a bit strange, though. Physicists didn’t weigh the neutrinos, or measure their speed. Instead, they observed that different flavors of neutrinos transform into each other. We say that they oscillate: electron neutrinos oscillate into muon or tau neutrinos, which oscillate into the other flavors, and so on. Over time, a beam of electron neutrinos will become a beam of mostly tau and muon neutrinos, before becoming a beam of electron neutrinos again.

That might not sound like it has much to do with mass. To understand why it does, you’ll need to learn this post’s lesson:

Lesson 2: Mass is just How Particles Move

Oscillating particles seem like a weird sort of evidence for mass. What would be a more normal kind of evidence?

Those of you who’ve taken physics classes might remember the equation F=ma. Apply a known force to something, see how much it accelerates, and you can calculate its mass. If you’ve had a bit more physics, you’ll know that this isn’t quite the right equation to use for particles close to the speed of light, but that there are other equations we can use in a similar way. In particular, using relativity, we have E^2=p^2 c^2 + m^2 c^4. (At rest, p=0, and we have the famous E=mc^2). This lets us do the same kind of thing: give something a kick and see how it moves.

So let’s say we do that: we give a particle a kick, and measure it later. I’ll visualize this with a tool physicists use called a Feynman diagram. The line represents a particle traveling from one side to the other, from “kick” to “measurement”:

Because we only measure the particle at the end, we might miss if something happens in between. For example, it might interact with another particle or field, like this:

If we don’t know about this other field, then when we try to measure the particle’s mass we will include interactions like this. As it turns out, this is how the Higgs boson works: the Higgs field interacts with particles like electrons and quarks, changing how they move, so that they appear to have mass.

Quantum particles can do other things too. You might have heard people talk about one particle turning into a pair of temporary “virtual particles”. When people say that, they usually have a diagram in mind like this:

In particle physics, we need to take into account every diagram of this kind, every possible thing that could happen in between “kick” and measurement. The final result isn’t one path or another, but a sum of all the different things that could have happened in between. So when we measure the mass of a particle, we’re including every diagram that’s allowed: everything that starts with our “kick” and ends with our measurement.

Now what if our particle can transform, from one flavor to another?

Now we have a new type of thing that can happen in between “kick” and measurement. And if it can happen once, it can happen more than once:

Remember that, when we measure mass, we’re measuring a sum of all the things that can happen in between. That means our particle could oscillate back and forth between different flavors many many times, and we need to take every possibility into account. Because of that, it doesn’t actually make sense to ask what the mass is for one flavor, for just electron neutrinos or just muon neutrinos. Instead, mass is for the thing that actually moves: an average (actually, a quantum superposition) over all the different flavors, oscillating back and forth any number of times.

When a process like beta decay produces an electron neutrino, the thing that actually moves is a mix (again, a superposition) of particles with these different masses. Because each of these masses respond to their initial “kick” in different ways, you see different proportions of them over time. Try to measure different flavors at the end, and you’ll find different ones depending on when and where you measure. That’s the oscillation effect, and that’s why it means that neutrinos have mass.

It’s a bit more complicated to work out the math behind this, but not unreasonably so: it’s simpler than a lot of other physics calculations. Working through the math, we find that by measuring how long it takes neutrinos to oscillate we can calculate the differences between (squares of) neutrino masses. What we can’t calculate are the masses themselves. We know they’re small: neutrinos travel at almost the speed of light, and our cosmological models of the universe have surprisingly little room for massive neutrinos: too much mass, and our universe would look very different than it does today. But we don’t know much more than that. We don’t even know the order of the masses: you might assume electron neutrinos are on average lighter than muon neutrinos, which are lighter than tau neutrinos…but it could easily be the other way around! We also don’t know whether neutrinos get their mass from the Higgs like other particles do, or if they work in a completely different way.

Unlike other mysteries of physics, we’ll likely have the answer to some of these questions soon. People are already picking through the data from current experiments, seeing if they hint towards one order of masses or the other, or to one or the other way for neutrinos to get their mass. More experiments will start taking data this year, and others are expected to start later this decade. At some point, the textbooks may well have more “normal” mass numbers for each of the neutrinos. But until then, they serve as a nice illustration of what mass actually means in particle physics.

Lessons From Neutrinos, Part I

Some of the particles of the Standard Model are more familiar than others. Electrons and photons, of course, everyone has heard of, and most, though not all, have heard of quarks. Many of the rest, like the W and Z boson, only appear briefly in high-energy colliders. But one Standard Model particle is much less exotic, and nevertheless leads to all manner of confusion. That particle is the neutrino.

Neutrinos are very light, much lighter than even an electron. (Until relatively recently, we thought they were completely massless!) They have no electric charge and they don’t respond to the strong nuclear force, so aside from gravity (negligible since they’re so light), the only force that affects them is the weak nuclear force. This force is, well, weak. It means neutrinos can be produced via the relatively ordinary process of radioactive beta decay, but it also means they almost never interact with anything else. Vast numbers of neutrinos pass through you every moment, with no noticeable effect. We need enormous tanks of liquid or chunks of ice to have a chance of catching neutrinos in action.

Because neutrinos are both ordinary and unfamiliar, they tend to confuse people. I’d like to take advantage of this confusion to teach some physics. Neutrinos turn out to be a handy theme to convey a couple blog posts worth of lessons about why physics works the way it does.

I’ll start on the historical side. There’s a lesson that physicists themselves learned in the early days:

Lesson 1: Don’t Throw out a Well-Justified Conservation Law

In the early 20th century, physicists were just beginning to understand radioactivity. They could tell there were a few different types: gamma decay released photons in the form of gamma rays, alpha decay shot out heavy, positively charged particles, and beta decay made “beta particles”, or electrons. For each of these, physicists could track each particle and measure its energy and momentum. Everything made sense for gamma and alpha decay…but not for beta decay. Somehow, they could add up the energy of each of the particles they could track, and find less at the end than they did at the beginning. It was as if energy was not conserved.

These were the heady early days of quantum mechanics, so people were confused enough that many thought this was the end of the story. Maybe energy just isn’t conserved? Wolfgang Pauli, though, thought differently. He proposed that there had to be another particle, one that no-one could detect, that made energy balance out. It had to be neutral, so he called it the neutron…until two years later when James Chadwick discovered the particle we call the neutron. This was much too heavy to be Pauli’s neutron, so Edoardo Amaldi joked that Pauli’s particle was a “neutrino” instead. The name stuck, and Pauli kept insisting his neutrino would turn up somewhere. It wasn’t until 1956 that neutrinos were finally detected, so for quite a while people made fun of Pauli for his quixotic quest.

Including a Faust parody with Gretchen as the neutrino

In retrospect, people should probably have known better. Conservation of energy isn’t one of those rules that come out of nowhere. It’s deeply connected to time, and to the idea that one can perform the same experiment at any time in history and find the same result. While rules like that sometimes do turn out wrong, our first expectation should be that they won’t. Nowadays, we’re confident enough in energy conservation that we plan to use it to detect other particles: it was the main way the Large Hadron Collider planned to try to detect dark matter.

As we came to our more modern understanding, physicists started writing up the Standard Model. Neutrinos were thought of as massless, like photons, traveling at the speed of light. Now, we know that neutrinos have mass…but we don’t know how much mass they have. How do we know they have mass then? To understand that, you’ll need to understand what mass actually means in physics. We’ll talk about that next week!

Light and Lens, Collider and Detector

Why do particle physicists need those enormous colliders? Why does it take a big, expensive, atom-smashing machine to discover what happens on the smallest scales?

A machine like the Large Hadron Collider seems pretty complicated. But at its heart, it’s basically just a huge microscope.

Familiar, right?

If you’ve ever used a microscope in school, you probably had one with a light switch. Forget to turn on the light, and you spend a while confused about why you can’t see anything before you finally remember to flick the switch. Just like seeing something normally, seeing something with a microscope means that light is bouncing off that thing and hitting your eyes. Because of this, microscopes are limited by the wavelength of the light that they use. Try to look at something much smaller than that wavelength and the image will be too blurry to understand.

To see smaller details then, people use light with smaller wavelengths. Using massive X-ray producing machines called synchrotrons, scientists can study matter on the sub-nanometer scale. To go further, scientists can take advantage of wave-particle duality, and use electrons instead of light. The higher the energy of the electrons, the smaller their wavelength. The best electron microscopes can see objects measured in angstroms, not just nanometers.

Less familiar?

A particle collider pushes this even further. The Large Hadron Collider accelerates protons until they have 6.5 Tera-electron-Volts of energy. That might be an unfamiliar type of unit, but if you’ve seen it before you can run the numbers, and estimate that this means the LHC can sees details below the attometer scale. That’s a quintillionth of a meter, or a hundred million times smaller than an atom.

A microscope isn’t just light, though, and a collider isn’t just high-energy protons. If it were, we could just wait and look at the sky. So-called cosmic rays are protons and other particles that travel to us from outer space. These can have very high energy: protons with similar energy to those in the LHC hit our atmosphere every day, and rays have been detected that were millions of times more powerful.

People sometimes ask why we can’t just use these cosmic rays to study particle physics. While we can certainly learn some things from cosmic rays, they have a big limitation. They have the “light” part of a microscope, but not the “lens”!

A microscope lens magnifies what you see. Starting from a tiny image, the lens blows it up until it’s big enough that you can see it with your own eyes. Particle colliders have similar technology, using their particle detectors. When two protons collider inside the LHC, they emit a flurry of other particles: photons and electrons, muons and mesons. Each of these particles is too small to see, let alone distinguish with the naked eye. But close to the collision there are detector machines that absorb these particles and magnify their signal. A single electron hitting one of these machines triggers a cascade of more and more electrons, in proportion to the energy of the electron that entered the machine. In the end, you get a strong electrical signal, which you can record with a computer. There are two big machines that do this at the Large Hadron Collider, each with its own independent scientific collaboration to run it. They’re called ATLAS and CMS.

The different layers of the CMS detector, magnifying signals from different types of particles.

So studying small scales needs two things: the right kind of “probe”, like light or protons, and a way to magnify the signal, like a lens or a particle detector. That’s hard to do without a big expensive machine…unless nature is unusually convenient. One interesting possibility is to try to learn about particle physics via astronomy. In the Big Bang particles collided with very high energy, and as the universe has expanded since then those details have been magnified across the sky. That kind of “cosmological collider” has the potential to teach us about physics at much smaller scales than any normal collider could reach. A downside is that, unlike in a collider, we can’t run the experiment over and over again: our “cosmological collider” only ran once. Still, if we want to learn about the very smallest scales, some day that may be our best option.

Alice Through the Parity Glass

When you look into your mirror in the morning, the face looking back at you isn’t exactly your own. Your mirror image is flipped: left-handed if you’re right-handed, and right-handed if you’re left-handed. Your body is not symmetric in the mirror: we say it does not respect parity symmetry. Zoom in, and many of the molecules in your body also have a “handedness” to them: biology is not the same when flipped in a mirror.

What about physics? At first, you might expect the laws of physics themselves to respect parity symmetry. Newton’s laws are the same when reflected in a mirror, and so are Maxwell’s. But one part of physics breaks this rule: the weak nuclear force, the force that causes nuclear beta decay. The weak nuclear force interacts differently with “right-handed” and “left-handed” particles (shorthand for particles that spin counterclockwise or clockwise with respect to their motion). This came as a surprise to most physicists, but it was predicted by Tsung-Dao Lee and Chen-Ning Yang and demonstrated in 1956 by Chien-Shiung Wu, known in her day as the “Queen of Nuclear Research”. The world really does look different when flipped in a mirror.

I gave a lecture on the weak force for the pedagogy course I took a few weeks back. One piece of feedback I got was that the topic wasn’t very relatable. People wanted to know why they should care about the handedness of the weak force, they wanted to hear about “real-life” applications. Once scientists learned that the weak force didn’t respect parity, what did that let us do?

Thinking about this, I realized this is actually a pretty tricky story to tell. With enough time and background, I could explain that the “handedness” of the Standard Model is a major constraint on attempts to unify physics, ruling out a lot of the simpler options. That’s hard to fit in a short lecture though, and it still isn’t especially close to “real life”.

Then I realized I don’t need to talk about “real life” to give a “real-life example”. People explaining relativity get away with science fiction scenarios, spaceships on voyages to black holes. The key isn’t to be familiar, just relatable. If I can tell a story (with people in it), then maybe I can make this work.

All I need, then, is a person who cares a lot about the world behind a mirror.

Curiouser and curiouser…

When Alice goes through the looking glass in the novel of that name, she enters a world flipped left-to-right, a world with its parity inverted. Following Alice, we have a natural opportunity to explore such a world. Others have used this to explore parity symmetry in biology: for example, a side-plot in Alan Moore’s League of Extraordinary Gentlemen sees Alice come back flipped, and starve when she can’t process mirror-reversed nutrients. I haven’t seen it explored for physics, though.

In order to make this story work, we have to get Alice to care about the weak nuclear force. The most familiar thing the weak force does is cause beta decay. And the most familiar thing that undergoes beta decay is a banana. Bananas contain radioactive potassium, which can transform to calcium by emitting an electron and an anti-electron-neutrino.

The radioactive potassium from a banana doesn’t stay in the body very long, only a few hours at most. But if Alice was especially paranoid about radioactivity, maybe she would want to avoid eating bananas. (We shouldn’t tell her that other foods contain potassium too.) If so, she might view the looking glass as a golden opportunity, a chance to eat as many bananas as she likes without worrying about radiation.

Does this work?

A first problem: can Alice even eat mirror-reversed bananas? I told you many biological molecules have handedness, which led Alan Moore’s version of Alice to starve. If we assume, unlike Moore, that Alice comes back in her original configuration and survives, we should still ask if she gets any benefit out of the bananas in the looking glass.

Researching this, I found that the main thing that makes bananas taste “banana-ish”, isoamyl acetate, does not have handedness: mirror bananas will still taste like bananas. Fructose, a sugar in bananas, does have handedness however: it isn’t the same when flipped in a mirror. Chatting with a chemist, the impression I got was that this isn’t a total loss: often, flipping a sugar results in another, different sugar. A mirror banana might still taste sweet, but less so. Overall, it may still be worth eating.

The next problem is a tougher one: flipping a potassium atom doesn’t actually make it immune to the weak force. The weak force only interacts with left-handed particles and right-handed antiparticles: in beta decay, it transforms a left-handed down quark to a left-handed up quark, producing a left-handed electron and a right-handed anti-neutrino.

Alice would have been fine if all of the quarks in potassium were left-handed, but they aren’t: an equal amount are right-handed, so the mirror weak force will still act on them, and they will still undergo beta decay. Actually, it’s worse than that: quarks, and massive particles in general, don’t actually have a definite handedness. If you speed up enough to catch up to a quark and pass it, then from your perspective it’s now going in the opposite direction, and its handedness is flipped. The only particles with definite handedness are massless particles: those go at the speed of light, so you can never catch up to them. Another way to think about this is that quarks get their mass from the Higgs field, and this happens because the Higgs lets left- and right-handed quarks interact. What we call the quark’s mass is in some sense just left- and right-handed quarks constantly mixing back and forth.

Alice does have the opportunity to do something interesting here, if she can somehow capture the anti-neutrinos from those bananas. Our world appears to only have left-handed neutrinos and right-handed anti-neutrinos. This seemed reasonable when we thought neutrinos were massless, but now we know neutrinos have a (very small) mass. As a result, the hunt is on for right-handed neutrinos or left-handed anti-neutrinos: if we can measure them, we could fix one of the lingering mysteries of the Standard Model. With this in mind, Alice has the potential to really confuse some particle physicists, giving them some left-handed anti-neutrinos from beyond the looking-glass.

It turns out there’s a problem with even this scheme, though. The problem is a much wider one: the whole story is physically inconsistent.

I’d been acting like Alice can pass back and forth through the mirror, carrying all her particles with her. But what are “her particles”? If she carries a banana through the mirror, you might imagine the quarks in the potassium atoms carry over. But those quarks are constantly exchanging other quarks and gluons, as part of the strong force holding them together. They’re also exchanging photons with electrons via the electromagnetic force, and they’re also exchanging W bosons via beta decay. In quantum field theory, all of this is in some sense happening at once, an infinite sum over all possible exchanges. It doesn’t make sense to just carve out one set of particles and plug them in to different fields somewhere else.

If we actually wanted to describe a mirror like Alice’s looking glass in physics, we’d want to do it consistently. This is similar to how physicists think of time travel: you can’t go back in time and murder your grandparents because your whole path in space-time has to stay consistent. You can only go back and do things you “already did”. We treat space in a similar way to time. A mirror like Alice’s imposes a condition, that fields on one side are equal to their mirror image on the other side. Conditions like these get used in string theory on occasion, and they have broad implications for physics on the whole of space-time, not just near the boundary. The upshot is that a world with a mirror like Alice’s in it would be totally different from a world without the looking glass: the weak force as we know it would not exist.

So unfortunately, I still don’t have a good “real life” story for a class about parity symmetry. It’s fun trying to follow Alice through a parity transformation, but there are a few too many problems for the tale to make any real sense. Feel free to suggest improvements!

Electromagnetism Is the Weirdest Force

For a long time, physicists only knew about two fundamental forces: electromagnetism, and gravity. Physics students follow the same path, studying Newtonian gravity, then E&M, and only later learning about the other fundamental forces. If you’ve just recently heard about the weak nuclear force and the strong nuclear force, it can be tempting to think of them as just slight tweaks on electromagnetism. But while that can be a helpful way to start, in a way it’s precisely backwards. Electromagnetism is simpler than the other forces, that’s true. But because of that simplicity, it’s actually pretty weird as a force.

The weirdness of electromagnetism boils down to one key reason: the electromagnetic field has no charge.

Maybe that sounds weird to you: if you’ve done anything with electromagnetism, you’ve certainly seen charges. But while you’ve calculated the field produced by a charge, the field itself has no charge. You can specify the positions of some electrons and not have to worry that the electric field will introduce new charges you didn’t plan. Mathematically, this means your equations are linear in the field, and thus not all that hard to solve.

The other forces are different. The strong nuclear force has three types of charge, dubbed red, green, and blue. Not just quarks, but the field itself has charges under this system, making the equations that describe it non-linear.

A depiction of a singlet state

Those properties mean that you can’t just think of the strong force as a push or pull between charges, like you could with electromagnetism. The strong force doesn’t just move quarks around, it can change their color, exchanging charge between the quark and the field. That’s one reason why when we’re more careful we refer to it as not the strong force, but the strong interaction.

The weak force also makes more sense when thought of as an interaction. It can change even more properties of particles, turning different flavors of quarks and leptons into each other, resulting in among other phenomena nuclear beta decay. It would be even more like the strong force, but the Higgs field screws that up, stirring together two more fundamental forces and spitting out the weak force and electromagnetism. The result ties them together in weird ways: for example, it means that the weak field can actually have an electric charge.

Interactions like the strong and weak forces are much more “normal” for particle physicists: if you ask us to picture a random fundamental force, chances are it will look like them. It won’t typically look like electromagnetism, the weird “degenerate” case with a field that doesn’t even have a charge. So despite how familiar electromagnetism may be to you, don’t take it as your model of what a fundamental force should look like: of all the forces, it’s the simplest and weirdest.

Doing Difficult Things Is Its Own Reward

Does antimatter fall up, or down?

Technically, we don’t know yet. The ALPHA-g experiment would have been the first to check this, making anti-hydrogen by trapping anti-protons and positrons in a long tube and seeing which way it falls. While they got most of their setup working, the LHC complex shut down before they could finish. It starts up again next month, so we should have our answer soon.

That said, for most theorists’ purposes, we absolutely do know: antimatter falls down. Antimatter is one of the cleanest examples of a prediction from pure theory that was confirmed by experiment. When Paul Dirac first tried to write down an equation that described electrons, he found the math forced him to add another particle with the opposite charge. With no such particle in sight, he speculated it could be the proton (this doesn’t work, they need the same mass), before Carl D. Anderson discovered the positron in 1932.

The same math that forced Dirac to add antimatter also tells us which way it falls. There’s a bit more involved, in the form of general relativity, but the recipe is pretty simple: we know how to take an equation like Dirac’s and add gravity to it, and we have enough practice doing it in different situations that we’re pretty sure it’s the right way to go. Pretty sure doesn’t mean 100% sure: talk to the right theorists, and you’ll probably find a proposal or two in which antimatter falls up instead of down. But they tend to be pretty weird proposals, from pretty weird theorists.

Ok, but if those theorists are that “weird”, that outside the mainstream, why does an experiment like ALPHA-g exist? Why does it happen at CERN, one of the flagship facilities for all of mainstream particle physics?

This gets at a misconception I occasionally hear from critics of the physics mainstream. They worry about groupthink among mainstream theorists, the physics community dismissing good ideas just because they’re not trendy (you may think I did that just now, for antigravity antimatter!) They expect this to result in a self-fulfilling prophecy where nobody tests ideas outside the mainstream, so they find no evidence for them, so they keep dismissing them.

The mistake of these critics is in assuming that what gets tested has anything to do with what theorists think is reasonable.

Theorists talk to experimentalists, sure. We motivate them, give them ideas and justification. But ultimately, people do experiments because they can do experiments. I watched a talk about the ALPHA experiment recently, and one thing that struck me was how so many different techniques play into it. They make antiprotons using a proton beam from the accelerator, slow them down with magnetic fields, and cool them with lasers. They trap their antihydrogen in an extremely precise vacuum, and confirm it’s there with particle detectors. The whole setup is a blend of cutting-edge accelerator physics and cutting-edge tricks for manipulating atoms. At its heart, ALPHA-g feels like its primary goal is to stress-test all of those tricks: to push the state of the art in a dozen experimental techniques in order to accomplish something remarkable.

And so even if the mainstream theorists don’t care, ALPHA will keep going. It will keep getting funding, it will keep getting visited by celebrities and inspiring pop fiction. Because enough people recognize that doing something difficult can be its own reward.

In my experience, this motivation applies to theorists too. Plenty of us will dismiss this or that proposal as unlikely or impossible. But give us a concrete calculation, something that lets us use one of our flashy theoretical techniques, and the tune changes. If we’re getting the chance to develop our tools, and get a paper out of it in the process, then sure, we’ll check your wacky claim. Why not?

I suspect critics of the mainstream would have a lot more success with this kind of pitch-based approach. If you can find a theorist who already has the right method, who’s developing and extending it and looking for interesting applications, then make your pitch: tell them how they can answer your question just by doing what they do best. They’ll think of it as a chance to disprove you, and you should let them, that’s the right attitude to take as a scientist anyway. It’ll work a lot better than accusing them of hogging the grant money.

Redefining Fields for Fun and Profit

When we study subatomic particles, particle physicists use a theory called Quantum Field Theory. But what is a quantum field?

Some people will describe a field in vague terms, and say it’s like a fluid that fills all of space, or a vibrating rubber sheet. These are all metaphors, and while they can be helpful, they can also be confusing. So let me avoid metaphors, and say something that may be just as confusing: a field is the answer to a question.

Suppose you’re interested in a particle, like an electron. There is an electron field that tells you, at each point, your chance of detecting one of those particles spinning in a particular way. Suppose you’re trying to measure a force, say electricity or magnetism. There is an electromagnetic field that tells you, at each point, what force you will measure.

Sometimes the question you’re asking has a very simple answer: just a single number, for each point and each time. An example of a question like that is the temperature: pick a city, pick a date, and the temperature there and then is just a number. In particle physics, the Higgs field answers a question like that: at each point, and each time, how “Higgs-y” is it there and then? You might have heard that the Higgs field gives other particles their mass: what this means is that the more “Higgs-y” it is somewhere, the higher these particles’ mass will be. The Higgs field is almost constant, because it’s very difficult to get it to change. That’s in some sense what the Large Hadron Collider did when they discovered the Higgs boson: pushed hard enough to cause a tiny, short-lived ripple in the Higgs field, a small area that was briefly more “Higgs-y” than average.

We like to think of some fields as fundamental, and others as composite. A proton is composite: it’s made up of quarks and gluons. Quarks and gluons, as far as we know, are fundamental: they’re not made up of anything else. More generally, since we’re thinking about fields as answers to questions, we can just as well ask more complicated, “composite” questions. For example, instead of “what is the temperature?”, we can ask “what is the temperature squared?” or “what is the temperature times the Higgs-y-ness?”.

But this raises a troubling point. When we single out a specific field, like the Higgs field, why are we sure that that field is the fundamental one? Why didn’t we start with “Higgs squared” instead? Or “Higgs plus Higgs squared”? Or something even weirder?

The inventor of the Higgs-squared field, Peter Higgs-squared

That kind of swap, from Higgs to Higgs squared, is called a field redefinition. In the math of quantum field theory, it’s something you’re perfectly allowed to do. Sometimes, it’s even a good idea. Other times, it can make your life quite complicated.

The reason why is that some fields are much simpler than others. Some are what we call free fields. Free fields don’t interact with anything else. They just move, rippling along in easy-to-calculate waves.

Redefine a free field, swapping it for some more complicated function, and you can easily screw up, and make it into an interacting field. An interacting field might interact with another field, like how electromagnetic fields move (and are moved by) electrons. It might also just interact with itself, a kind of feedback effect that makes any calculation we’d like to do much more difficult.

If we persevere with this perverse choice, and do the calculation anyway, we find a surprise. The final results we calculate, the real measurements people can do, are the same in both theories. The field redefinition changed how the theory appeared, quite dramatically…but it didn’t change the physics.

You might think the moral of the story is that you must always choose the right fundamental field. You might want to, but you can’t: not every field is secretly free. Some will be interacting fields, whatever you do. In that case, you can make one choice or another to simplify your life…but you can also just refuse to make a choice.

That’s something quite a few physicists do. Instead of looking at a theory and calling some fields fundamental and others composite, they treat every one of these fields, every different question they could ask, on the same footing. They then ask, for these fields, what one can measure about them. They can ask which fields travel at the speed of light, and which ones go slower, or which fields interact with which other fields, and how much. Field redefinitions will shuffle the fields around, but the patterns in the measurements will remain. So those, and not the fields, can be used to specify the theory. Instead of describing the world in terms of a few fundamental fields, they think about the world as a kind of field soup, characterized by how it shifts when you stir it with a spoon.

It’s not a perspective everyone takes. If you overhear physicists, sometimes they will talk about a theory with only a few fields, sometimes they will talk about many, and you might be hard-pressed to tell what they’re talking about. But if you keep in mind these two perspectives: either a few fundamental fields, or a “field soup”, you’ll understand them a little better.

Discovering the Rules, Discovering the Consequences

Two big physics experiments consistently make the news. The Large Hadron Collider, or LHC, and the Laser Interferometer Gravitational-Wave Observatory, or LIGO. One collides protons, the other watches colliding black holes and neutron stars. But while this may make the experiments sound quite similar, their goals couldn’t be more different.

The goal of the LHC, put simply, is to discover the rules that govern reality. Should the LHC find a new fundamental particle, it will tell us something we didn’t know about the laws of physics, a newly discovered fact that holds true everywhere in the universe. So far, it has discovered the Higgs boson, and while that particular rule was expected we didn’t know the details until they were tested. Now physicists hope to find something more, a deviation from the Standard Model that hints at a new law of nature altogether.

LIGO, in contrast, isn’t really for discovering the rules of the universe. Instead, it discovers the consequences of those rules, on a grand scale. Even if we knew the laws of physics completely, we can’t calculate everything from those first principles. We can simulate some things, and approximate others, but we need experiments to tweak those simulations and test those approximations. LIGO fills that role. We can try to estimate how common black holes are, and how large, but LIGO’s results were still a surprise, suggesting medium-sized black holes are more common than researchers expected. In the future, gravitational wave telescopes might discover more of these kinds of consequences, from the shape of neutron stars to the aftermath of cosmic inflation.

There are a few exceptions for both experiments. The LHC can also discover the consequences of the laws of physics, especially when those consequences are very difficult to calculate, finding complicated arrangements of known particles, like pentaquarks and glueballs. And it’s possible, though perhaps not likely, that LIGO could discover something about quantum gravity. Quantum gravity’s effects are expected to be so small that these experiments won’t see them, but some have speculated that an unusually large effect could be detected by a gravitational wave telescope.

As scientists, we want to know everything we can about everything we find. We want to know the basic laws that govern the universe, but we also want to know the consequences of those laws, the story of how our particular universe came to be the way it is today. And luckily, we have experiments for both.

Which Things Exist in Quantum Field Theory

If you ever think metaphysics is easy, learn a little quantum field theory.

Someone asked me recently about virtual particles. When talking to the public, physicists sometimes explain the behavior of quantum fields with what they call “virtual particles”. They’ll describe forces coming from virtual particles going back and forth, or a bubbling sea of virtual particles and anti-particles popping out of empty space.

The thing is, this is a metaphor. What’s more, it’s a metaphor for an approximation. As physicists, when we draw diagrams with more and more virtual particles, we’re trying to use something we know how to calculate with (particles) to understand something tougher to handle (interacting quantum fields). Virtual particles, at least as you’re probably picturing them, don’t really exist.

I don’t really blame physicists for talking like that, though. Virtual particles are a metaphor, sure, a way to talk about a particular calculation. But so is basically anything we can say about quantum field theory. In quantum field theory, it’s pretty tough to say which things “really exist”.

I’ll start with an example, neutrino oscillation.

You might have heard that there are three types of neutrinos, corresponding to the three “generations” of the Standard Model: electron-neutrinos, muon-neutrinos, and tau-neutrinos. Each is produced in particular kinds of reactions: electron-neutrinos, for example, get produced by beta-plus decay, when a proton turns into a neutron, an anti-electron, and an electron-neutrino.

Leave these neutrinos alone though, and something strange happens. Detect what you expect to be an electron-neutrino, and it might have changed into a muon-neutrino or a tau-neutrino. The neutrino oscillated.

Why does this happen?

One way to explain it is to say that electron-neutrinos, muon-neutrinos, and tau-neutrinos don’t “really exist”. Instead, what really exists are neutrinos with specific masses. These don’t have catchy names, so let’s just call them neutrino-one, neutrino-two, and neutrino-three. What we think of as electron-neutrinos, muon-neutrinos, and tau-neutrinos are each some mix (a quantum superposition) of these “really existing” neutrinos, specifically the mixes that interact nicely with electrons, muons, and tau leptons respectively. When you let them travel, it’s these neutrinos that do the traveling, and due to quantum effects that I’m not explaining here you end up with a different mix than you started with.

This probably seems like a perfectly reasonable explanation. But it shouldn’t. Because if you take one of these mass-neutrinos, and interact with an electron, or a muon, or a tau, then suddenly it behaves like a mix of the old electron-neutrinos, muon-neutrinos, and tau-neutrinos.

That’s because both explanations are trying to chop the world up in a way that can’t be done consistently. There aren’t electron-neutrinos, muon-neutrinos, and tau-neutrinos, and there aren’t neutrino-ones, neutrino-twos, and neutrino-threes. There’s a mathematical object (a vector space) that can look like either.

Whether you’re comfortable with that depends on whether you think of mathematical objects as “things that exist”. If you aren’t, you’re going to have trouble thinking about the quantum world. Maybe you want to take a step back, and say that at least “fields” should exist. But that still won’t do: we can redefine fields, add them together or even use more complicated functions, and still get the same physics. The kinds of things that exist can’t be like this. Instead you end up invoking another kind of mathematical object, equivalence classes.

If you want to be totally rigorous, you have to go a step further. You end up thinking of physics in a very bare-bones way, as the set of all observations you could perform. Instead of describing the world in terms of “these things” or “those things”, the world is a black box, and all you’re doing is finding patterns in that black box.

Is there a way around this? Maybe. But it requires thought, and serious philosophy. It’s not intuitive, it’s not easy, and it doesn’t lend itself well to 3d animations in documentaries. So in practice, whenever anyone tells you about something in physics, you can be pretty sure it’s a metaphor. Nice describable, non-mathematical things typically don’t exist.

Zero-Point Energy, Zero-Point Diagrams

Listen to a certain flavor of crackpot, or a certain kind of science fiction, and you’ll hear about zero-point energy. Limitless free energy drawn from quantum space-time itself, zero-point energy probably sounds like bullshit. Often it is. But lurking behind the pseudoscience and the fiction is a real physics concept, albeit one that doesn’t really work like those people imagine.

In quantum mechanics, the zero-point energy is the lowest energy a particular system can have. That number doesn’t actually have to be zero, even for empty space. People sometimes describe this in terms of so-called virtual particles, popping up from nothing in particle-antiparticle pairs only to annihilate each other again, contributing energy in the absence of any “real particles”. There’s a real force, the Casimir effect, that gets attributed to this, a force that pulls two metal plates together even with no charge or extra electromagnetic field. The same bubbling of pairs of virtual particles also gets used to explain the Hawking radiation of black holes.

I’d like to try explaining all of these things in a different way, one that might clear up some common misconceptions. To start, let’s talk about, not zero-point energy, but zero-point diagrams.

Feynman diagrams are a tool we use to study particle physics. We start with a question: if some specific particles come together and interact, what’s the chance that some (perhaps different) particles emerge? We start by drawing lines representing the particles going in and out, then connect them in every way allowed by our theory. Finally we translate the diagrams to numbers, to get an estimate for the probability. In particle physics slang, the number of “points” is the total number of particles: particles in, plus particles out. For example, let’s say we want to know the chance that two electrons go in and two electrons come out. That gives us a “four-point” diagram: two in, plus two out. A zero-point diagram, then, means zero particles in, zero particles out.

A four-point diagram and a zero-point diagram

(Note that this isn’t why zero-point energy is called zero-point energy, as far as I can tell. Zero-point energy is an older term from before Feynman diagrams.)

Remember, each Feynman diagram answers a specific question, about the chance of particles behaving in a certain way. You might wonder, what question does a zero-point diagram answer? The chance that nothing goes to nothing? Why would you want to know that?

To answer, I’d like to bring up some friends of mine, who do something that might sound equally strange: they calculate one-point diagrams, one particle goes to none. This isn’t strange for them because they study theories with defects.

For some reason, they didn’t like my suggestion to use this stamp on their papers

Normally in particle physics, we think about our particles in an empty, featureless space. We don’t have to, though. One thing we can do is introduce features in this space, like walls and mirrors, and try to see what effect they have. We call these features “defects”.

If there’s a defect like that, then it makes sense to calculate a one-point diagram, because your one particle can interact with something that’s not a particle: it can interact with the defect.

A one-point diagram with a wall, or “defect”

You might see where this is going: let’s say you think there’s a force between two walls, that comes from quantum mechanics, and you want to calculate it. You could imagine it involves a diagram like this:

A “zero-point diagram” between two walls

Roughly speaking, this is the kind of thing you could use to calculate the Casimir effect, that mysterious quantum force between metal plates. And indeed, it involves a zero-point diagram.

Here’s the thing, though: metal plates aren’t just “defects”. They’re real physical objects, made of real physical particles. So while you can think of the Casimir effect with a “zero-point diagram” like that, you can also think of it with a normal diagram, more like the four-point diagram I showed you earlier: one that computes, not a force between defects, but a force between the actual electrons and protons that make up the two plates.

A lot of the time when physicists talk about pairs of virtual particles popping up out of the vacuum, they have in mind a picture like this. And often, you can do the same trick, and think about it instead as interactions between physical particles. There’s a story of roughly this kind for Hawking radiation: you can think of a black hole event horizon as “cutting in half” a zero-point diagram, and see pairs of particles going out from the black hole…but you can also do a calculation that looks more like particles interacting with a gravitational field.

This also might help you understand why, contra the crackpots and science fiction writers, zero-point energy isn’t a source of unlimited free energy. Yes, a force like the Casimir effect comes “from the vacuum” in some sense. But really, it’s a force between two particles. And just like the gravitational force between two particles, this doesn’t give you unlimited free power. You have to do the work to move the particles back over and over again, using the same amount of power you gained from the force to begin with. And unlike the forces you’re used to, these are typically very small effects, as usual for something that depends on quantum mechanics. So it’s even less useful than more everyday forces for this.

Why do so many crackpots and authors expect zero-point energy to be a massive source of power? In part, this is due to mistakes physicists made early on.

Sometimes, when calculating a zero-point diagram (or any other diagram), we don’t get a sensible number. Instead, we get infinity. Physicists used to be baffled by this. Later, they understood the situation a bit better, and realized that those infinities were probably just due to our ignorance. We don’t know the ultimate high-energy theory, so it’s possible something happens at high energies to cancel those pesky infinities. Without knowing exactly what happened, physicists would estimate by using a “cutoff” energy where they expected things to change.

That kind of calculation led to an estimate you might have heard of, that the zero-point energy inside single light bulb could boil all the world’s oceans. That estimate gives a pretty impressive mental image…but it’s also wrong.

This kind of estimate led to “the worst theoretical prediction in the history of physics”, that the cosmological constant, the force that speeds up the expansion of the universe, is 120 orders of magnitude higher than its actual value (if it isn’t just zero). If there really were energy enough inside each light bulb to boil the world’s oceans, the expansion of the universe would be quite different than what we observe.

At this point, it’s pretty clear there is something wrong with these kinds of “cutoff” estimates. The only unclear part is whether that’s due to something subtle or something obvious. But either way, this particular estimate is just wrong, and you shouldn’t take it seriously. Zero-point energy exists, but it isn’t the magical untapped free energy you hear about in stories. It’s tiny quantum corrections to the forces between particles.