Tag Archives: string theory

QCD Meets Gravity 2020, Retrospective

I was at a Zoomference last week, called QCD Meets Gravity, about the many ways gravity can be thought of as the “square” of other fundamental forces. I didn’t have time to write much about the actual content of the conference, so I figured I’d say a bit more this week.

A big theme of this conference, as in the past few years, was gravitational waves. From LIGO’s first announcement of a successful detection, amplitudeologists have been developing new methods to make predictions for gravitational waves more efficient. It’s a field I’ve dabbled in a bit myself. Last year’s QCD Meets Gravity left me impressed by how much progress had been made, with amplitudeologists already solidly part of the conversation and able to produce competitive results. This year felt like another milestone, in that the amplitudeologists weren’t just catching up with other gravitational wave researchers on the same kinds of problems. Instead, they found new questions that amplitudes are especially well-suited to answer. These included combining two pieces of these calculations (“potential” and “radiation”) that the older community typically has to calculate separately, using an old quantum field theory trick, finding the gravitational wave directly from amplitudes, and finding a few nice calculations that can be used to “generate” the rest.

A large chunk of the talks focused on different “squaring” tricks (or as we actually call them, double-copies). There were double-copies for cosmology and conformal field theory, for the celestial sphere, and even some version of M theory. There were new perspectives on the double-copy, new building blocks and algebraic structures that lie behind it. There were talks on the so-called classical double-copy for space-times, where there have been some strange discoveries (an extra dimension made an appearance) but also a more rigorous picture of where the whole thing comes from, using twistor space. There were not one, but two talks linking the double-copy to the Navier-Stokes equation describing fluids, from two different groups. (I’m really curious whether these perspectives are actually useful for practical calculations about fluids, or just fun to think about.) Finally, while there wasn’t a talk scheduled on this paper, the authors were roped in by popular demand to talk about their work. They claim to have made progress on a longstanding puzzle, how to show that double-copy works at the level of the Lagrangian, and the community was eager to dig into the details.

From there, a grab-bag of talks covered other advancements. There were talks from string theorists and ambitwistor string theorists, from Effective Field Theorists working on gravity and the Standard Model, from calculations in N=4 super Yang-Mills, QCD, and scalar theories. Simon Caron-Huot delved into how causality constrains the theories we can write down, showing an interesting case where the common assumption that all parameters are close to one is actually justified. Nima Arkani-Hamed began his talk by saying he’d surprise us, which he certainly did (and not by keeping on time). It’s tricky to explain why his talk was exciting. Comparing to his earlier discovery of the Amplituhedron, which worked for a toy model, this is a toy calculation in a toy model. While the Amplituhedron wasn’t based on Feynman diagrams, this can’t even be compared with Feynman diagrams. Instead of expanding in a small coupling constant, this expands in a parameter that by all rights should be equal to one. And instead of positivity conditions, there are negativity conditions. All I can say is that with all of that in mind, it looks like real progress on an important and difficult problem from a totally unanticipated direction. In a speech summing up the conference, Zvi Bern mentioned a few exciting words from Nima’s talk: “nonplanar”, “integrated”, “nonperturbative”. I’d add “differential equations” and “infinite sums of ladder diagrams”. Nima and collaborators are trying to figure out what happens when you sum up all of the Feynman diagrams in a theory. I’ve made progress in the past for diagrams with one “direction”, a ladder that grows as you add more loops, but I didn’t know how to add “another direction” to the ladder. In very rough terms, Nima and collaborators figured out how to add that direction.

I’ve probably left things out here, it was a packed conference! It’s been really fun seeing what the community has cooked up, and I can’t wait to see what happens next.

QCD Meets Gravity 2020

I’m at another Zoom conference this week, QCD Meets Gravity. This year it’s hosted by Northwestern.

The view of the campus from wonder.me

QCD Meets Gravity is a conference series focused on the often-surprising links between quantum chromodynamics on the one hand and gravity on the other. By thinking of gravity as the “square” of forces like the strong nuclear force, researchers have unlocked new calculation techniques and deep insights.

Last year’s conference was very focused on one particular topic, trying to predict the gravitational waves observed by LIGO and VIRGO. That’s still a core topic of the conference, but it feels like there is a bit more diversity in topics this year. We’ve seen a variety of talks on different “squares”: new theories that square to other theories, and new calculations that benefit from “squaring” (even surprising applications to the Navier-Stokes equation!) There are talks on subjects from String Theory to Effective Field Theory, and even a talk on a very different way that “QCD meets gravity”, in collisions of neutron stars.

With still a few more talks to go, expect me to say a bit more next week, probably discussing a few in more detail. (Several people presented exciting work in progress!) Until then, I should get back to watching!

Halloween Post: Superstimuli for Physicists

For Halloween, this blog has a tradition of covering “the spooky side” of physics. This year, I’m bringing in a concept from biology to ask a spooky physics “what if?”

In the 1950’s, biologists discovered that birds were susceptible to a worryingly effective trick. By giving them artificial eggs larger and brighter than their actual babies, they found that the birds focused on the new eggs to the exclusion of their own. They couldn’t help trying to hatch the fake eggs, even if they were so large that they would fall off when they tried to sit on them. The effect, since observed in other species, became known as a supernormal stimulus, or superstimulus.

Can this happen to humans? Some think so. They worry about junk food we crave more than actual nutrients, or social media that eclipses our real relationships. Naturally, this idea inspires horror writers, who write about haunting music you can’t stop listening to, or holes in a wall that “fit” so well you’re compelled to climb in.

(And yes, it shows up in porn as well.)

But this is a physics blog, not a biology blog. What kind of superstimulus would work on physicists?

Abstruse goose knows what’s up

Well for one, this sounds a lot like some criticisms of string theory. Instead of a theory that just unifies some forces, why not unify all the forces? Instead of just learning some advanced mathematics, why not learn more, and more? And if you can’t be falsified by any experiment, well, all that would do is spoil the fun, right?

But it’s not just string theory you could apply this logic to. Astrophysicists study not just one world but many. Cosmologists study the birth and death of the entire universe. Particle physicists study the fundamental pieces that make up the fundamental pieces. We all partake in the euphoria of problem-solving, a perpetual rush where each solution leads to yet another question.

Do I actually think that string theory is a superstimulus, that astrophysics or particle physics is a superstimulus? In a word, no. Much as it might look that way from the news coverage, most physicists don’t work on these big, flashy questions. Far from being lured in by irresistible super-scale problems, most physicists work with tabletop experiments and useful materials. For those of us who do look up at the sky or down at the roots of the world, we do it not just because it’s compelling but because it has a good track record: physics wouldn’t exist if Newton hadn’t cared about the orbits of the planets. We study extremes because they advance our understanding of everything else, because they give us steam engines and transistors and change everyone’s lives for the better.

Then again, if I had fallen victim to a superstimulus, I’d say that anyway, right?

*cue spooky music*

The Multiverse You Can Visit Is Not the True Multiverse

I don’t want to be the kind of science blogger who constantly complains about science fiction, but sometimes I can’t help myself.

When I blogged about zero-point energy a few weeks back, there was a particular book that set me off. Ian McDonald’s River of Gods depicts the interactions of human and AI agents in a fragmented 2047 India. One subplot deals with a power company pursuing zero-point energy, using an imagined completion of M theory called M* theory. This post contains spoilers for that subplot.

What frustrated me about River of Gods is that the physics in it almost makes sense. It isn’t just an excuse for magic, or a standard set of tropes. Even the name “M* theory” is extremely plausible, the sort of term that could get used for technical reasons in a few papers and get accidentally stuck as the name of our fundamental theory of nature. But because so much of the presentation makes sense, it’s actively frustrating when it doesn’t.

The problem is the role the landscape of M* theory plays in the story. The string theory (or M theory) landscape is the space of all consistent vacua, a list of every consistent “default” state the world could have. In the story, one of the AIs is trying to make a portal to somewhere else in the landscape, a world of pure code where AIs can live in peace without competing with humans.

The problem is that the landscape is not actually a real place in string theory. It’s a metaphorical mathematical space, a list organized by some handy coordinates. The other vacua, the other “default states”, aren’t places you can travel to, there just other ways the world could have been.

Ok, but what about the multiverse?

There are physicists out there who like to talk about multiple worlds. Some think they’re hypothetical, others argue they must exist. Sometimes they’ll talk about the string theory landscape. But to get a multiverse out of the string theory landscape, you need something else as well.

Two options for that “something else” exist. One is called eternal inflation, the other is the many-worlds interpretation of quantum mechanics. And neither lets you travel around the multiverse.

In eternal inflation, the universe is expanding faster and faster. It’s expanding so fast that, in most places, there isn’t enough time for anything complicated to form. Occasionally, though, due to quantum randomness, a small part of the universe expands a bit more slowly: slow enough for stars, planets, and maybe life. Each small part like that is its own little “Big Bang”, potentially with a different “default” state, a different vacuum from the string landscape. If eternal inflation is true then you can get multiple worlds, but they’re very far apart, and getting farther every second: not easy to visit.

The many-worlds interpretation is a way to think about quantum mechanics. One way to think about quantum mechanics is to say that quantum states are undetermined until you measure them: a particle could be spinning left or right, Schrödinger’s cat could be alive or dead, and only when measured is their state certain. The many-worlds interpretation offers a different way: by doing away with measurement, it instead keeps the universe in the initial “undetermined” state. The universe only looks determined to us because of our place in it: our states become entangled with those of particles and cats, so that our experiences only correspond to one determined outcome, the “cat alive branch” or the “cat dead branch”. Combine this with the string landscape, and our universe might have split into different “branches” for each possible stable state, each possible vacuum. But you can’t travel to those places, your experiences are still “just on one branch”. If they weren’t, many-worlds wouldn’t be an interpretation, it would just be obviously wrong.

In River of Gods, the AI manipulates a power company into using a particle accelerator to make a bubble of a different vacuum in the landscape. Surprisingly, that isn’t impossible. Making a bubble like that is a bit like what the Large Hadron Collider does, but on a much larger scale. When the Large Hadron Collider detected a Higgs boson, it had created a small ripple in the Higgs field, a small deviation from its default state. One could imagine a bigger ripple doing more: with vastly more energy, maybe you could force the Higgs all the way to a different default, a new vacuum in its landscape of possibilities.

Doing that doesn’t create a portal to another world, though. It destroys our world.

That bubble of a different vacuum isn’t another branch of quantum many-worlds, and it isn’t a far-off big bang from eternal inflation. It’s a part of our own universe, one with a different “default state” where the particles we’re made of can’t exist. And typically, a bubble like that spreads at the speed of light.

In the story, they have a way to stabilize the bubble, stop it from growing or shrinking. That’s at least vaguely believable. But it means that their “portal to another world” is just a little bubble in the middle of a big expensive device. Maybe the AI can live there happily…until the humans pull the plug.

Or maybe they can’t stabilize it, and the bubble spreads and spreads at the speed of light destroying everything. That would certainly be another way for the AI to live without human interference. It’s a bit less peaceful than advertised, though.

To Elliptics and Beyond!

I’ve been busy running a conference this week, Elliptics and Beyond.

After Amplitudes was held online this year, a few of us at the Niels Bohr Institute were inspired. We thought this would be the perfect time to hold a small online conference, focused on the Calabi-Yaus that have been popping up lately in Feynman diagrams. Then we heard from the organizers of Elliptics 2020. They had been planning to hold a conference in Mainz about elliptic integrals in Feynman diagrams, but had to postpone it due to the pandemic. We decided to team up and hold a joint conference on both topics: the elliptic integrals that are just starting to be understood, and the mysterious integrals that lie beyond. Hence, Elliptics and Beyond.

I almost suggested Buzz Lightyear for the logo but I chickened out

The conference has been fun thus far. There’s been a mix of review material bringing people up to speed on elliptic integrals and exciting new developments. Some are taking methods that have been successful in other areas and generalizing them to elliptic integrals, others have been honing techniques for elliptics to make them “production-ready”. A few are looking ahead even further, to higher-genus amplitudes in string theory and Calabi-Yaus in Feynman diagrams.

We organized the conference along similar lines to Zoomplitudes, but with a few experiments of our own. Like Zoomplitudes, we made a Slack space for the conference, so people could chat physics outside the talks. Ours was less active, though. I suspect that kind of space needs a critical mass of people, and with a smaller conference we may just not have gotten there. Having fewer people did allow us a more relaxed schedule, which in turn meant we could mostly keep things on-time. We had discussion sessions in the morning (European time), with talks in the afternoon, so almost everyone could make the talks at least. We also had a “conference dinner”, which went much better than I would have expected. We put people randomly into Zoom Breakout Rooms of five or six, to emulate the tables of an in-person conference, and folks chatted while eating their (self-brought of course) dinner. People seemed to really enjoy the chance to just chat casually with the other folks at the conference. If you’re organizing an online conference soon, I’d recommend trying it!

Holding a conference online means that a lot of people can attend who otherwise couldn’t. We had over a hundred people register, and while not all of them showed up there were typically fifty or sixty people on the Zoom session. Some of these were specialists in elliptics or Calabi-Yaus who wouldn’t ordinarily make it to a conference like this. Others were people from the rest of the amplitudes field who joined for parts of the conference that caught their eye. But surprisingly many weren’t even amplitudeologists, but students and young researchers in a variety of topics from all over the world. Some seemed curious and eager to learn, others I suspect just needed to say they had been to a conference. Both are responding to a situation where suddenly conference after conference is available online, free to join. It will be interesting to see if, and how, the world adapts.

Particles vs Waves, Particles vs Strings

On my “Who Am I?” page, I open with my background, calling myself a string theorist, then clarify: “in practice I’m more of a Particle Theorist, describing the world not in terms of short lengths of string but rather with particles that each occupy a single point in space”.

When I wrote that I didn’t think it would confuse people. Now that I’m older and wiser, I know people can be confused in a variety of ways. And since I recently saw someone confused about this particular phrase (yes I’m vagueblogging, but I suspect you’re reading this and know who you are 😉 ), I figured I’d explain it.

If you’ve learned a few things about quantum mechanics, maybe you have this slogan in mind:

“What we used to think of as particles are really waves. They spread out over an area, with peaks and troughs that interfere, and you never know exactly where you will measure them.”

With that in mind, my talk of “particles that each occupy a single point” doesn’t make sense. Doesn’t the slogan mean that particles don’t exist?

Here’s the thing: that’s the wrong slogan. The right slogan is just a bit different:

“What we used to think of as particles are ALSO waves. They spread out over an area, with peaks and troughs that interfere, and you never know exactly where you will measure them.”

The principle you were remembering is often called “wave-particle duality“. That doesn’t mean “particles don’t exist”. It means “waves and particles are the same thing”.

This matters, because just as wave-like properties are important, particle-like properties are important. And while it’s true that you can never know exactly where you will measure a particle, it’s also true that it’s useful, and even necessary, to think of it as occupying a single point.

That’s because particles can only affect each other when they’re at the same point. Physicists call this the principle of locality, the idea that there is no real “action at a distance”, everything happens because of something traveling from point A to point B. Wave-particle duality doesn’t change that, it just makes the specific point uncertain. It means you have to add up over every specific point where the particles could have interacted, but each term in your sum has to still involve a specific point: quantum mechanics doesn’t let particles affect each other non-locally.

Strings, in turn, are a little bit different. Strings have length, particles don’t. Particles interact at a point, strings can interact anywhere along the string. Strings introduce a teeny bit of non-locality.

When you compare particles and waves, you’re thinking pre-quantum mechanics, two classical things neither of which is the full picture. When you compare particles and strings, both are quantum, both are also waves. But in a meaningful sense one occupies a single point, and the other doesn’t.

Zoomplitudes Retrospective

During Zoomplitudes (my field’s big yearly conference, this year on Zoom) I didn’t have time to write a long blog post. I said a bit about the format, but didn’t get a chance to talk about the science. I figured this week I’d go back and give a few more of my impressions. As always, conference posts are a bit more technical than my usual posts, so regulars be warned!

The conference opened with a talk by Gavin Salam, there as an ambassador for LHC physics. Salam pointed out that, while a decent proportion of speakers at Amplitudes mention the LHC in their papers, that fraction has fallen over the years. (Another speaker jokingly wondered which of those mentions were just in the paper’s introduction.) He argued that there is still useful work for us, LHC measurements that will require serious amplitudes calculations to understand. He also brought up what seems like the most credible argument for a new, higher-energy collider: that there are important properties of the Higgs, in particular its interactions, that we still have not observed.

The next few talks hopefully warmed Salam’s heart, as they featured calculations for real-world particle physics. Nathaniel Craig and Yael Shadmi in particular covered the link between amplitudes and Standard Model Effective Field Theory (SMEFT), a method to systematically characterize corrections beyond the Standard Model. Shadmi’s talk struck me because the kind of work she described (building the SMEFT “amplitudes-style”, directly from observable information rather than more complicated proxies) is something I’d seen people speculate about for a while, but which hadn’t been done until quite recently. Now, several groups have managed it, and look like they’ve gotten essentially “all the way there”, rather than just partial results that only manage to replicate part of the SMEFT. Overall it’s much faster progress than I would have expected.

After Shadmi’s talk was a brace of talks on N=4 super Yang-Mills, featuring cosmic Galois theory and an impressively groan-worthy “origin story” joke. The final talk of the day, by Hofie Hannesdottir, covered work with some of my colleagues at the NBI. Due to coronavirus I hadn’t gotten to hear about this in person, so it was good to hear a talk on it, a blend of old methods and new priorities to better understand some old discoveries.

The next day focused on a topic that has grown in importance in our community, calculations for gravitational wave telescopes like LIGO. Several speakers focused on new methods for collisions of spinning objects, where a few different approaches are making good progress (Radu Roiban’s proposal to use higher-spin field theory was particularly interesting) but things still aren’t quite “production-ready”. The older, post-Newtonian method is still very much production-ready, as evidenced by Michele Levi’s talk that covered, among other topics, our recent collaboration. Julio Parra-Martinez discussed some interesting behavior shared by both supersymmetric and non-supersymmetric gravity theories. Thibault Damour had previously expressed doubts about use of amplitudes methods to answer this kind of question, and part of Parra-Martinez’s aim was to confirm the calculation with methods Damour would consider more reliable. Damour (who was actually in the audience, which I suspect would not have happened at an in-person conference) had already recanted some related doubts, but it’s not clear to me whether that extended to the results Parra-Martinez discussed (or whether Damour has stated the problem with his old analysis).

There were a few talks that day that didn’t relate to gravitational waves, though this might have been an accident, since both speakers also work on that topic. Zvi Bern’s talk linked to the previous day’s SMEFT discussion, with a calculation using amplitudes methods of direct relevance to SMEFT researchers. Clifford Cheung’s talk proposed a rather strange/fun idea, conformal symmetry in negative dimensions!

Wednesday was “amplituhedron day”, with a variety of talks on positive geometries and cluster algebras. Featured in several talks was “tropicalization“, a mathematical procedure that can simplify complicated geometries while still preserving essential features. Here, it was used to trim down infinite “alphabets” conjectured for some calculations into a finite set, and in doing so understand the origin of “square root letters”. The day ended with a talk by Nima Arkani-Hamed, who despite offering to bet that he could finish his talk within the half-hour slot took almost twice that. The organizers seemed to have planned for this, since there was one fewer talk that day, and as such the day ended at roughly the usual time regardless.

We also took probably the most unique conference photo I will ever appear in.

For lack of a better name, I’ll call Thursday’s theme “celestial”. The day included talks by cosmologists (including approaches using amplitudes-ish methods from Daniel Baumann and Charlotte Sleight, and a curiously un-amplitudes-related talk from Daniel Green), talks on “celestial amplitudes” (amplitudes viewed from the surface of an infinitely distant sphere), and various talks with some link to string theory. I’m including in that last category intersection theory, which has really become its own thing. This included a talk by Simon Caron-Huot about using intersection theory more directly in understanding Feynman integrals, and a talk by Sebastian Mizera using intersection theory to investigate how gravity is Yang-Mills squared. Both gave me a much better idea of the speakers’ goals. In Mizera’s case he’s aiming for something very ambitious. He wants to use intersection theory to figure out when and how one can “double-copy” theories, and might figure out why the procedure “got stuck” at five loops. The day ended with a talk by Pedro Vieira, who gave an extremely lucid and well-presented “blackboard-style” talk on bootstrapping amplitudes.

Friday was a grab-bag of topics. Samuel Abreu discussed an interesting calculation using the numerical unitarity method. It was notable in part because renormalization played a bigger role than it does in most amplitudes work, and in part because they now have a cool logo for their group’s software, Caravel. Claude Duhr and Ruth Britto gave a two-part talk on their work on a Feynman integral coaction. I’d had doubts about the diagrammatic coaction they had worked on in the past because it felt a bit ad-hoc. Now, they’re using intersection theory, and have a clean story that seems to tie everything together. Andrew McLeod talked about our work on a Feynman diagram Calabi-Yau “bestiary”, while Cristian Vergu had a more rigorous understanding of our “traintrack” integrals.

There are two key elements of a conference that are tricky to do on Zoom. You can’t do a conference dinner, so you can’t do the traditional joke-filled conference dinner speech. The end of the conference is also tricky: traditionally, this is when everyone applauds the organizers and the secretaries are given flowers. As chair for the last session, Lance Dixon stepped up to fill both gaps, with a closing speech that was both a touching tribute to the hard work of organizing the conference and a hilarious pile of in-jokes, including a participation award to Arkani-Hamed for his (unprecedented, as far as I’m aware) perfect attendance.

Calabi-Yaus in Feynman Diagrams: Harder and Easier Than Expected

I’ve got a new paper up, about the weird geometrical spaces we keep finding in Feynman diagrams.

With Jacob Bourjaily, Andrew McLeod, and Matthias Wilhelm, and most recently Cristian Vergu and Matthias Volk, I’ve been digging up odd mathematics in particle physics calculations. In several calculations, we’ve found that we need a type of space called a Calabi-Yau manifold. These spaces are often studied by string theorists, who hope they represent how “extra” dimensions of space are curled up. String theorists have found an absurdly large number of Calabi-Yau manifolds, so many that some are trying to sift through them with machine learning. We wanted to know if our situation was quite that ridiculous: how many Calabi-Yaus do we really need?

So we started asking around, trying to figure out how to classify our catch of Calabi-Yaus. And mostly, we just got confused.

It turns out there are a lot of different tools out there for understanding Calabi-Yaus, and most of them aren’t all that useful for what we’re doing. We went in circles for a while trying to understand how to desingularize toric varieties, and other things that will sound like gibberish to most of you. In the end, though, we noticed one small thing that made our lives a whole lot simpler.

It turns out that all of the Calabi-Yaus we’ve found are, in some sense, the same. While the details of the physics varies, the overall “space” is the same in each case. It’s a space we kept finding for our “Calabi-Yau bestiary”, but it turns out one of the “traintrack” diagrams we found earlier can be written in the same way. We found another example too, a “wheel” that seems to be the same type of Calabi-Yau.

And that actually has a sensible name

We also found many examples that we don’t understand. Add another rung to our “traintrack” and we suddenly can’t write it in the same space. (Personally, I’m quite confused about this one.) Add another spoke to our wheel and we confuse ourselves in a different way.

So while our calculation turned out simpler than expected, we don’t think this is the full story. Our Calabi-Yaus might live in “the same space”, but there are also physics-related differences between them, and these we still don’t understand.

At some point, our abstract included the phrase “this paper raises more questions than it answers”. It doesn’t say that now, but it’s still true. We wrote this paper because, after getting very confused, we ended up able to say a few new things that hadn’t been said before. But the questions we raise are if anything more important. We want to inspire new interest in this field, toss out new examples, and get people thinking harder about the geometry of Feynman integrals.

In Defense of the Streetlight

If you read physics blogs, you’ve probably heard this joke before:

A policeman sees a drunk man searching for something under a streetlight and asks what the drunk has lost. He says he lost his keys and they both look under the streetlight together. After a few minutes the policeman asks if he is sure he lost them here, and the drunk replies, no, and that he lost them in the park. The policeman asks why he is searching here, and the drunk replies, “this is where the light is”.

The drunk’s line of thinking has a name, the streetlight effect, and while it may seem ridiculous it’s a common error, even among experts. When it gets too tough to research something, scientists will often be tempted by an easier problem even if it has little to do with the original question. After all, it’s “where the light is”.

Physicists get accused of this all the time. Dark matter could be completely undetectable on Earth, but physicists still build experiments to search for it. Our universe appears to be curved one way, but string theory makes it much easier to study universes curved the other way, so physicists write a lot of nice proofs about a universe we don’t actually inhabit. In my own field, we spend most of our time studying a very nice theory that we know can’t describe the real world.

I’m not going to defend this behavior in general. There are real cases where scientists trick themselves into thinking they can solve an easy problem when they need to solve a hard one. But there is a crucial difference between scientists and drunkards looking for their keys, one that makes this behavior a lot more reasonable: scientists build technology.

As scientists, we can’t just grope around in the dark for our keys. The spaces we’re searching, from the space of all theories of gravity to actual outer space, are much too vast to search randomly. We need new ideas, new mathematics or new equipment, to do the search properly. If we were the drunkard of the story, we’d need to invent night-vision goggles.

Is the light better here, or is it just me?

Suppose you wanted to design new night-vision goggles, to search for your keys in the park. You could try to build them in the dark, but you wouldn’t be able to see what you were doing: you’d lose pieces, miss screws, and break lenses. Much better to build the goggles under that convenient streetlight.

Of course, if you build and test your prototype goggles under the streetlight, you risk that they aren’t good enough for the dark. You’ll have calibrated them in an unrealistic case. In all likelihood, you’ll have to go back and fix your goggles, tweaking them as you go, and you’ll run into the same problem: you can’t see what you’re doing in the dark.

At that point, though, you have an advantage: you now know how to build night-vision goggles. You’ve practiced building goggles in the light, and now even if the goggles aren’t good enough, you remember how you put them together. You can tweak the process, modify your goggles, and make something good enough to find your keys. You’re good enough at making goggles that you can modify them now, even in the dark.

Sometimes scientists really are like the drunk, searching under the most convenient streetlight. Sometimes, though, scientists are working where the light is for a reason. Instead of wasting their time lost in the dark, they’re building new technology and practicing new methods, getting better and better at searching until, when they’re ready, they can go back and find their keys. Sometimes, the streetlight is worth it.

Breakthrough Prize for Supergravity

This week, $3 Million was awarded by the Breakthrough Prize to Sergio Ferrara, Daniel Z. Freedman and Peter van Nieuwenhuizen, the discoverers of the theory of supergravity, part of a special award separate from their yearly Fundamental Physics Prize. There’s a nice interview with Peter van Nieuwenhuizen on the Stony Brook University website, about his reaction to the award.

The Breakthrough Prize was designed to complement the Nobel Prize, rewarding deserving researchers who wouldn’t otherwise get the Nobel. The Nobel Prize is only awarded to theoretical physicists when they predict something that is later observed in an experiment. Many theorists are instead renowned for their mathematical inventions, concepts that other theorists build on and use but that do not by themselves make testable predictions. The Breakthrough Prize celebrates these theorists, and while it has also been awarded to others who the Nobel committee could not or did not recognize (various large experimental collaborations, Jocelyn Bell Burnell), this has always been the physics prize’s primary focus.

The Breakthrough Prize website describes supergravity as a theory that combines gravity with particle physics. That’s a bit misleading: while the theory does treat gravity in a “particle physics” way, unlike string theory it doesn’t solve the famous problems with combining quantum mechanics and gravity. (At least, as far as we know.)

It’s better to say that supergravity is a theory that links gravity to other parts of particle physics, via supersymmetry. Supersymmetry is a relationship between two types of particles: bosons, like photons, gravitons, or the Higgs, and fermions, like electrons or quarks. In supersymmetry, each type of boson has a fermion “partner”, and vice versa. In supergravity, gravity itself gets a partner, called the gravitino. Supersymmetry links the properties of particles and their partners together: both must have the same mass and the same charge. In a sense, it can unify different types of particles, explaining both under the same set of rules.

In the real world, we don’t see bosons and fermions with the same mass and charge. If gravitinos exist, then supersymmetry would have to be “broken”, giving them a high mass that makes them hard to find. Some hoped that the Large Hadron Collider could find these particles, but now it looks like it won’t, so there is no evidence for supergravity at the moment.

Instead, supergravity’s success has been as a tool to understand other theories of gravity. When the theory was proposed in the 1970’s, it was thought of as a rival to string theory. Instead, over the years it consistently managed to point out aspects of string theory that the string theorists themselves had missed, for example noticing that the theory needed not just strings but higher-dimensional objects called “branes”. Now, supergravity is understood as one part of a broader string theory picture.

In my corner of physics, we try to find shortcuts for complicated calculations. We benefit a lot from toy models: simpler, unrealistic theories that let us test our ideas before applying them to the real world. Supergravity is one of the best toy models we’ve got, a theory that makes gravity simple enough that we can start to make progress. Right now, colleagues of mine are developing new techniques for calculations at LIGO, the gravitational wave telescope. If they hadn’t worked with supergravity first, they would never have discovered these techniques.

The discovery of supergravity by Ferrara, Freedman, and van Nieuwenhuizen is exactly the kind of work the Breakthrough Prize was created to reward. Supergravity is a theory with deep mathematics, rich structure, and wide applicability. There is of course no guarantee that such a theory describes the real world. What is guaranteed, though, is that someone will find it useful.