Tag Archives: academia

Is Outreach for Everyone?

Betteridge’s law applies here: the answer is “no”. It’s a subtle “no”, though.

As a scientist, you will always need to be able to communicate your work. Most of the time you can get away with papers and talks aimed at your peers. But the longer you mean to stick around, the more often you will have to justify yourself to others: to departments, to universities, and to grant agencies. A scientist cannot survive on scientific ability alone: to get jobs, to get funding, to survive, you need to be able to promote yourself, at least a little.

Self-promotion isn’t outreach, though. Talking to the public, or to journalists, is a different skill from talking to other academics or writing grants. And it’s entirely possible to go through an entire scientific career without exercising that skill.

That’s a reassuring message for some. I’ve met people for whom science is a refuge from the mess of human interaction, people horrified by the thought of fame or even being mentioned in a newspaper. When I meet these people, they sometimes seem to worry that I’m silently judging them, thinking that they’re ignoring their responsibilities by avoiding outreach. They think this in part because the field seems to be going in that direction. Grants that used to focus just on science have added outreach as a requirement, demanding that each application come with a plan for some outreach project.

I can’t guarantee that more grants won’t add outreach requirements. But I can say at least that I’m on your side here: I don’t think you should have to do outreach if you don’t want to. I don’t think you have to, just yet. And I think if grant agencies are sensible, they’ll find a way to encourage outreach without making it mandatory.

I think that overall, collectively, we have a responsibility to do outreach. Beyond the old arguments about justifying ourselves to taxpayers, we also just ought to be open about what we do. In a world where people are actively curious about us, we ought to encourage and nurture that curiosity. I don’t think this is unique to science, I think it’s something every industry, every hobby, and every community should foster. But in each case, I think that communication should be done by people who want to do it, not forced on every member.

I also think that, potentially, anyone can do outreach. Outreach can take different forms for different people, anything from speaking to high school students to talking to journalists to writing answers for Stack Exchange. I don’t think anyone should feel afraid of outreach because they think they won’t be good enough. Chances are, you know something other people don’t: I guarantee if you want to, you will have something worth saying.

The Grant-Writing Moment

When a scientist applies for a grant to fund their research, there’s a way it’s supposed to go. The scientist starts out with a clear idea, a detailed plan for an experiment or calculation they’d like to do, and an expectation of what they could learn from it. Then they get the grant, do their experiment or calculation, and make their discovery. The world smiles upon them.

There’s also a famous way it actually goes. Like the other way, the scientist has a clear idea and detailed plan. Then they do their experiment, or calculation, and see what they get, making their discovery. Finally, they write their grant application, proposing to do the experiment they already did. Getting the grant, they then spend the money on their next idea instead, which they will propose only in the next grant application, and so on.

This is pretty shady behavior. But there’s yet another way things can go, one that flips the previous method on its head. And after considering it, you might find the shady method more understandable.

What happens if a scientist is going to run out of funding, but doesn’t yet have a clear idea? Maybe they don’t know enough yet to have a detailed plan for their experiment or their calculation. Maybe they have an idea, but they’re still foggy about what they can learn from it.

Well, they’re still running out of funding. They still have to write that grant. So they start writing. Along the way, they’ll manage to find some of that clarity: they’ll have to write a detailed plan, they’ll have to describe some expected discovery. If all goes well, they tell a plausible story, and they get that funding.

When they actually go do that research, though, there’s no guarantee it sticks to the plan. In fact, it’s almost guaranteed not to: neither the scientist nor the grant committee typically knows what experiment or calculation needs to be done: that’s what makes the proposal novel science in the first place. The result is that once again, the grant proposal wasn’t exactly honest: it didn’t really describe what was actually going to be done.

You can think of these different stories as falling on a sliding scale. On the one end, the scientist may just have the first glimmer of an idea, and their funded research won’t look anything like their application. On the other, the scientist has already done the research, and the funded research again looks nothing like the application. In between there’s a sweet spot, the intended system: late enough that the scientist has a good idea of what they need to do, early enough that they haven’t done it yet.

How big that sweet spot is depends on the pace of the field. If you’re a field with big, complicated experiments, like randomized controlled trials, you can mostly make this work. Your work takes a long time to plan, and requires sticking to that plan, so you can, at least sometimes, do grants “the right way”. The smaller your experiments are though, the more the details can change, and the smaller the window gets. For a field like theoretical physics, if you know exactly what calculation to do, or what proof to write, with no worries or uncertainty…well, you’ve basically done the calculation already. The sweet spot for ethical grant-writing shrinks down to almost a single moment.

In practice, some grant committees understand this. There are grants where you are expected to present preliminary evidence from work you’ve already started, and to discuss the risks your vaguer ideas might face. Grants of this kind recognize that science is a process, and that catching people at that perfect moment is next-to-impossible. They try to assess what the scientist is doing as a whole, not just a single idea.

Scientists ought to be honest about what they’re doing. But grant agencies need to be honest too, about how science in a given field actually works. Hopefully, one enables the other, and we reach a more honest world.

Physics Acculturation

We all agree physics is awesome, right?

Me, I chose physics as a career, so I’d better like it. And you, right now you’re reading a physics blog for fun, so you probably like physics too.

Ok, so we agree, physics is awesome. But it isn’t always awesome.

Read a blog like this, or the news, and you’ll hear about the more awesome parts of physics: the black holes and big bangs, quantum mysteries and elegant mathematics. As freshman physics majors learn every year, most of physics isn’t like that. It’s careful calculation and repetitive coding, incremental improvements to a piece of a piece of a piece of something that might eventually answer a Big Question. Even if intellectually you can see the line from what you’re doing to the big flashy stuff, emotionally the two won’t feel connected, and you might struggle to feel motivated.

Physics solves this through acculturation. Physicists don’t just work on their own, they’re part of a shared worldwide culture of physicists. They spend time with other physicists, and not just working time but social time: they eat lunch together, drink coffee together, travel to conferences together. Spending that time together gives physics more emotional weight: as humans, we care a bit about Big Questions, but we care a lot more about our community.

This isn’t unique to physics, of course, or even to academics. Programmers who have lunch together, philanthropists who pat each other on the back for their donations, these people are trying to harness the same forces. By building a culture around something, you can get people more motivated to do it.

There’s a risk here, of course, that the culture takes over, and we lose track of the real reasons to do science. It’s easy to care about something because your friends care about it because their friends care about it, looping around until it loses contact with reality. In science we try to keep ourselves grounded, to respect those who puncture our bubbles with a good argument or a clever experiment. But we don’t always succeed.

The pandemic has made acculturation more difficult. As a scientist working from home, that extra bit of social motivation is much harder to get. It’s perhaps even harder for new students, who haven’t had the chance to hang out and make friends with other researchers. People’s behavior, what they research and how and when, has changed, and I suspect changing social ties are a big part of it.

In the long run, I don’t think we can do without the culture of physics. We can’t be lone geniuses motivated only by our curiosity, that’s just not how people work. We have to meld the two, mix the social with the intellectual…and hope that when we do, we keep the engines of discovery moving.

A Physicist New Year

Happy New Year to all!

Physicists celebrate the new year by trying to sneak one last paper in before the year is over. Looking at Facebook last night I saw three different friends preview the papers they just submitted. The site where these papers appear, arXiv, had seventy new papers this morning, just in the category of theoretical high-energy physics. Of those, nine of them were in my, or a closely related subfield.

I’d love to tell you all about these papers (some exciting! some long-awaited!), but I’m still tired from last night and haven’t read them yet. So I’ll just close by wishing you all, once again, a happy new year.

Science and Its Customers

In most jobs, you know who you’re working for.

A chef cooks food, and people eat it. A tailor makes clothes, and people wear them. An artist has an audience, an engineer has end users, a teacher has students. Someone out there benefits directly from what you do. Make them happy, and they’ll let you know. Piss them off, and they’ll stop hiring you.

Science benefits people too…but most of its benefits are long-term. The first person to magnetize a needle couldn’t have imagined worldwide electronic communication, and the scientists who uncovered quantum mechanics couldn’t have foreseen transistors, or personal computers. The world benefits just by having more expertise in it, more people who spend their lives understanding difficult things, and train others to understand difficult things. But those benefits aren’t easy to see for each individual scientist. As a scientist, you typically don’t know who your work will help, or how much. You might not know for years, or even decades, what impact your work will have. Even then, it will be difficult to tease out your contribution from the other scientists of your time.

We can’t ask the customers of the future to pay for the scientists of today. (At least, not straightforwardly.) In practice, scientists are paid by governments and foundations, groups trying on some level to make the future a better place. Instead of feedback from customers we get feedback from each other. If our ideas get other scientists excited, maybe they’ll matter down the road.

This is a risky thing to do, of course. Governments, foundations, and scientists can’t tell the future. They can try to act in the interests of future generations, but they might just act for themselves instead. Trying to plan ahead like this makes us prey to all the cognitive biases that flesh is heir to.

But we don’t really have an alternative. If we want to have a future at all, if we want a happier and more successful world, we need science. And if we want science, we can’t ask its real customers, the future generations, to choose whether to pay for it. We need to work for the smiles on our colleagues faces and the checks from government grant agencies. And we need to do it carefully enough that at the end of the day, we still make a positive difference.

At “Antidifferentiation and the Calculation of Feynman Amplitudes”

I was at a conference this week, called Antidifferentiation and the Calculation of Feynman Amplitudes. The conference is a hybrid kind of affair: I attended via Zoom, but there were seven or so people actually there in the room (the room in question being at DESY Zeuthen, near Berlin).

The road to this conference was a bit of a roller-coaster. It was originally scheduled for early March. When the organizers told us they were postponing it, they seemed at the time a little overcautious…until the world proved me, and all of us, wrong. They rescheduled for October, and as more European countries got their infection rates down it looked like the conference could actually happen. We booked rooms at the DESY guest house, until it turned out they needed the space to keep the DESY staff socially distanced, and we quickly switched to booking at a nearby hotel.

Then Europe’s second wave hit. Cases in Denmark started to rise, so Germany imposed a quarantine on entry from Copenhagen and I switched to remote participation. Most of the rest of the participants did too, even several in Germany. For the few still there in person they have a variety of measures to stop infection, from fixed seats in the conference room to gloves for the coffee machine.

The content has been interesting. It’s an eclectic mix of review talks and talks on recent research, all focused on different ways to integrate (or, as one of the organizers emphasized, antidifferentiate) functions in quantum field theory. I’ve learned about the history of the field, and gotten a better feeling for the bottlenecks in some LHC-relevant calculations.

This week was also the announcement of the Physics Nobel Prize. I’ll do my traditional post on it next week, but for now, congratulations to Penrose, Genzel, and Ghez!

When and How Scientists Reach Out

You’ve probably heard of the myth of the solitary scientist. While Newton might have figured out calculus isolated on his farm, most scientists work better when they communicate. If we reach out to other scientists, we can make progress a lot faster.

Even if you understand that, you might not know what that reaching out actually looks like. I’ve seen far too many crackpots who approach scientific communication like a spammer: sending out emails to everyone in a department, commenting in every vaguely related comment section they can find. While commercial spammers hope for a few gullible people among the thousands they contact, that kind of thing doesn’t benefit crackpots. As far as I can tell, they communicate that way because they genuinely don’t know any better.

So in this post, I want to give a road map for how we scientists reach out to other scientists. Keep these steps in mind, and if you ever need to reach out to a scientist you’ll know what to do.

First, decide what you want to know. This may sound obvious, but sometimes people skip this step. We aren’t communicating just to communicate, but because we want to learn something from the other person. Maybe it’s a new method or idea, maybe we just want confirmation we’re on the right track. We don’t reach out just to “show our theory”, but because we hope to learn something from the response.

Then, figure out who might know it. To do this, we first need to decide how specialized our question is. We often have questions about specific papers: a statement we don’t understand, a formula that seems wrong, or a method that isn’t working. For those, we contact an author from that paper. Other times, the question hasn’t been addressed in a paper, but does fall under a specific well-defined topic: a particular type of calculation, for example. For those we seek out a specialist on that specific topic. Finally, sometimes the question is more general, something anyone in our field might in principle know but we happen not to. For that kind of question, we look for someone we trust, someone we have a prior friendship with and feel comfortable asking “dumb questions”. These days, we can supplement that with platforms like PhysicsOverflow that let us post technical questions and invite anyone to respond.

Note that, for all of these, there’s some work to do first. We need to read the relevant papers, bone up on a topic, even check Wikipedia sometimes. We need to put in enough work to at least try to answer our question, so that we know exactly what we need the other person for.

Finally, contact them appropriately. Papers will usually give contact information for one, or all, of the authors. University websites will give university emails. We’d reach out with something like that first, and switch to personal email (or something even more casual, like Skype or social media) only for people we already have a track record of communicating with in that way.

By posing and directing our questions well, scientists can reach out and get help when we struggle. Science is a team effort, we’re stronger when we work together.

To Elliptics and Beyond!

I’ve been busy running a conference this week, Elliptics and Beyond.

After Amplitudes was held online this year, a few of us at the Niels Bohr Institute were inspired. We thought this would be the perfect time to hold a small online conference, focused on the Calabi-Yaus that have been popping up lately in Feynman diagrams. Then we heard from the organizers of Elliptics 2020. They had been planning to hold a conference in Mainz about elliptic integrals in Feynman diagrams, but had to postpone it due to the pandemic. We decided to team up and hold a joint conference on both topics: the elliptic integrals that are just starting to be understood, and the mysterious integrals that lie beyond. Hence, Elliptics and Beyond.

I almost suggested Buzz Lightyear for the logo but I chickened out

The conference has been fun thus far. There’s been a mix of review material bringing people up to speed on elliptic integrals and exciting new developments. Some are taking methods that have been successful in other areas and generalizing them to elliptic integrals, others have been honing techniques for elliptics to make them “production-ready”. A few are looking ahead even further, to higher-genus amplitudes in string theory and Calabi-Yaus in Feynman diagrams.

We organized the conference along similar lines to Zoomplitudes, but with a few experiments of our own. Like Zoomplitudes, we made a Slack space for the conference, so people could chat physics outside the talks. Ours was less active, though. I suspect that kind of space needs a critical mass of people, and with a smaller conference we may just not have gotten there. Having fewer people did allow us a more relaxed schedule, which in turn meant we could mostly keep things on-time. We had discussion sessions in the morning (European time), with talks in the afternoon, so almost everyone could make the talks at least. We also had a “conference dinner”, which went much better than I would have expected. We put people randomly into Zoom Breakout Rooms of five or six, to emulate the tables of an in-person conference, and folks chatted while eating their (self-brought of course) dinner. People seemed to really enjoy the chance to just chat casually with the other folks at the conference. If you’re organizing an online conference soon, I’d recommend trying it!

Holding a conference online means that a lot of people can attend who otherwise couldn’t. We had over a hundred people register, and while not all of them showed up there were typically fifty or sixty people on the Zoom session. Some of these were specialists in elliptics or Calabi-Yaus who wouldn’t ordinarily make it to a conference like this. Others were people from the rest of the amplitudes field who joined for parts of the conference that caught their eye. But surprisingly many weren’t even amplitudeologists, but students and young researchers in a variety of topics from all over the world. Some seemed curious and eager to learn, others I suspect just needed to say they had been to a conference. Both are responding to a situation where suddenly conference after conference is available online, free to join. It will be interesting to see if, and how, the world adapts.

Grants at the Other End

I’m a baby academic. Two years ago I got my first real grant, a Marie Curie Individual Fellowship from the European Union. Applying for it was a complicated process, full of Word templates and mismatched expectations. Two years later the grant is over, and I get another new experience: grant reporting.

Writing a report after a grant is sort of like applying for a grant. Instead of summarizing and justifying what you intend to do, you summarize and justify what you actually did. There are also Word templates. Grant reports are probably easier than grant applications: you don’t have to “hook” your audience or show off. But they are harder in one aspect: they highlight the different ways different fields handle uncertainty.

If you do experiments, having a clear plan makes sense. You buy special equipment and hire postdocs and even technicians to do specific jobs. Your experiments may or may not find what you hope for, but at least you can try to do them on schedule, and describe the setbacks when you can’t.

As a theorist, you’re more nimble. Your equipment are computers, your postdocs have their own research. Overall, it’s easy to pick up new projects as new ideas come in. As a result, your plans change more. New papers might inspire you to try new things. They might also discourage you, if you learn the idea you had won’t actually work. The field can move fast, and you want to keep up with it.

Writing my first grant report will be interesting. I’ll need to thread the gap between expectations and reality, to look back on my progress and talk about why. And of course, I have to do it in Microsoft Word.

The Pointy-Haired University

We all know what it looks like when office work sucks. Maybe you think of Dilbert, or The Office, or the dozens of other comics and shows with the same theme. You picture characters like Dilbert’s Pointy-Haired Boss, stupid and controlling, terrible people with far too much power.

Pictured: what you picture

What does it look like when grad school sucks?

There aren’t a lot of comics, or shows, about grad school. The main one I can think of is PHD Comics.

There are a few characters like the Pointy-Haired Boss in PHD Comics, who are just genuinely bad people, in particular the main character’s advisor Professor Smith. But for the most part, the dysfunction the comic depicts is subtler. Characters aren’t selfish so much as oblivious, they aren’t demanding out of malice but out of misplaced expectations, they’re ineffective not due to incompetence but to understandable human weaknesses.

The comic gets this mostly right. If you’re struggling in grad school, you might have a Pointy-Haired Advisor. But more likely, you’re surrounded by well-meaning, reasonable, intelligent people, who nevertheless are somehow making your life a living hell.

In that situation, it can be tempting to blame yourself. You instinctively look for someone at fault, some terrible person who’s causing the problem, and nobody knows your own faults better than you do.

But before you blame yourself, consider another possibility. Consider that there aren’t just Pointy-Haired Bosses, but Pointy-Haired Institutions. Start with the wrong rules, the wrong incentives, the wrong access to information and accountability, and those well-meaning, intelligent people will end up doing some pretty stupid things. Before deciding you aren’t good enough, ask yourself: is this the only way things could have gone? Instead of a Pointy-Haired Advisor, or a Pointy-Haired Self, maybe you’re just attending a Pointy-Haired University.