Tag Archives: academia

Proxies for Proxies

Why pay scientists?

Maybe you care about science itself. You think that exploring the world should be one of our central goals as human beings, that it “makes our country worth defending”.

Maybe you care about technology. You support science because, down the line, you think it will give us new capabilities that improve people’s lives. Maybe you expect this to happen directly, or maybe indirectly as “spinoff” inventions like the internet.

Maybe you just think science is cool. You want the stories that science tells: they entertain you, they give you a place in the world, they help distract from the mundane day to day grind.

Maybe you just think that the world ought to have scientists in it. You can think of it as a kind of bargain, maintaining expertise so that society can tackle difficult problems. Or you can be more cynical, paying early-career scientists on the assumption that most will leave academia and cheapen labor costs for tech companies.

Maybe you want to pay the scientists to teach, to be professors at universities. You notice that they don’t seem to be happy if you don’t let them research, so you throw a little research funding at them, as a treat.

Maybe you just want to grow your empire: your department, your university, the job numbers in your district.

In most jobs, you’re supposed to do what people pay you to do. As a scientist, the people who pay you have all of these motivations and more. You can’t simply choose to do what people pay you to do.

So you come up with a proxy. You sum up all of these ideas, into a vague picture of what all those people want. You have some idea of scientific quality: not just a matter of doing science correctly and carefully, but doing interesting science. It’s not something you ever articulate. It’s likely even contradictory, after all, the goals it approximates often are. Nonetheless, it’s your guide, and not just your guide: it’s the guide of those who hire you, those who choose if you get promoted or whether you get more funding. All of these people have some vague idea in their head of what makes good science, their own proxy for the desires of the vast mass of voters and decision-makers and funders.

But of course, the standard is still vague. Should good science be deep? Which topics are deeper than others? Should it be practical? Practical for whom? Should it be surprising? What do you expect to happen, and what would surprise you? Should it get the community excited? Which community?

As a practicing scientist, you have to build your own proxy for these proxies. The same work that could get you hired in one place might meet blank stares at another, and you can’t build your life around those unpredictable quirks. So you make your own vague idea of what you’re supposed to do, an alchemy of what excites you and what makes an impact and what your friends are doing. You build a stand-in in your head, on the expectation that no-one else will have quite the same stand-in, then go out and convince the other stand-ins to give money to your version. You stand on a shifting pile of unwritten rules, subtler even than some artists, because at the end of the day there’s never a real client to be seen. Just another proxy.

Types of Undergrad Projects

I saw a discussion on twitter recently, about PhD programs in the US. Apparently universities are putting more and more weight whether prospective students published a paper during their Bachelor’s degree. For some, it’s even an informal requirement. Some of those in the discussion were skeptical that the students were really contributing to these papers much, and thought that most of the work must have been done by the papers’ other authors. If so, this would mean universities are relying more and more on a metric that depends on whether students can charm their professors enough to be “included” in this way, rather than their own abilities.

I won’t say all that much about the admissions situation in the US. (Except to say that if you find yourself making up new criteria to carefully sift out a few from a group of already qualified-enough candidates, maybe you should consider not doing that.) What I did want to say a bit about is what undergraduates can typically actually do, when it comes to research in my field.

First, I should clarify that I’m talking about students in the US system here. Undergraduate degrees in Europe follow a different path. Students typically take three years to get a Bachelor’s degree, often with a project at the end, followed by a two-year Master’s degree capped with a Master’s thesis. A European Master’s thesis doesn’t have to result in a paper, but is often at least on that level, while a European Bachelor project typically isn’t. US Bachelor’s degrees are four years, so one might expect a Bachelor’s thesis to be in between a European Bachelor’s project and Master’s thesis. In practice, it’s a bit different: courses for Master’s students in Europe will generally cover material taught to PhD students in the US, so a typical US Bachelor’s student won’t have had some courses that have a big role in research in my field, like Quantum Field Theory. On the other hand, the US system is generally much more flexible, with students choosing more of their courses and having more opportunities to advance ahead of the default path. So while US Bachelor’s students don’t typically take Quantum Field Theory, the more advanced students can and do.

Because of that, how advanced a given US Bachelor’s student is varies. A small number are almost already PhD students, and do research to match. Most aren’t, though. Despite that, it’s still possible for such a student to complete a real research project in theoretical physics, one that results in a real paper. What does that look like?

Sometimes, it’s because the student is working with a toy model. The problems we care about in theoretical physics can be big and messy, involving a lot of details that only an experienced researcher will know. If we’re lucky, we can make a simpler version of the problem, one that’s easier to work with. Toy models like this are often self-contained, the kind of thing a student can learn without all of the background we expect. The models may be simpler than the real world, but they can still be interesting, suggesting new behavior that hadn’t been considered before. As such, with a good choice of toy model an undergraduate can write something that’s worthy of a real physics paper.

Other times, the student is doing something concrete in a bigger collaboration. This isn’t quite the same as the “real scientists” doing all the work, because the student has a real task to do, just one that is limited in scope. Maybe there is particular computer code they need to get working, or a particular numerical calculation they need to do. The calculation may be comparatively straightforward, but in combination with other results it can still merit a paper. My first project as a PhD student was a little like that, tackling one part of a larger calculation. Once again, the task can be quite self-contained, the kind of thing you can teach a student over a summer project.

Undergraduate projects in the US won’t always result in a paper, and I don’t think anyone should expect, or demand, that they do. But a nontrivial number do, and not because the student is “cheating”. With luck, a good toy model or a well-defined sub-problem can lead a Bachelor’s student to make a real contribution to physics, and get a paper in the bargain.

At New Ideas in Cosmology

The Niels Bohr Institute is hosting a conference this week on New Ideas in Cosmology. I’m no cosmologist, but it’s a pretty cool field, so as a local I’ve been sitting in on some of the talks. So far they’ve had a selection of really interesting speakers with quite a variety of interests, including a talk by Roger Penrose with his trademark hand-stippled drawings.

Including this old classic

One thing that has impressed me has been the “interdisciplinary” feel of the conference. By all rights this should be one “discipline”, cosmology. But in practice, each speaker came at the subject from a different direction. They all had a shared core of knowledge, common models of the universe they all compare to. But the knowledge they brought to the subject varied: some had deep knowledge of the mathematics of gravity, others worked with string theory, or particle physics, or numerical simulations. Each talk, aware of the varied audience, was a bit “colloquium-style“, introducing a framework before diving in to the latest research. Each speaker knew enough to talk to the others, but not so much that they couldn’t learn from them. It’s been unexpectedly refreshing, a real interdisciplinary conference done right.

At Mikefest

I’m at a conference this week of a very particular type: a birthday conference. When folks in my field turn 60, their students and friends organize a special conference for them, celebrating their research legacy. With COVID restrictions just loosening, my advisor Michael Douglas is getting a last-minute conference. And as one of the last couple students he graduated at Stony Brook, I naturally showed up.

The conference, Mikefest, is at the Institut des Hautes Études Scientifiques, just outside of Paris. Mike was a big supporter of the IHES, putting in a lot of fundraising work for them. Another big supporter, James Simons, was Mike’s employer for a little while after his time at Stony Brook. The conference center we’re meeting in is named for him.

You might have to zoom in to see that, though.

I wasn’t involved in organizing the conference, so it was interesting seeing differences between this and other birthday conferences. Other conferences focus on the birthday prof’s “family tree”: their advisor, their students, and some of their postdocs. We’ve had several talks from Mike’s postdocs, and one from his advisor, but only one from a student. Including him and me, three of Mike’s students are here: another two have had their work mentioned but aren’t speaking or attending.

Most of the speakers have collaborated with Mike, but only for a few papers each. All of them emphasized a broader debt though, for discussions and inspiration outside of direct collaboration. The message, again and again, is that Mike’s work has been broad enough to touch a wide range of people. He’s worked on branes and the landscape of different string theory universes, pure mathematics and computation, neuroscience and recently even machine learning. The talks generally begin with a few anecdotes about Mike, before pivoting into research talks on the speakers’ recent work. The recent-ness of the work is perhaps another difference from some birthday conferences: as one speaker said, this wasn’t just a celebration of Mike’s past, but a “welcome back” after his return from the finance world.

One thing I don’t know is how much this conference might have been limited by coming together on short notice. For other birthday conferences impacted by COVID (and I’m thinking of one in particular), it might be nice to have enough time to have most of the birthday prof’s friends and “academic family” there in person. As-is, though, Mike seems to be having fun regardless.

Happy Birthday Mike!

Gateway Hobbies

When biologists tell stories of their childhoods, they’re full of trails of ants and fireflies in jars. Lots of writers start young, telling stories on the playground and making skits with their friends. And the mere existence of “chemistry sets” tells you exactly how many chemists get started. Many fields have these “gateway hobbies”, like gateway drugs for careers, ways that children and teenagers get hooked and gain experience.

Physics is a little different, though. While kids can play with magnets and electricity, there aren’t a whole lot of other “physics hobbies”, especially for esoteric corners like particle physics. Instead, the “gateway hobbies” of physics are more varied, drawing from many different fields.

First, of course, even if a child can’t “do physics”, they can always read about it. Kids will memorize the names of quarks, read about black holes, or watch documentaries about string theory. I’m not counting this as a “physics hobby” because it isn’t really: physics isn’t a collection of isolated facts, but of equations: frameworks you can use to make predictions. Reading about the Big Bang is a good way to get motivated and excited, it’s a great thing to do…but it doesn’t prepare you for the “science part” of the science.

A few efforts at physics popularization get a bit more hands-on. Many come in the form of video games. You can get experience with relativity through Velocity Raptor, quantum mechanics through Quantum Chess, or orbital mechanics through Kerbal Space Program. All of these get just another bit closer to “doing physics” rather than merely reading about it.

One can always gain experience in other fields, and that can be surprisingly relevant. Playing around with a chemistry set gives first-hand experience of the kinds of things that motivated quantum mechanics, and some things that still motivate condensed matter research. Circuits are physics, more directly, even if they’re also engineering: and for some physicists, designing electronic sensors is a huge part of what they do.

Astronomy has a special place, both in the history of physics and the pantheon of hobbies. There’s a huge amateur astronomy community, one that both makes real discoveries and reaches out to kids of all ages. Many physicists got their start looking at the heavens, using it like Newton’s contemporaries as a first glimpse into the mechanisms of nature.

More and more research in physics involves at least some programming, and programming is another activity kids have access to in spades, from Logo to robotics competitions. Learning how to program isn’t just an important skill: it’s also a way for young people to experience a world bound by clear laws and logic, another motivation to study physics.

Of course, if you’re interested in rules and logic, why not go all the way? Plenty of physicists grew up doing math competitions. I have fond memories of Oregon’s Pentagames, and the more “serious” activities go all the way up to the famously challenging Putnam Competition.

Finally, there are physics competitions too, at least in the form of the International Physics Olympiad, where high school students compete in physics prowess.

Not every physicist did these sorts of things, of course: some got hooked later. Others did more than one. A friend of mine who’s always been “Mr. Science” got almost the whole package, with a youth spent exploring the wild west of the early internet, working at a planetarium, and discovering just how easy it is to get legal access to dangerous and radioactive chemicals. There are many paths in to physics, so even if kids can’t “do physics” the same way they “do chemistry”, there’s still plenty to do!

Keeping It Colloquial

In the corners of academia where I hang out, a colloquium is a special kind of talk. Most talks we give are part of weekly seminars for specific groups. For example, the theoretical particle physicists here have a seminar. Each week we invite a speaker, who gives a talk on their recent work. Since they expect an audience of theoretical particle physicists, they can go into more detail.

A colloquium isn’t like that. Colloquia are talks for the whole department: theorists and experimentalists, particle physicists and biophysicists. They’re more prestigious, for big famous professors (or sometimes, for professors interviewing for jobs…). The different audience, and different context, means that the talk plays by different rules.

Recently, I saw a conference full of “colloquium-style” talks, trying to play by these rules. Some succeeded, some didn’t…and I think I now have a better idea of how those rules work.

First, in a colloquium, you’re not just speaking for yourself. You’re an ambassador for your field. For some of the audience, this might be the first time they’ve heard a talk by someone who does your kind of research. You want to give them a good impression, not just about you, but about the whole topic. So while you definitely want to mention your own work, you want to tell a full story, one that gives more than a glimpse of what others are doing as well.

Second, you want to connect to something the audience already knows. With an audience of physicists, you can assume a certain baseline, but not much more than that. You need to make the beginning accessible and start with something familiar. For the conference I mentioned, a talk that did this well was the talk on exoplanets, which started with the familiar planets of the solar system, classifying them in order to show what you might expect exoplanets to look like. In contrast, t’Hooft’s talk did this poorly. His work is exploiting a loophole in a quantum-mechanical argument called Bell’s theorem, which most physicists have heard of. Instead of mentioning Bell’s theorem, he referred vaguely to “criteria from philosophers”, and only even mentioned that near the end of the talk, instead starting with properties of quantum mechanics his audience was much less familiar with.

Moving on, then, you want to present a mystery. So far, everything in the talk has made sense, and your audience feels like they understand. Now, you show them something that doesn’t fit, something their familiar model can’t accommodate. This activates your audience’s scientist instincts: they’re curious now, they want to know the answer. A good example from the conference was a talk on chemistry in space. The speaker emphasized that we can see evidence of complex molecules in space, but that space dust is so absurdly dilute that it seems impossible such molecules could form: two atoms could go a billion years without meeting each other.

You can’t just leave your audience mystified, though. You next have to solve the mystery. Ideally, your solution will be something smart, but simple: something your audience can intuitively understand. This has two benefits. First, it makes you look smart: you described a mysterious problem, and then you show how to solve it! Second, it makes the audience feel smart: they felt the problem was hard, but now they understand how to solve it too. The audience will have good feelings about you as a result, and good feelings about the topic: in some sense, you’ve tied a piece of their self-esteem to knowing the solution to your problem. This was well-done by the speaker discussing space chemistry, who explained that the solution was chemistry on surfaces: if two atoms are on the surface of a dust grain or meteorite, they’re much more likely to react. It was also well-done by a speaker discussing models of diseases like diabetes: he explained the challenge of controlling processes with cells, when cells replicate exponentially, and showed one way they could be controlled, when the immune system kills off any cells that replicate much faster than their neighbors. (He also played the guitar to immune system-themed songs…also a good colloquium strategy for those who can pull it off!)

Finally, a picture is worth a thousand wordsas long as it’s a clear one. For an audience that won’t follow most of your equations, it’s crucial to show them something visual: graphics, puns, pictures of equipment or graphs. Crucially, though, your graphics should be something the audience can understand. If you put up a graph with a lot of incomprehensible detail: parameters you haven’t explained, or just set up in a way your audience doesn’t get, then your audience gets stuck. Much like an unfamiliar word, a mysterious graph will have members of the audience scratching their heads, trying to figure out what it means. They’ll be so busy trying, they’ll miss what you say next, and you’ll lose them! So yes, put in graphs, put in pictures: but make sure that the ones you use, you have time to explain.

Answering Questions: Virtue or Compulsion?

I was talking to a colleague about this blog. I mentioned worries I’ve had about email conversations with readers: worries about whether I’m communicating well, whether the readers are really understanding. For the colleague though, something else stood out:

“You sure are generous with your time.”

Am I?

I’d never really thought about it that way before. It’s not like I drop everything to respond to a comment, or a message. I leave myself a reminder, and get to it when I have time. To the extent that I have a time budget, I don’t spend it freely, I prioritize work before chatting with my readers, as nice as you folks are.

At the same time, though, I think my colleague was getting at a real difference there. It’s true that I don’t answer questions right away. But I do answer them eventually. I can’t imagine being asked a question, and just never answering it.

There are exceptions, of course. If you’re obviously just trolling, just insulting me or messing with me or asking the same question over and over, yeah I’ll skip your question. And if I don’t understand what you’re asking, there’s only so much effort I’m going to put in to try to decipher it. Even in those cases, though, I have a certain amount of regret. I have to take a deep breath and tell myself no, I can really skip this one.

On the one hand, this feels like a moral obligation, a kind of intellectual virtue. If knowledge, truth, information are good regardless of anything else, then answering questions is just straightforwardly good. People ought to know more, asking questions is how you learn, and that can’t work unless we’re willing to teach. Even if there’s something you need to keep secret, you can at least say something, if only to explain why you can’t answer. Just leaving a question hanging feels like something bad people do.

On the other hand, I think this might just be a compulsion, a weird quirk of my personality. It may even be more bad than good, an urge that makes me “waste my time”, or makes me too preoccupied with what others say, drafting responses in my head until I find release by writing them down. I think others are much more comfortable just letting a question lie, and moving on. It feels a bit like the urge to have the last word in a conversation, just more specific: if someone asks me to have the last word, I feel like I have to oblige!

I know this has to have its limits. The more famous bloggers get so many questions they can’t possibly respond to all of them. I’ve seen how people like Neil Gaiman describe responding to questions on tumblr, just opening a giant pile of unread messages, picking a few near the top, and then going back to their day. I can barely stand leaving unread messages in my email. If I got that famous, I don’t know how I’d deal with that. But I’d probably figure something out.

Am I too generous with you guys? Should people always answer questions? And does the fact that I ended this post with questions mean I’ll get more comments?

Of Snowmass and SAGEX

arXiv-watchers might have noticed an avalanche of papers with the word Snowmass in the title. (I contributed to one of them.)

Snowmass is a place, an area in Colorado known for its skiing. It’s also an event in that place, the Snowmass Community Planning Exercise for the American Physical Society’s Division of Particles and Fields. In plain terms, it’s what happens when particle physicists from across the US get together in a ski resort to plan their future.

Usually someone like me wouldn’t be involved in that. (And not because it’s a ski resort.) In the past, these meetings focused on plans for new colliders and detectors. They got contributions from experimentalists, and a few theorists heavily focused on their work, but not the more “formal” theorists beyond.

This Snowmass is different. It’s different because of Corona, which changed it from a big meeting in a resort to a spread-out series of meetings and online activities. It’s also different because they invited theorists to contribute, and not just those interested in particle colliders. The theorists involved study everything from black holes and quantum gravity to supersymmetry and the mathematics of quantum field theory. Groups focused on each topic submit “white papers” summarizing the state of their area. These white papers in turn get organized and summarized into a few subfields, which in turn contribute to the planning exercise. No-one I’ve talked to is entirely clear on how this works, how much the white papers will actually be taken into account or by whom. But it seems like a good chance to influence US funding agencies, like the Department of Energy, and see if we can get them to prioritize our type of research.

Europe has something similar to Snowmass, called the European Strategy for Particle Physics. It also has smaller-scale groups, with their own purposes, goals, and funding sources. One such group is called SAGEX: Scattering Amplitudes: from Geometry to EXperiment. SAGEX is an Innovative Training Network, an organization funded by the EU to train young researchers, in this case in scattering amplitudes. Its fifteen students are finishing their PhDs and ready to take the field by storm. Along the way, they spent a little time in industry internships (mostly at Maple and Mathematica), and quite a bit of time working on outreach.

They have now summed up that outreach work in an online exhibition. I’ve had fun exploring it over the last couple days. They’ve got a lot of good content there, from basic explanations of relativity and quantum mechanics, to detailed games involving Feynman diagrams and associahedra, to a section that uses solitons as a gentle introduction to integrability. If you’re in the target audience, you should check it out!

How Expert Is That Expert?

The blog Astral Codex Ten had an interesting post a while back, about when to trust experts. Rather than thinking of some experts as “trustworthy” and some as “untrustworthy”, the post suggests an approach of “bounded distrust”. Even if an expert is biased or a news source sometimes lies, there are certain things you can still expect them to tell the truth about. If you are familiar enough with their work, you can get an idea of which kinds of claims you can trust and which you can’t, in a consistent and reliable way. Knowing how to do this is a skill, one you can learn to get better at.

In my corner of science, I can’t think of anyone who outright lies. Nonetheless, some claims are worth more trust than others. Sometimes experts have solid backing for what they say, direct experience that’s hard to contradict. Other times they’re speaking mostly from general impressions, and bias could easily creep in. Luckily, it’s not so hard to tell the difference. In this post, I’ll try to teach you how.

For an example, I’ll use something I saw at a conference last week. A speaker gave a talk describing the current state of cosmology: the new tools we have to map the early universe, and the challenges in using them to their full potential. After the talk, I remember her answering three questions. In each case, she seemed to know what she was talking about, but for different reasons. If she was contradicted by a different expert, I’d use these reasons to figure out which one to trust.

First, sometimes an expert gives what is an informed opinion, but just an informed opinion. As scientists, we are expected to know a fairly broad range of background behind our work, and be able to say something informed about it. We see overview talks and hear our colleagues’ takes, and get informed opinions about topics we otherwise don’t work on. This speaker fielded a question about quantum gravity, and her answer made it clear that the topic falls into this category for her. Her answer didn’t go into much detail, mentioning a few terms but no specific scientific results, and linked back in the end to a different question closer to her expertise. That’s generally how we speak on this kind of topic: vaguely enough to show what we know without overstepping.

The second question came from a different kind of knowledge, which I might call journal club knowledge. Many scientists have what are called “journal clubs”. We meet on a regular basis, read recent papers, and talk about them. The papers go beyond what we work on day-to-day, but not by that much, because the goal is to keep an eye open for future research topics. We read papers in close-by areas, watching for elements that could be useful, answers to questions we have or questions we know how to answer. The kind of “journal club knowledge” we have covers a fair amount of detail: these aren’t topics we are working on right now, but if we spent more time on it they could be. Here, the speaker answered a question about the Hubble tension, a discrepancy between two different ways of measuring the expansion of the universe. The way she answered focused on particular results: someone did X, there was a paper showing Y, this telescope is planning to measure Z. That kind of answer is a good way to tell that someone is answering from “journal club knowledge”. It’s clearly an area she could get involved in if she wanted to, one where she knows the important questions and which papers to read, with some of her own work close enough to the question to give an important advantage. But it was also clear that she hadn’t developed a full argument on one “side” or the other, and as such there are others I’d trust a bit more on that aspect of the question.

Finally, experts are the most trustworthy when we speak about our own work. In this speaker’s case, the questions about machine learning were where her expertise clearly shone through. Her answers there were detailed in a different way than her answers about the Hubble tension: not just papers, but personal experience. They were full of phrases like “I tried that, but it doesn’t work…” or “when we do this, we prefer to do it this way”. They also had the most technical terms of any of her answers, terms that clearly drew distinctions relevant to those who work in the field. In general, when an expert talks about what they do in their own work, and uses a lot of appropriate technical terms, you have especially good reason to trust them.

These cues can help a lot when evaluating experts. An expert who makes a generic claim, like “no evidence for X”, might not know as much as an expert who cites specific papers, and in turn they might not know as much as an expert who describes what they do in their own research. The cues aren’t perfect: one risk is that someone may be an expert on their own work, but that work may be irrelevant to the question you’re asking. But they help: rather than distrusting everyone, they help you towards “bounded distrust”, knowing which claims you can trust and which are riskier.

Book Review: The Joy of Insight

There’s something endlessly fascinating about the early days of quantum physics. In a century, we went from a few odd, inexplicable experiments to a practically complete understanding of the fundamental constituents of matter. Along the way the new ideas ended a world war, almost fueled another, and touched almost every field of inquiry. The people lucky enough to be part of this went from familiarly dorky grad students to architects of a new reality. Victor Weisskopf was one of those people, and The Joy of Insight: Passions of a Physicist is his autobiography.

Less well-known today than his contemporaries, Weisskopf made up for it with a front-row seat to basically everything that happened in particle physics. In the late 20’s and early 30’s he went from studying in Göttingen (including a crush on Maria Göppert before a car-owning Joe Mayer snatched her up) to a series of postdoctoral positions that would exhaust even a modern-day physicist, working in Leipzig, Berlin, Copenhagen, Cambridge, Zurich, and Copenhagen again, before fleeing Europe for a faculty position in Rochester, New York. During that time he worked for, studied under, collaborated or partied with basically everyone you might have heard of from that period. As a result, this section of the autobiography was my favorite, chock-full of stories, from the well-known (Pauli’s rudeness and mythical tendency to break experimental equipment) to the less-well known (a lab in Milan planned to prank Pauli with a door that would trigger a fake explosion when opened, which worked every time they tested it…and failed when Pauli showed up), to the more personal (including an in retrospect terrifying visit to the Soviet Union, where they asked him to critique a farming collective!) That era also saw his “almost Nobel”, in his case almost discovering the Lamb Shift.

Despite an “almost Nobel”, Weisskopf was paid pretty poorly when he arrived in Rochester. His story there puts something I’d learned before about another refugee physicist, Hertha Sponer, in a new light. Sponer’s university also didn’t treat her well, and it seemed reminiscent of modern academia. Weisskopf, though, thinks his treatment was tied to his refugee status: that, aware that they had nowhere else to go, universities gave the scientists who fled Europe worse deals than they would have in a Nazi-less world, snapping up talent for cheap. I could imagine this was true for Sponer as well.

Like almost everyone with the relevant expertise, Weisskopf was swept up in the Manhattan project at Los Alamos. There he rose in importance, both in the scientific effort (becoming deputy leader of the theoretical division) and the local community (spending some time on and chairing the project’s “town council”). Like the first sections, this surreal time leads to a wealth of anecdotes, all fascinating. In his descriptions of the life there I can see the beginnings of the kinds of “hiking retreats” physicists would build in later years, like the one at Aspen, that almost seem like attempts to recreate that kind of intense collaboration in an isolated natural place.

After the war, Weisskopf worked at MIT before a stint as director of CERN. He shepherded the facility’s early days, when they were building their first accelerators and deciding what kinds of experiments to pursue. I’d always thought that the “nuclear” in CERN’s name was an artifact of the times, when “nuclear” and “particle” physics were thought of as the same field, but according to Weisskopf the fields were separate and it was already a misnomer when the place was founded. Here the book’s supply of anecdotes becomes a bit more thin, and instead he spends pages on glowing descriptions of people he befriended. The pattern continues after the directorship as his duties get more administrative, spending time as head of the physics department at MIT and working on arms control, some of the latter while a member of the Pontifical Academy of Sciences (which apparently even a Jewish atheist can join). He does work on some science, though, collaborating on the “bag of quarks” model of protons and neutrons. He lives to see the fall of the Berlin wall, and the end of the book has a bit of 90’s optimism to it, the feeling that finally the conflicts of his life would be resolved. Finally, the last chapter abandons chronology altogether, and is mostly a list of his opinions of famous composers, capped off with a Bohr-inspired musing on the complementary nature of science and the arts, humanities, and religion.

One of the things I found most interesting in this book was actually something that went unsaid. Weisskopf’s most famous student was Murray Gell-Mann, a key player in the development of the theory of quarks (including coining the name). Gell-Mann was famously cultured (in contrast to the boorish-almost-as-affectation Feynman) with wide interests in the humanities, and he seems like exactly the sort of person Weisskopf would have gotten along with. Surprisingly though, he gets no anecdotes in this book, and no glowing descriptions: just a few paragraphs, mostly emphasizing how smart he was. I have to wonder if there was some coldness between them. Maybe Weisskopf had difficulty with a student who became so famous in his own right, or maybe they just never connected. Maybe Weisskopf was just trying to be generous: the other anecdotes in that part of the book are of much less famous people, and maybe Weisskopf wanted to prioritize promoting them, feeling that they were underappreciated.

Weisskopf keeps the physics light to try to reach a broad audience. This means he opts for short explanations, and often these are whatever is easiest to reach for. It creates some interesting contradictions: the way he describes his “almost Nobel” work in quantum electrodynamics is very much the way someone would have described it at the time, but very much not how it would be understood later, and by the time he talks about the bag of quarks model his more modern descriptions don’t cleanly link with what he said earlier. Overall, his goal isn’t really to explain the physics, but to explain the physicists. I enjoyed the book for that: people do it far too rarely, and the result was a really fun read.