I was at a conference this week, called Antidifferentiation and the Calculation of Feynman Amplitudes. The conference is a hybrid kind of affair: I attended via Zoom, but there were seven or so people actually there in the room (the room in question being at DESY Zeuthen, near Berlin).

The road to this conference was a bit of a roller-coaster. It was originally scheduled for early March. When the organizers told us they were postponing it, they seemed at the time a little overcautious…until the world proved me, and all of us, wrong. They rescheduled for October, and as more European countries got their infection rates down it looked like the conference could actually happen. We booked rooms at the DESY guest house, until it turned out they needed the space to keep the DESY staff socially distanced, and we quickly switched to booking at a nearby hotel.

Then Europe’s second wave hit. Cases in Denmark started to rise, so Germany imposed a quarantine on entry from Copenhagen and I switched to remote participation. Most of the rest of the participants did too, even several in Germany. For the few still there in person they have a variety of measures to stop infection, from fixed seats in the conference room to gloves for the coffee machine.

The content has been interesting. It’s an eclectic mix of review talks and talks on recent research, all focused on different ways to integrate (or, as one of the organizers emphasized, antidifferentiate) functions in quantum field theory. I’ve learned about the history of the field, and gotten a better feeling for the bottlenecks in some LHC-relevant calculations.

This week was also the announcement of the Physics Nobel Prize. I’ll do my traditional post on it next week, but for now, congratulations to Penrose, Genzel, and Ghez!

After Amplitudes was held online this year, a few of us at the Niels Bohr Institute were inspired. We thought this would be the perfect time to hold a small online conference, focused on the Calabi-Yaus that have been poppinguplately in Feynman diagrams. Then we heard from the organizers of Elliptics 2020. They had been planning to hold a conference in Mainz about elliptic integrals in Feynman diagrams, but had to postpone it due to the pandemic. We decided to team up and hold a joint conference on both topics: the elliptic integrals that are just starting to be understood, and the mysterious integrals that lie beyond. Hence, Elliptics and Beyond.

The conference has been fun thus far. There’s been a mix of review material bringing people up to speed on elliptic integrals and exciting new developments. Some are taking methods that have been successful in other areas and generalizing them to elliptic integrals, others have been honing techniques for elliptics to make them “production-ready”. A few are looking ahead even further, to higher-genus amplitudes in string theory and Calabi-Yaus in Feynman diagrams.

We organized the conference along similar lines to Zoomplitudes, but with a few experiments of our own. Like Zoomplitudes, we made a Slack space for the conference, so people could chat physics outside the talks. Ours was less active, though. I suspect that kind of space needs a critical mass of people, and with a smaller conference we may just not have gotten there. Having fewer people did allow us a more relaxed schedule, which in turn meant we could mostly keep things on-time. We had discussion sessions in the morning (European time), with talks in the afternoon, so almost everyone could make the talks at least. We also had a “conference dinner”, which went much better than I would have expected. We put people randomly into Zoom Breakout Rooms of five or six, to emulate the tables of an in-person conference, and folks chatted while eating their (self-brought of course) dinner. People seemed to really enjoy the chance to just chat casually with the other folks at the conference. If you’re organizing an online conference soon, I’d recommend trying it!

Holding a conference online means that a lot of people can attend who otherwise couldn’t. We had over a hundred people register, and while not all of them showed up there were typically fifty or sixty people on the Zoom session. Some of these were specialists in elliptics or Calabi-Yaus who wouldn’t ordinarily make it to a conference like this. Others were people from the rest of the amplitudes field who joined for parts of the conference that caught their eye. But surprisingly many weren’t even amplitudeologists, but students and young researchers in a variety of topics from all over the world. Some seemed curious and eager to learn, others I suspect just needed to say they had been to a conference. Both are responding to a situation where suddenly conference after conference is available online, free to join. It will be interesting to see if, and how, the world adapts.

I calculate what are called scattering amplitudes, formulas that tell us the chance that two particles scatter off each other. Formulas like these exist for theories like the strong nuclear force, called Yang-Mills theories, they also exist for the hypothetical graviton particles of gravity. One of the biggest insights in scattering amplitude research in the last few decades is that these two types of formulas are tied together: as we like to say, gravity is Yang-Mills squared.

A huge chunk of my subfield grew out of that insight. For one, it’s why some of us think we have something useful to say about colliding black holes. But while it’s been used in a dozen different ways, an important element was missing: the principle was never actually proven (at least, not in the way it’s been used).

Now, a group in the UK and the Czech Republic claims to have proven it.

I say “claims” not because I’m skeptical, but because without a fair bit more reading I don’t think I can judge this one. That’s because the group, and the approach they use, isn’t “amplitudish”. They aren’t doing what amplitudes researchers would do.

In the amplitudes subfield, we like to write things as much as possible in terms of measurable, “on-shell” particles. This is in contrast to the older approach that writes things instead in terms of more general quantum fields, with formulas called Lagrangians to describe theories. In part, we avoid the older Lagrangian framing to avoid redundancy: there are many different ways to write a Lagrangian for the exact same physics. We have another reason though, which might seem contradictory: we avoid Lagrangians to stay flexible. There are many ways to rewrite scattering amplitudes that make different properties manifest, and some of the strangest ones don’t seem to correspond to any Lagrangian at all.

If you’d asked me before last week, I’d say that “gravity is Yang-Mills squared” was in that category: something you couldn’t make manifest fully with just a Lagrangian, that you’d need some stranger magic to prove. If this paper is right, then that’s wrong: if you’re careful enough you can prove “gravity is Yang-Mills squared” in the old-school, Lagrangian way.

I’m curious how this is going to develop: what amplitudes people will think about it, what will happen as the experts chime in. For now, as mentioned, I’m reserving judgement, except to say “interesting if true”.

This post is once again inspired by a Ted Chiang short story. This time, it’s “The Evolution of Human Science”, which imagines a world in which super-intelligent “metahumans” have become incomprehensible to the ordinary humans they’ve left behind. Human scientists in that world practice “hermeneutics“: instead of original research, they try to interpret what the metahumans are doing, reverse-engineering their devices and observing their experiments.

It’s a thought-provoking view of what science in the distant future could become. But it’s also oddly familiar.

You might think I’m talking about machine learning here. It’s true that in recent years people have started using machine learning in science, with occasionally mysterious results. There are even a few cases of physicists using machine-learning to suggest some property, say of Calabi-Yau manifolds, and then figuring out how to prove it. It’s not hard to imagine a day when scientists are reduced to just interpreting whatever the AIs throw at them…but I don’t think we’re quite there yet.

Instead, I’m thinking about my own work. I’m a particular type of theoretical physicist. I calculate scattering amplitudes, formulas that tell us the probabilities that subatomic particles collide in different ways. We have a way to calculate these, Feynman’s famous diagrams, but they’re inefficient, so researchers like me look for shortcuts.

How do we find those shortcuts? Often, it’s by doing calculations the old, inefficient way. We use older methods, look at the formulas we get, and try to find patterns. Each pattern is a hint at some new principle that can make our calculations easier. Sometimes we can understand the pattern fully, and prove it should hold. Other times, we observe it again and again and tentatively assume it will keep going, and see what happens if it does.

Either way, this isn’t so different from the hermeneutics scientists practice in the story. Feynman diagrams already “know” every pattern we find, like the metahumans in the story who already know every result the human scientists can discover. But that “knowledge” isn’t in a form we can understand or use. We have to learn to interpret it, to read between the lines and find underlying patterns, to end up with something we can hold in our own heads and put into action with our own hands. The truth may be “out there”, but scientists can’t be content with that. We need to get the truth “in here”. We need to interpret it for ourselves.

During Zoomplitudes (my field’s big yearly conference, this year on Zoom) I didn’t have time to write a long blog post. I said a bit about the format, but didn’t get a chance to talk about the science. I figured this week I’d go back and give a few more of my impressions. As always, conference posts are a bit more technical than my usual posts, so regulars be warned!

The conference opened with a talk by Gavin Salam, there as an ambassador for LHC physics. Salam pointed out that, while a decent proportion of speakers at Amplitudes mention the LHC in their papers, that fraction has fallen over the years. (Another speaker jokingly wondered which of those mentions were just in the paper’s introduction.) He argued that there is still useful work for us, LHC measurements that will require serious amplitudes calculations to understand. He also brought up what seems like the most credible argument for a new, higher-energy collider: that there are important properties of the Higgs, in particular its interactions, that we still have not observed.

The next few talks hopefully warmed Salam’s heart, as they featured calculations for real-world particle physics. Nathaniel Craig and Yael Shadmi in particular covered the link between amplitudes and Standard Model Effective Field Theory (SMEFT), a method to systematically characterize corrections beyond the Standard Model. Shadmi’s talk struck me because the kind of work she described (building the SMEFT “amplitudes-style”, directly from observable information rather than more complicated proxies) is something I’d seen people speculate about for a while, but which hadn’t been done until quite recently. Now, several groups have managed it, and look like they’ve gotten essentially “all the way there”, rather than just partial results that only manage to replicate part of the SMEFT. Overall it’s much faster progress than I would have expected.

After Shadmi’s talk was a brace of talks on N=4 super Yang-Mills, featuring cosmic Galois theory and an impressively groan-worthy “origin story” joke. The final talk of the day, by Hofie Hannesdottir, covered work with some of my colleagues at the NBI. Due to coronavirus I hadn’t gotten to hear about this in person, so it was good to hear a talk on it, a blend of old methods and new priorities to better understand some old discoveries.

The next day focused on a topic that has grown in importance in our community, calculations for gravitational wave telescopes like LIGO. Several speakers focused on new methods for collisions of spinning objects, where a few different approaches are making good progress (Radu Roiban’s proposal to use higher-spin field theory was particularly interesting) but things still aren’t quite “production-ready”. The older, post-Newtonian method is still very much production-ready, as evidenced by Michele Levi’s talk that covered, among other topics, our recentcollaboration. Julio Parra-Martinez discussed some interesting behavior shared by both supersymmetric and non-supersymmetric gravity theories. Thibault Damour had previously expressed doubts about use of amplitudes methods to answer this kind of question, and part of Parra-Martinez’s aim was to confirm the calculation with methods Damour would consider more reliable. Damour (who was actually in the audience, which I suspect would not have happened at an in-person conference) had already recanted some related doubts, but it’s not clear to me whether that extended to the results Parra-Martinez discussed (or whether Damour has stated the problem with his old analysis).

There were a few talks that day that didn’t relate to gravitational waves, though this might have been an accident, since both speakers also work on that topic. Zvi Bern’s talk linked to the previous day’s SMEFT discussion, with a calculation using amplitudes methods of direct relevance to SMEFT researchers. Clifford Cheung’s talk proposed a rather strange/fun idea, conformal symmetry in negative dimensions!

Wednesday was “amplituhedron day”, with a variety of talks on positive geometries and cluster algebras. Featured in several talks was “tropicalization“, a mathematical procedure that can simplify complicated geometries while still preserving essential features. Here, it was used to trim down infinite “alphabets” conjectured for some calculations into a finite set, and in doing so understand the origin of “square root letters”. The day ended with a talk by Nima Arkani-Hamed, who despite offering to bet that he could finish his talk within the half-hour slot took almost twice that. The organizers seemed to have planned for this, since there was one fewer talk that day, and as such the day ended at roughly the usual time regardless.

For lack of a better name, I’ll call Thursday’s theme “celestial”. The day included talks by cosmologists (including approaches using amplitudes-ish methods from Daniel Baumann and Charlotte Sleight, and a curiously un-amplitudes-related talk from Daniel Green), talks on “celestial amplitudes” (amplitudes viewed from the surface of an infinitely distant sphere), and various talks with some link to string theory. I’m including in that last category intersection theory, which has really become its own thing. This included a talk by Simon Caron-Huot about using intersection theory more directly in understanding Feynman integrals, and a talk by Sebastian Mizera using intersection theory to investigate how gravity is Yang-Mills squared. Both gave me a much better idea of the speakers’ goals. In Mizera’s case he’s aiming for something very ambitious. He wants to use intersection theory to figure out when and how one can “double-copy” theories, and might figure out why the procedure “got stuck” at five loops. The day ended with a talk by Pedro Vieira, who gave an extremely lucid and well-presented “blackboard-style” talk on bootstrapping amplitudes.

Friday was a grab-bag of topics. Samuel Abreu discussed an interesting calculation using the numerical unitarity method. It was notable in part because renormalization played a bigger role than it does in most amplitudes work, and in part because they now have a cool logo for their group’s software, Caravel. Claude Duhr and Ruth Britto gave a two-part talk on their work on a Feynman integral coaction. I’d had doubts about the diagrammatic coaction they had worked on in the past because it felt a bit ad-hoc. Now, they’re using intersection theory, and have a clean story that seems to tie everything together. Andrew McLeod talked about our work on a Feynman diagram Calabi-Yau “bestiary”, while Cristian Vergu had a more rigorous understanding of our “traintrack” integrals.

There are two key elements of a conference that are tricky to do on Zoom. You can’t do a conference dinner, so you can’t do the traditional joke-filled conference dinner speech. The end of the conference is also tricky: traditionally, this is when everyone applauds the organizers and the secretaries are given flowers. As chair for the last session, Lance Dixon stepped up to fill both gaps, with a closing speech that was both a touching tribute to the hard work of organizing the conference and a hilarious pile of in-jokes, including a participation award to Arkani-Hamed for his (unprecedented, as far as I’m aware) perfect attendance.

I got a new paper out last week, with Andrew McLeod, Henrik Munch, and Georgios Papathanasiou.

A while back, some collaborators and I found an interesting set of Feynman diagrams that we called “Omega”. These Omega diagrams were fun because they let us avoid one of the biggest limitations of particle physics: that we usually have to compute approximations, diagram by diagram, rather than finding an exact answer. For these Omegas, we figured out how to add all the infinite set of Omega diagrams up together, with no approximation.

One implication of this was that, in principle, we now knew the answer for each individual Omega diagram, far past what had been computed before. However, writing down these answers was easier said than done. After some wrangling, we got the answer for each diagram in terms of an infinite sum. But despite tinkering with it for a while, even our resident infinite sum expert Georgios Papathanasiou couldn’t quite sum them up.

Naturally, this made me think the sums would make a great Master’s project.

When Henrik Munch showed up looking for a project, Andrew McLeod and I gave him several options, but he settled on the infinite sums. Impressively, he ended up solving the problem in two different ways!

First, he found an old paper none of us had seen before, that gave a general method for solving that kind of infinite sum. When he realized that method was really annoying to program, he took the principle behind it, called telescoping, and came up with his own, simpler method, for our particular case.

Picture an old-timey folding telescope. It might be long when fully extended, but when you fold it up each piece fits inside the previous one, resulting in a much smaller object. Telescoping a sum has the same spirit. If each pair of terms in a sum “fit together” (if their difference is simple), you can rearrange them so that most of the difficulty “cancels out” and you’re left with a much simpler sum.

Henrik’s telescoping idea worked even better than expected. We found that we could do, not just the Omega sums, but other sums in particle physics as well. Infinite sums are a very well-studied field, so it was interesting to find something genuinely new.

The rest of us worked to generalize the result, to check the examples and to put it in context. But the core of the work was Henrik’s. I’m really proud of what he accomplished. If you’re looking for a PhD student, he’s on the market!

My field’s big yearly conference, Amplitudes, was supposed to happen in Michigan this year, but with the coronavirus pandemic it was quickly clear that would be impossible. Luckily, Anastasia Volovich stepped in to Zoomganize the conference from Brown.

The conference is still going, so I’ll say more about the scientific content later. (Except to say there have been a lot of interesting talks!) Here, I’ll just write a bit about the novel experience of going to a conference on Zoom.

Usually, Amplitudes is accompanied by a one-week school for Master’s and PhD students. That wasn’t feasible this year, but to fill the gap Nima Arkani-Hamed gave a livestreamed lecture the Friday before, which apparently clocked in at thirteen hours!

One aspect of the conference that really impressed me was the Slack space. The organizers wanted to replicate the “halls” part of the conference, with small groups chatting around blackboards between the talks. They set up a space on the platform Slack, and let attendees send private messages and make their own channels for specific topics. Soon the space was filled with lively discussion, including a #coffeebreak channel with pictures of everyone’s morning coffee. I think the organizers did a really good job of achieving the kind of “serendipity” I talked about in this post, where accidental meetings spark new ideas. More than that, this is the kind of thing I’d appreciate even in face-to-face conferences. The ability to message anyone at the conference from a shared platform, to have discussions that anyone can stumble on and read later, to post papers and links, all of this seems genuinely quite useful. As one of the organizers for Amplitudes 2021, I may soon get a chance to try this out.

Zoom itself worked reasonably well. A few people had trouble connecting or sharing screens, but overall things worked reliably, and the Zoom chat window is arguably better than people whispering to each other in the back of an in-person conference. One feature of the platform that confused people a bit is that co-hosts can’t raise their hands to ask questions: since speakers had to be made co-hosts to share their screens they had a harder time asking questions during other speakers’ talks.

A part I was more frustrated by was the scheduling. Fitting everyone who wanted to speak between 6am west coast and 10:30pm Europe must have been challenging, and the result was a tightly plotted conference, with three breaks each no more than 45 minutes. That’s already a bit tight, but it ended up much tighter because most talks went long. The conference’s 30 minute slots regularly took 40 minutes, between speakers running over and questions going late. As a result, the conference’s “lunch break” (roughly dinner break for the Europeans) was often only 15 minutes. I appreciate the desire for lively discussion, especially since the conference is recorded and the question sessions can be a resource for others. But I worry that, as a pitfall of remote conferences, the inconveniences people suffer to attend can become largely invisible. Yes, we can always skip a talk, and watch the recording later. Yes, we can prepare food beforehand. Still, I don’t think a 15 minute lunch break was what the organizers had in mind, and if our community does more remote conferences we should brainstorm ways to avoid this problem next time.

I’m curious how other fields are doing remote conferences right now. Even after the pandemic, I suspect some fields will experiment with this kind of thing. It’s worth sharing and paying attention to what works and what doesn’t.

Two weeks ago, I told you that Andrew and Michèle and I had written a paper, predicting what gravitational wave telescopes like LIGO see when black holes collide. You may remember that LIGO doesn’t just see colliding black holes: it sees colliding neutron stars too. So why didn’t we predict what happens when neutron stars collide?

Actually, we did. Our calculation doesn’t just apply to black holes. It applies to neutron stars too. And not just neutron stars: it applies to anything of roughly the right size and shape. Black holes, neutron stars, very large grapefruits…

That’s the magic of Effective Field Theory, the “zoom lens” of particle physics. Zoom out far enough, and any big, round object starts looking like a particle. Black holes, neutron stars, grapefruits, we can describe them all using the same math.

Ok, so we can describe both black holes and neutron stars. Can we tell the difference between them?

In our last calculation, no. In this one, yes!

Effective Field Theory isn’t just a zoom lens, it’s a controlled approximation. That means that when we “zoom out” we don’t just throw out anything “too small to see”. Instead, we approximate it, estimating how big of an effect it can have. Depending on how precise we want to be, we can include more and more of these approximated effects. If our estimates are good, we’ll include everything that matters, and get a good approximation for what we’re trying to observe.

At the precision of our last calculation, a black hole and a neutron star still look exactly the same. Our new calculation aims for a bit higher precision though. (For the experts: we’re at a higher order in spin.) The higher precision means that we can actually see the difference: our result changes for two colliding black holes versus two colliding grapefruits.

So does that mean I can tell you what happens when two neutron stars collide, according to our calculation? Actually, no. That’s not because we screwed up the calculation: it’s because some of the properties of neutron stars are unknown.

The Effective Field Theory of neutron stars has what we call “free parameters”, unknown variables. People have tried to estimate some of these (called “Love numbers” after the mathematician A. E. H. Love), but they depend on the details of how neutron stars work: what stuff they contain, how that stuff is shaped, and how it can move. To find them out, we probably can’t just calculate: we’ll have to measure, observe an actual neutron star collision and see what the numbers actually are.

That’s one of the purposes of gravitational wave telescopes. It’s not (as far as I know) something LIGO can measure. But future telescopes, with more precision, should be able to. By watching two colliding neutron stars and comparing to a high-precision calculation, physicists will better understand what those neutron stars are made of. In order to do that, they will need someone to do that high-precision calculation. And that’s why people like me are involved.

I had a new paper up last Friday with Michèle Levi and Andrew McLeod, on a topic I hadn’t worked on before: colliding black holes.

I am an “amplitudeologist”. I work on particle physics calculations, computing “scattering amplitudes” to find the probability that fundamental particles bounce off each other. This sounds like the farthest thing possible from black holes. Nevertheless, the two are tightly linked, through the magic of something called Effective Field Theory.

Effective Field Theory is a kind of “zoom knob” for particle physics. You “zoom out” to some chosen scale, and write down a theory that describes physics at that scale. Your theory won’t be a complete description: you’re ignoring everything that’s “too small to see”. It will, however, be an effective description: one that, at the scale you’re interested in, is effectively true.

Particle physicists usually use Effective Field Theory to go between different theories of particle physics, to zoom out from strings to quarks to protons and neutrons. But you can zoom out even further, all the way out to astronomical distances. Zoom out far enough, and even something as massive as a black hole looks like just another particle.

In this picture, the force of gravity between black holes looks like particles (specifically, gravitons) going back and forth. With this picture, physicists can calculate what happens when two black holes collide with each other, making predictions that can be checked with new gravitational wave telescopes like LIGO.

Researchers have pushed this technique quite far. As the calculations get more and more precise (more and more “loops”), they have gotten more and more challenging. This is particularly true when the black holes are spinning, an extra wrinkle in the calculation that adds a surprising amount of complexity.

That’s where I came in. I can’t compete with the experts on black holes, but I certainly know a thing or two about complicated particle physics calculations. Amplitudeologists, like Andrew McLeod and me, have a grab-bag of tricks that make these kinds of calculations a lot easier. With Michèle Levi’s expertise working with spinning black holes in Effective Field Theory, we were able to combine our knowledge to push beyond the state of the art, to a new level of precision.

This project has been quite exciting for me, for a number of reasons. For one, it’s my first time working with gravitons: despite this blog’s name, I’d never published a paper on gravity before. For another, as my brother quipped when he heard about it, this is by far the most “applied” paper I’ve ever written. I mostly work with a theory called N=4 super Yang-Mills, a toy model we use to develop new techniques. This paper isn’t a toy model: the calculation we did should describe black holes out there in the sky, in the real world. There’s a decent chance someone will use this calculation to compare with actual data, from LIGO or a future telescope. That, in particular, is an absurdly exciting prospect.

Because this was such an applied calculation, it was an opportunity to explore the more applied part of my own field. We ended up using well-known techniques from that corner, but I look forward to doing something more inventive in future.

As a scientist, you’re surrounded by puzzles. For every test and every answer, ten new questions pop up. You can spend a lifetime on question after question, never getting bored.

But which questions matter? If you want to change the world, if you want to discover something deep, which questions should you focus on? And which should you ignore?

There were also questions that seemed less deep. In order to compute our result, we compared to predictions from other methods: specific situations where the question becomes simpler and there are other ways of calculating the answer. As we finished writing the paper, we realized we could do more with some of these predictions. There were situations we didn’t use that nonetheless simplified things, and more predictions that it looked like we could make. By the time we saw these, we were quite close to publishing, so most of us didn’t have the patience to follow these new leads. We just wanted to get the paper out.

At the time, I expected the new predictions would lead, at best, to more efficiency. Maybe we could have gotten our result faster, or cleaned it up a bit. They didn’t seem essential, and they didn’t seem deep.

Fast forward to this year, and some of my collaborators (specifically, Lance Dixon and Georgios Papathanasiou, along with Benjamin Basso) have a new paper up: “The Origin of the Six-Gluon Amplitude in Planar N=4 SYM”. The “origin” in their title refers to one of those situations: when the variables in the problem are small, and you’re close to the “origin” of a plot in those variables. But the paper also sheds light on the origin of our calculation’s mysterious “Cosmic Galois” behavior.

It turns out that the origin (of the plot) can be related to another situation, when the paths of two particles in our calculation almost line up. There, the calculation can be done with another method, called the Pentagon Operator Product Expansion, or POPE. By relating the two, Basso, Dixon, and Papathanasiou were able to predict not only how our result should have behaved near the origin, but how more complicated as-yet un-calculated results should behave.

The biggest surprise, though, lurked in the details. Building their predictions from the POPE method, they found their calculation separated into two pieces: one which described the physics of the particles involved, and a “normalization”. This normalization, predicted by the POPE method, involved some rather special numbers…the same as the “fudge factor” we had introduced earlier! Somehow, the POPE’s physics-based setup “knows” about Cosmic Galois Theory!

It seems that, by studying predictions in this specific situation, Basso, Dixon, and Papathanasiou have accomplished something much deeper: a strong hint of where our mysterious number patterns come from. It’s rather humbling to realize that, were I in their place, I never would have found this: I had assumed “the origin” was just a leftover detail, perhaps useful but not deep.

I’m still digesting their result. For now, it’s a reminder that I shouldn’t try to pre-judge questions. If you want to learn something deep, it isn’t enough to sit thinking about it, just focusing on that one problem. You have to follow every lead you have, work on every problem you can, do solid calculation after solid calculation. Sometimes, you’ll just make incremental progress, just fill in the details. But occasionally, you’ll have a breakthrough, something that justifies the whole adventure and opens your door to something strange and new. And I’m starting to think that when it comes to breakthroughs, that’s always been the only way there.