Tag Archives: quantum field theory

QCD and Reductionism: Stranger Than You’d Think

Earlier this year, I made a list of topics I wanted to understand. The most abstract and technical of them was something called “Wilsonian effective field theory”. I still don’t understand Wilsonian effective field theory. But while thinking about it, I noticed something that seemed weird. It’s something I think many physicists already understand, but that hasn’t really sunk in with the public yet.

There’s an old problem in particle physics, described in many different ways over the years. Take our theories and try to calculate some reasonable number (say, the angle an electron turns in a magnetic field), and instead of that reasonable number we get infinity. We fix this problem with a process called renormalization that hides that infinity away, changing the “normalization” of some constant like a mass or a charge. While renormalization first seemed like a shady trick, physicists eventually understood it better. First, we thought of it as a way to work around our ignorance, that the true final theory would have no infinities at all. Later, physicists instead thought about renormalization in terms of scaling.

Imagine looking at the world on a camera screen. You can zoom in, or zoom out. The further you zoom out, the more details you’ll miss: they’re just too small to be visible on your screen. You can guess what they might be, but your picture will be different depending on how you zoom.

In particle physics, many of our theories are like that camera. They come with a choice of “zoom setting”, a minimum scale where they still effectively tell the whole story. We call theories like these effective field theories. Some physicists argue that these are all we can ever have: since our experiments are never perfect, there will always be a scale so small we have no evidence about it.

In general, theories can be quite different at different scales. Some theories, though, are especially nice: they look almost the same as we zoom in to smaller scales. The only things that change are the mass of different particles, and their charges.

Trippy

One theory like this is Quantum Chromodynamics (or QCD), the theory of quarks and gluons. Zoom in, and the theory looks pretty much the same, with one crucial change: the force between particles get weaker. There’s a number, called the “coupling constant“, that describes how strong a force is, think of it as sort of like an electric charge. As you zoom in to quarks and gluons, you find you can still describe them with QCD, just with a smaller coupling constant. If you could zoom “all the way in”, the constant (and thus the force between particles) would be zero.

This makes QCD a rare kind of theory: one that could be complete to any scale. No matter how far you zoom in, QCD still “makes sense”. It never gives contradictions or nonsense results. That doesn’t mean it’s actually true: it interacts with other forces, like gravity, that don’t have complete theories, so it probably isn’t complete either. But if we didn’t have gravity or electricity or magnetism, if all we had were quarks and gluons, then QCD could have been the final theory that described them.

And this starts feeling a little weird, when you think about reductionism.

Philosophers define reductionism in many different ways. I won’t be that sophisticated. Instead, I’ll suggest the following naive definition: Reductionism is the claim that theories on larger scales reduce to theories on smaller scales.

Here “reduce to” is intentionally a bit vague. It might mean “are caused by” or “can be derived from” or “are explained by”. I’m gesturing at the sort of thing people mean when they say that biology reduces to chemistry, or chemistry to physics.

What happens when we think about QCD, with this intuition?

QCD on larger scales does indeed reduce to QCD on smaller scales. If you want to ask why QCD on some scale has some coupling constant, you can explain it by looking at the (smaller) QCD coupling constant on a smaller scale. If you have equations for QCD on a smaller scale, you can derive the right equations for a larger scale. In some sense, everything you observe in your larger-scale theory of QCD is caused by what happens in your smaller-scale theory of QCD.

But this isn’t quite the reductionism you’re used to. When we say biology reduces to chemistry, or chemistry reduces to physics, we’re thinking of just a few layers: one specific theory reduces to another specific theory. Here, we have an infinite number of layers, every point on the scale from large to small, each one explained by the next.

Maybe you think you can get out of this, by saying that everything should reduce to the smallest scale. But remember, the smaller the scale the smaller our “coupling constant”, and the weaker the forces between particles. At “the smallest scale”, the coupling constant is zero, and there is no force. It’s only when you put your hand on the zoom nob and start turning that the force starts to exist.

It’s reductionism, perhaps, but not as we know it.

Now that I understand this a bit better, I get some of the objections to my post about naturalness a while back. I was being too naive about this kind of thing, as some of the commenters (particularly Jacques Distler) noted. I believe there’s a way to rephrase the argument so that it still works, but I’d have to think harder about how.

I also get why I was uneasy about Sabine Hossenfelder’s FQXi essay on reductionism. She considered a more complicated case, where the chain from large to small scale could be broken, a more elaborate variant of a problem in Quantum Electrodynamics. But if I’m right here, then it’s not clear that scaling in effective field theories is even the right way to think about this. When you have an infinite series of theories that reduce to other theories, you’re pretty far removed from what most people mean by reductionism.

Finally, this is the clearest reason I can find why you can’t do science without an observer. The “zoom” is just a choice we scientists make, an arbitrary scale describing our ignorance. But without it, there’s no way to describe QCD. The notion of scale is an inherent and inextricable part of the theory, and it doesn’t have to mean our theory is incomplete.

Experts, please chime in here if I’m wrong on the physics here. As I mentioned at the beginning, I still don’t think I understand Wilsonian effective field theory. If I’m right though, this seems genuinely weird, and something more of the public should appreciate.

Rooting out the Answer

I have a new paper out today, with Jacob Bourjaily, Andrew McLeod, Matthias Wilhelm, Cristian Vergu and Matthias Volk.

There’s a story I’ve told before on this blog, about a kind of “alphabet” for particle physics predictions. When we try to make a prediction in particle physics, we need to do complicated integrals. Sometimes, these integrals simplify dramatically, in unexpected ways. It turns out we can understand these simplifications by writing the integrals in a sort of “alphabet”, breaking complicated mathematical “periods” into familiar logarithms. If we want to simplify an integral, we can use relations between logarithms like these:

\log(a b)=\log(a)+\log(b),\quad \log(a^n)=n\log(a)

to factor our “alphabet” into pieces as simple as possible.

The simpler the alphabet, the more progress you can make. And in the nice toy model theory we’re working with, the alphabets so far have been simple in one key way. Expressed in the right variables, they’re rational. For example, they contain no square roots.

Would that keep going? Would we keep finding rational alphabets? Or might the alphabets, instead, have square roots?

After some searching, we found a clean test case. There was a calculation we could do with just two Feynman diagrams. All we had to do was subtract one from the other. If they still had square roots in their alphabet, we’d have proven that the nice, rational alphabets eventually had to stop.

Easy-peasy

So we calculated these diagrams, doing the complicated integrals. And we found they did indeed have square roots in their alphabet, in fact many more than expected. They even had square roots of square roots!

You’d think that would be the end of the story. But square roots are trickier than you’d expect.

Remember that to simplify these integrals, we break them up into an alphabet, and factor the alphabet. What happens when we try to do that with an alphabet that has square roots?

Suppose we have letters in our alphabet with \sqrt{-5}. Suppose another letter is the number 9. You might want to factor it like this:

9=3\times 3

Simple, right? But what if instead you did this:

9=(2+ \sqrt{-5} )\times(2- \sqrt{-5} )

Once you allow \sqrt{-5} in the game, you can factor 9 in two different ways. The central assumption, that you can always just factor your alphabet, breaks down. In mathematical terms, you no longer have a unique factorization domain.

Instead, we had to get a lot more mathematically sophisticated, factoring into something called prime ideals. We got that working and started crunching through the square roots in our alphabet. Things simplified beautifully: we started with a result that was ten million terms long, and reduced it to just five thousand. And at the end of the day, after subtracting one integral from the other…

We found no square roots!

After all of our simplifications, all the letters we found were rational. Our nice test case turned out much, much simpler than we expected.

It’s been a long road on this calculation, with a lot of false starts. We were kind of hoping to be the first to find square root letters in these alphabets; instead it looks like another group will beat us to the punch. But we developed a lot of interesting tricks along the way, and we thought it would be good to publish our “null result”. As always in our field, sometimes surprising simplifications are just around the corner.

Calabi-Yaus in Feynman Diagrams: Harder and Easier Than Expected

I’ve got a new paper up, about the weird geometrical spaces we keep finding in Feynman diagrams.

With Jacob Bourjaily, Andrew McLeod, and Matthias Wilhelm, and most recently Cristian Vergu and Matthias Volk, I’ve been digging up odd mathematics in particle physics calculations. In several calculations, we’ve found that we need a type of space called a Calabi-Yau manifold. These spaces are often studied by string theorists, who hope they represent how “extra” dimensions of space are curled up. String theorists have found an absurdly large number of Calabi-Yau manifolds, so many that some are trying to sift through them with machine learning. We wanted to know if our situation was quite that ridiculous: how many Calabi-Yaus do we really need?

So we started asking around, trying to figure out how to classify our catch of Calabi-Yaus. And mostly, we just got confused.

It turns out there are a lot of different tools out there for understanding Calabi-Yaus, and most of them aren’t all that useful for what we’re doing. We went in circles for a while trying to understand how to desingularize toric varieties, and other things that will sound like gibberish to most of you. In the end, though, we noticed one small thing that made our lives a whole lot simpler.

It turns out that all of the Calabi-Yaus we’ve found are, in some sense, the same. While the details of the physics varies, the overall “space” is the same in each case. It’s a space we kept finding for our “Calabi-Yau bestiary”, but it turns out one of the “traintrack” diagrams we found earlier can be written in the same way. We found another example too, a “wheel” that seems to be the same type of Calabi-Yau.

And that actually has a sensible name

We also found many examples that we don’t understand. Add another rung to our “traintrack” and we suddenly can’t write it in the same space. (Personally, I’m quite confused about this one.) Add another spoke to our wheel and we confuse ourselves in a different way.

So while our calculation turned out simpler than expected, we don’t think this is the full story. Our Calabi-Yaus might live in “the same space”, but there are also physics-related differences between them, and these we still don’t understand.

At some point, our abstract included the phrase “this paper raises more questions than it answers”. It doesn’t say that now, but it’s still true. We wrote this paper because, after getting very confused, we ended up able to say a few new things that hadn’t been said before. But the questions we raise are if anything more important. We want to inspire new interest in this field, toss out new examples, and get people thinking harder about the geometry of Feynman integrals.

The Changing Meaning of “Explain”

This is another “explanations are weird” post.

I’ve been reading a biography of James Clerk Maxwell, who formulated the theory of electromagnetism. Nowadays, we think about the theory in terms of fields: we think there is an “electromagnetic field”, filling space and time. At the time, though, this was a very unusual way to think, and not even Maxwell was comfortable with it. He felt that he had to present a “physical model” to justify the theory: a picture of tiny gears and ball bearings, somehow occupying the same space as ordinary matter.

Bang! Bang! Maxwell’s silver bearings…

Maxwell didn’t think space was literally filled with ball bearings. He did, however, believe he needed a picture that was sufficiently “physical”, that wasn’t just “mathematics”. Later, when he wrote down a theory that looked more like modern field theory, he still thought of it as provisional: a way to use Lagrange’s mathematics to ignore the unknown “real physical mechanism” and just describe what was observed. To Maxwell, field theory was a description, but not an explanation.

This attitude surprised me. I would have thought physicists in Maxwell’s day could have accepted fields. After all, they had accepted Newton.

In his time, there was quite a bit of controversy about whether Newton’s theory of gravity was “physical”. When rival models described planets driven around by whirlpools, Newton simply described the mathematics of the force, an “action at a distance”. Newton famously insisted hypotheses non fingo, “I feign no hypotheses”, and insisted that he wasn’t saying anything about why gravity worked, merely how it worked. Over time, as the whirlpool models continued to fail, people gradually accepted that gravity could be explained as action at a distance.

You’d think that this would make them able to accept fields as well. Instead, by Maxwell’s day the options for a “physical explanation” had simply been enlarged by one. Now instead of just explaining something with mechanical parts, you could explain it with action at a distance as well. Indeed, many physicists tried to explain electricity and magnetism with some sort of gravity-like action at a distance. They failed, though. You really do need fields.

The author of the biography is an engineer, not a physicist, so I find his perspective unusual at times. After discussing Maxwell’s discomfort with fields, the author says that today physicists are different: instead of insisting on a physical explanation, they accept that there are some things they just cannot know.

At first, I wanted to object: we do have physical explanations, we explain things with fields! We have electromagnetic fields and electron fields, gluon fields and Higgs fields, even a gravitational field for the shape of space-time. These fields aren’t papering over some hidden mechanism, they are the mechanism!

Are they, though?

Fields aren’t quite like the whirlpools and ball bearings of historical physicists. Sometimes fields that look different are secretly the same: the two “different explanations” will give the same result for any measurement you could ever perform. In my area of physics, we try to avoid this by focusing on the measurements instead, building as much as we can out of observable quantities instead of fields. In effect we’re going back yet another layer, another dose of hypotheses non fingo.

Physicists still ask for “physical explanations”, and still worry that some picture might be “just mathematics”. But what that means has changed, and continues to change. I don’t think we have a common standard right now, at least nothing as specific as “mechanical parts or action at a distance, and nothing else”. Somehow, we still care about whether we’ve given an explanation, or just a description, even though we can’t define what an explanation is.

Congratulations to Simon Caron-Huot and Pedro Vieira for the New Horizons Prize!

The 2020 Breakthrough Prizes were announced last week, awards in physics, mathematics, and life sciences. The physics prize was awarded to the Event Horizon Telescope, with the $3 million award to be split among the 347 members of the collaboration. The Breakthrough Prize Foundation also announced this year’s New Horizons prizes, six smaller awards of $100,000 each to younger researchers in physics and math. One of those awards went to two people I know, Simon Caron-Huot and Pedro Vieira. Extremely specialized as I am, I hope no-one minds if I ignore all the other awards and talk about them.

The award for Caron-Huot and Vieira is “For profound contributions to the understanding of quantum field theory.” Indeed, both Simon and Pedro have built their reputations as explorers of quantum field theories, the kind of theories we use in particle physics. Both have found surprising behavior in these theories, where a theory people thought they understood did something quite unexpected. Both also developed new calculation methods, using these theories to compute things that were thought to be out of reach. But this is all rather vague, so let me be a bit more specific about each of them:

Simon Caron-Huot is known for his penetrating and mysterious insight. He has the ability to take a problem and think about it in a totally original way, coming up with a solution that no-one else could have thought of. When I first worked with him, he took a calculation that the rest of us would have taken a month to do and did it by himself in a week. His insight seems to come in part from familiarity with the physics literature, forgotten papers from the 60’s and 70’s that turn out surprisingly useful today. Largely, though, his insight is his own, an inimitable style that few can anticipate. His interests are broad, from exotic toy models to well-tested theories that describe the real world, covering a wide range of methods and approaches. Physicists tend to describe each other in terms of standard “virtues”: depth and breadth, knowledge and originality. Simon somehow seems to embody all of them.

Pedro Vieira is mostly known for his work with integrable theories. These are theories where if one knows the right trick one can “solve” the theory exactly, rather than using the approximations that physicists often rely on. Pedro was a mentor to me when I was a postdoc at the Perimeter Institute, and one thing he taught me was to always expect more. When calculating with computer code I would wait hours for a result, while Pedro would ask “why should it take hours?”, and if we couldn’t propose a reason would insist we find a quicker way. This attitude paid off in his research, where he has used integrable theories to calculate things others would have thought out of reach. His Pentagon Operator Product Expansion, or “POPE”, uses these tricks to calculate probabilities that particles collide, and more recently he pushed further to other calculations with a hexagon-based approach (which one might call the “HOPE”). Now he’s working on “bootstrapping” up complicated theories from simple physical principles, once again asking “why should this be hard?”

At Aspen

I’m at the Aspen Center for Physics this week, for a workshop on Scattering Amplitudes and the Conformal Bootstrap.

A place even greener than its ubiquitous compost bins

Aspen is part of a long and illustrious tradition of physics conference sites located next to ski resorts. It’s ten years younger than its closest European counterpart Les Houches School of Physics, but if anything its traditions are stricter: all blackboard talks, and a minimum two-week visit. Instead of the summer schools of Les Houches, Aspen’s goal is to inspire collaboration: to get physicists to spend time working and hiking around each other until inspiration strikes.

This workshop is a meeting between two communities: people who study the Conformal Bootstrap (nice popular description here) and my own field of Scattering Amplitudes. The Conformal Boostrap is one of our closest sister-fields, so there may be a lot of potential for collaboration. This week’s talks have been amplitudes-focused, I’m looking forward to the talks next week that will highlight connections between the two fields.

Breakthrough Prize for Supergravity

This week, $3 Million was awarded by the Breakthrough Prize to Sergio Ferrara, Daniel Z. Freedman and Peter van Nieuwenhuizen, the discoverers of the theory of supergravity, part of a special award separate from their yearly Fundamental Physics Prize. There’s a nice interview with Peter van Nieuwenhuizen on the Stony Brook University website, about his reaction to the award.

The Breakthrough Prize was designed to complement the Nobel Prize, rewarding deserving researchers who wouldn’t otherwise get the Nobel. The Nobel Prize is only awarded to theoretical physicists when they predict something that is later observed in an experiment. Many theorists are instead renowned for their mathematical inventions, concepts that other theorists build on and use but that do not by themselves make testable predictions. The Breakthrough Prize celebrates these theorists, and while it has also been awarded to others who the Nobel committee could not or did not recognize (various large experimental collaborations, Jocelyn Bell Burnell), this has always been the physics prize’s primary focus.

The Breakthrough Prize website describes supergravity as a theory that combines gravity with particle physics. That’s a bit misleading: while the theory does treat gravity in a “particle physics” way, unlike string theory it doesn’t solve the famous problems with combining quantum mechanics and gravity. (At least, as far as we know.)

It’s better to say that supergravity is a theory that links gravity to other parts of particle physics, via supersymmetry. Supersymmetry is a relationship between two types of particles: bosons, like photons, gravitons, or the Higgs, and fermions, like electrons or quarks. In supersymmetry, each type of boson has a fermion “partner”, and vice versa. In supergravity, gravity itself gets a partner, called the gravitino. Supersymmetry links the properties of particles and their partners together: both must have the same mass and the same charge. In a sense, it can unify different types of particles, explaining both under the same set of rules.

In the real world, we don’t see bosons and fermions with the same mass and charge. If gravitinos exist, then supersymmetry would have to be “broken”, giving them a high mass that makes them hard to find. Some hoped that the Large Hadron Collider could find these particles, but now it looks like it won’t, so there is no evidence for supergravity at the moment.

Instead, supergravity’s success has been as a tool to understand other theories of gravity. When the theory was proposed in the 1970’s, it was thought of as a rival to string theory. Instead, over the years it consistently managed to point out aspects of string theory that the string theorists themselves had missed, for example noticing that the theory needed not just strings but higher-dimensional objects called “branes”. Now, supergravity is understood as one part of a broader string theory picture.

In my corner of physics, we try to find shortcuts for complicated calculations. We benefit a lot from toy models: simpler, unrealistic theories that let us test our ideas before applying them to the real world. Supergravity is one of the best toy models we’ve got, a theory that makes gravity simple enough that we can start to make progress. Right now, colleagues of mine are developing new techniques for calculations at LIGO, the gravitational wave telescope. If they hadn’t worked with supergravity first, they would never have discovered these techniques.

The discovery of supergravity by Ferrara, Freedman, and van Nieuwenhuizen is exactly the kind of work the Breakthrough Prize was created to reward. Supergravity is a theory with deep mathematics, rich structure, and wide applicability. There is of course no guarantee that such a theory describes the real world. What is guaranteed, though, is that someone will find it useful.