Tag Archives: quantum field theory

Why You Might Want to Bootstrap

A few weeks back, Quanta Magazine had an article about attempts to “bootstrap” the laws of physics, starting from simple physical principles and pulling out a full theory “by its own bootstraps”. This kind of work is a cornerstone of my field, a shared philosophy that motivates a lot of what we do. Building on deep older results, people in my field have found that just a few simple principles are enough to pick out specific physical theories.

There are limits to this. These principles pick out broad traits of theories: gravity versus the strong force versus the Higgs boson. As far as we know they don’t separate more closely related forces, like the strong nuclear force and the weak nuclear force. (Originally, the Quanta article accidentally made it sound like we know why there are four fundamental forces: we don’t, and the article’s phrasing was corrected.) More generally, a bootstrap method isn’t going to tell you which principles are the right ones. For any set of principles, you can always ask “why?”

With that in mind, why would you want to bootstrap?

First, it can make your life simpler. Those simple physical principles may be clear at the end, but they aren’t always obvious at the start of a calculation. If you don’t make good use of them, you might find you’re calculating many things that violate those principles, things that in the end all add up to zero. Bootstrapping can let you skip that part of the calculation, and sometimes go straight to the answer.

Second, it can suggest possibilities you hadn’t considered. Sometimes, your simple physical principles don’t select a unique theory. Some of the options will be theories you’ve heard of, but some might be theories that never would have come up, or even theories that are entirely new. Trying to understand the new theories, to see whether they make sense and are useful, can lead to discovering new principles as well.

Finally, even if you don’t know which principles are the right ones, some principles are better than others. If there is an ultimate theory that describes the real world, it can’t be logically inconsistent. That’s a start, but it’s quite a weak requirement. There are principles that aren’t required by logic itself, but that still seem important in making the world “make sense”. Often, we appreciate these principles only after we’ve seen them at work in the real world. The best example I can think of is relativity: while Newtonian mechanics is logically consistent, it requires a preferred reference frame, a fixed notion for which things are moving and which things are still. This seemed reasonable for a long time, but now that we understand relativity the idea of a preferred reference frame seems like it should have been obviously wrong. It introduces something arbitrary into the laws of the universe, a “why is it that way?” question that doesn’t have an answer. That doesn’t mean it’s logically inconsistent, or impossible, but it does make it suspect in a way other ideas aren’t. Part of the hope of these kinds of bootstrap methods is that they uncover principles like that, principles that aren’t mandatory but that are still in some sense “obvious”. Hopefully, enough principles like that really do specify the laws of physics. And if they don’t, we’ll at least have learned how to calculate better.

Calculating the Hard Way, for Science!

I had a new paper out last week, with Jacob Bourjaily and Matthias Volk. We’re calculating the probability that particles bounce off each other in our favorite toy model, N=4 super Yang-Mills. And this time, we’re doing it the hard way.

The “easy way” we didn’t take is one I have a lot of experience with. Almost as long as I’ve been writing this blog, I’ve been calculating these particle probabilities by “guesswork”: starting with a plausible answer, then honing it down until I can be confident it’s right. This might sound reckless, but it works remarkably well, letting us calculate things we could never have hoped for with other methods. The catch is that “guessing” is much easier when we know what we’re looking for: in particular, it works much better in toy models than in the real world.

Over the last few years, though, I’ve been using a much more “normal” method, one that so far has a better track record in the real world. This method, too, works better than you would expect, and we’ve managed some quite complicated calculations.

So we have an “easy way”, and a “hard way”. Which one is better? Is the hard way actually harder?

To test that, you need to do the same calculation both ways, and see which is easier. You want it to be a fair test: if “guessing” only works in the toy model, then you should do the “hard” version in the toy model as well. And you don’t want to give “guessing” any unfair advantages. In particular, the “guess” method works best when we know a lot about the result we’re looking for: what it’s made of, what symmetries it has. In order to do a fair test, we must use that knowledge to its fullest to improve the “hard way” as well.

We picked an example in the middle: not too easy, and not too hard, a calculation that was done a few years back “the easy way” but not yet done “the hard way”. We plugged in all the modern tricks we could, trying to use as much of what we knew as possible. We trained a grad student: Matthias Volk, who did the lion’s share of the calculation and learned a lot in the process. We worked through the calculation, and did it properly the hard way.

Which method won?

In the end, the hard way was indeed harder…but not by that much! Most of the calculation went quite smoothly, with only a few difficulties at the end. Just five years ago, when the calculation was done “the easy way”, I doubt anyone would have expected the hard way to be viable. But with modern tricks it wasn’t actually that hard.

This is encouraging. It tells us that the “hard way” has potential, that it’s almost good enough to compete at this kind of calculation. It tells us that the “easy way” is still quite powerful. And it reminds us that the more we know, and the more we apply our knowledge, the more we can do.

QCD Meets Gravity 2019

I’m at UCLA this week for QCD Meets Gravity, a conference about the surprising ways that gravity is “QCD squared”.

When I attended this conference two years ago, the community was branching out into a new direction: using tools from particle physics to understand the gravitational waves observed at LIGO.

At this year’s conference, gravitational waves have grown from a promising new direction to a large fraction of the talks. While there were still the usual talks about quantum field theory and string theory (everything from bootstrap methods to a surprising application of double field theory), gravitational waves have clearly become a major focus of this community.

This was highlighted before the first talk, when Zvi Bern brought up a recent paper by Thibault Damour. Bern and collaborators had recently used particle physics methods to push beyond the state of the art in gravitational wave calculations. Damour, an expert in the older methods, claims that Bern et al’s result is wrong, and in doing so also questions an earlier result by Amati, Ciafaloni, and Veneziano. More than that, Damour argued that the whole approach of using these kinds of particle physics tools for gravitational waves is misguided.

There was a lot of good-natured ribbing of Damour in the rest of the conference, as well as some serious attempts to confront his points. Damour’s argument so far is somewhat indirect, so there is hope that a more direct calculation (which Damour is currently pursuing) will resolve the matter. In the meantime, Julio Parra-Martinez described a reproduction of the older Amati/Ciafaloni/Veneziano result with more Damour-approved techniques, as well as additional indirect arguments that Bern et al got things right.

Before the QCD Meets Gravity community worked on gravitational waves, other groups had already built a strong track record in the area. One encouraging thing about this conference was how much the two communities are talking to each other. Several speakers came from the older community, and there were a lot of references in both groups’ talks to the other group’s work. This, more than even the content of the talks, felt like the strongest sign that something productive is happening here.

Many talks began by trying to motivate these gravitational calculations, usually to address the mysteries of astrophysics. Two talks were more direct, with Ramy Brustein and Pierre Vanhove speculating about new fundamental physics that could be uncovered by these calculations. I’m not the kind of physicist who does this kind of speculation, and I confess both talks struck me as rather strange. Vanhove in particular explicitly rejects the popular criterion of “naturalness”, making me wonder if his work is the kind of thing critics of naturalness have in mind.

QCD and Reductionism: Stranger Than You’d Think

Earlier this year, I made a list of topics I wanted to understand. The most abstract and technical of them was something called “Wilsonian effective field theory”. I still don’t understand Wilsonian effective field theory. But while thinking about it, I noticed something that seemed weird. It’s something I think many physicists already understand, but that hasn’t really sunk in with the public yet.

There’s an old problem in particle physics, described in many different ways over the years. Take our theories and try to calculate some reasonable number (say, the angle an electron turns in a magnetic field), and instead of that reasonable number we get infinity. We fix this problem with a process called renormalization that hides that infinity away, changing the “normalization” of some constant like a mass or a charge. While renormalization first seemed like a shady trick, physicists eventually understood it better. First, we thought of it as a way to work around our ignorance, that the true final theory would have no infinities at all. Later, physicists instead thought about renormalization in terms of scaling.

Imagine looking at the world on a camera screen. You can zoom in, or zoom out. The further you zoom out, the more details you’ll miss: they’re just too small to be visible on your screen. You can guess what they might be, but your picture will be different depending on how you zoom.

In particle physics, many of our theories are like that camera. They come with a choice of “zoom setting”, a minimum scale where they still effectively tell the whole story. We call theories like these effective field theories. Some physicists argue that these are all we can ever have: since our experiments are never perfect, there will always be a scale so small we have no evidence about it.

In general, theories can be quite different at different scales. Some theories, though, are especially nice: they look almost the same as we zoom in to smaller scales. The only things that change are the mass of different particles, and their charges.

Trippy

One theory like this is Quantum Chromodynamics (or QCD), the theory of quarks and gluons. Zoom in, and the theory looks pretty much the same, with one crucial change: the force between particles get weaker. There’s a number, called the “coupling constant“, that describes how strong a force is, think of it as sort of like an electric charge. As you zoom in to quarks and gluons, you find you can still describe them with QCD, just with a smaller coupling constant. If you could zoom “all the way in”, the constant (and thus the force between particles) would be zero.

This makes QCD a rare kind of theory: one that could be complete to any scale. No matter how far you zoom in, QCD still “makes sense”. It never gives contradictions or nonsense results. That doesn’t mean it’s actually true: it interacts with other forces, like gravity, that don’t have complete theories, so it probably isn’t complete either. But if we didn’t have gravity or electricity or magnetism, if all we had were quarks and gluons, then QCD could have been the final theory that described them.

And this starts feeling a little weird, when you think about reductionism.

Philosophers define reductionism in many different ways. I won’t be that sophisticated. Instead, I’ll suggest the following naive definition: Reductionism is the claim that theories on larger scales reduce to theories on smaller scales.

Here “reduce to” is intentionally a bit vague. It might mean “are caused by” or “can be derived from” or “are explained by”. I’m gesturing at the sort of thing people mean when they say that biology reduces to chemistry, or chemistry to physics.

What happens when we think about QCD, with this intuition?

QCD on larger scales does indeed reduce to QCD on smaller scales. If you want to ask why QCD on some scale has some coupling constant, you can explain it by looking at the (smaller) QCD coupling constant on a smaller scale. If you have equations for QCD on a smaller scale, you can derive the right equations for a larger scale. In some sense, everything you observe in your larger-scale theory of QCD is caused by what happens in your smaller-scale theory of QCD.

But this isn’t quite the reductionism you’re used to. When we say biology reduces to chemistry, or chemistry reduces to physics, we’re thinking of just a few layers: one specific theory reduces to another specific theory. Here, we have an infinite number of layers, every point on the scale from large to small, each one explained by the next.

Maybe you think you can get out of this, by saying that everything should reduce to the smallest scale. But remember, the smaller the scale the smaller our “coupling constant”, and the weaker the forces between particles. At “the smallest scale”, the coupling constant is zero, and there is no force. It’s only when you put your hand on the zoom nob and start turning that the force starts to exist.

It’s reductionism, perhaps, but not as we know it.

Now that I understand this a bit better, I get some of the objections to my post about naturalness a while back. I was being too naive about this kind of thing, as some of the commenters (particularly Jacques Distler) noted. I believe there’s a way to rephrase the argument so that it still works, but I’d have to think harder about how.

I also get why I was uneasy about Sabine Hossenfelder’s FQXi essay on reductionism. She considered a more complicated case, where the chain from large to small scale could be broken, a more elaborate variant of a problem in Quantum Electrodynamics. But if I’m right here, then it’s not clear that scaling in effective field theories is even the right way to think about this. When you have an infinite series of theories that reduce to other theories, you’re pretty far removed from what most people mean by reductionism.

Finally, this is the clearest reason I can find why you can’t do science without an observer. The “zoom” is just a choice we scientists make, an arbitrary scale describing our ignorance. But without it, there’s no way to describe QCD. The notion of scale is an inherent and inextricable part of the theory, and it doesn’t have to mean our theory is incomplete.

Experts, please chime in here if I’m wrong on the physics here. As I mentioned at the beginning, I still don’t think I understand Wilsonian effective field theory. If I’m right though, this seems genuinely weird, and something more of the public should appreciate.

Rooting out the Answer

I have a new paper out today, with Jacob Bourjaily, Andrew McLeod, Matthias Wilhelm, Cristian Vergu and Matthias Volk.

There’s a story I’ve told before on this blog, about a kind of “alphabet” for particle physics predictions. When we try to make a prediction in particle physics, we need to do complicated integrals. Sometimes, these integrals simplify dramatically, in unexpected ways. It turns out we can understand these simplifications by writing the integrals in a sort of “alphabet”, breaking complicated mathematical “periods” into familiar logarithms. If we want to simplify an integral, we can use relations between logarithms like these:

\log(a b)=\log(a)+\log(b),\quad \log(a^n)=n\log(a)

to factor our “alphabet” into pieces as simple as possible.

The simpler the alphabet, the more progress you can make. And in the nice toy model theory we’re working with, the alphabets so far have been simple in one key way. Expressed in the right variables, they’re rational. For example, they contain no square roots.

Would that keep going? Would we keep finding rational alphabets? Or might the alphabets, instead, have square roots?

After some searching, we found a clean test case. There was a calculation we could do with just two Feynman diagrams. All we had to do was subtract one from the other. If they still had square roots in their alphabet, we’d have proven that the nice, rational alphabets eventually had to stop.

Easy-peasy

So we calculated these diagrams, doing the complicated integrals. And we found they did indeed have square roots in their alphabet, in fact many more than expected. They even had square roots of square roots!

You’d think that would be the end of the story. But square roots are trickier than you’d expect.

Remember that to simplify these integrals, we break them up into an alphabet, and factor the alphabet. What happens when we try to do that with an alphabet that has square roots?

Suppose we have letters in our alphabet with \sqrt{-5}. Suppose another letter is the number 9. You might want to factor it like this:

9=3\times 3

Simple, right? But what if instead you did this:

9=(2+ \sqrt{-5} )\times(2- \sqrt{-5} )

Once you allow \sqrt{-5} in the game, you can factor 9 in two different ways. The central assumption, that you can always just factor your alphabet, breaks down. In mathematical terms, you no longer have a unique factorization domain.

Instead, we had to get a lot more mathematically sophisticated, factoring into something called prime ideals. We got that working and started crunching through the square roots in our alphabet. Things simplified beautifully: we started with a result that was ten million terms long, and reduced it to just five thousand. And at the end of the day, after subtracting one integral from the other…

We found no square roots!

After all of our simplifications, all the letters we found were rational. Our nice test case turned out much, much simpler than we expected.

It’s been a long road on this calculation, with a lot of false starts. We were kind of hoping to be the first to find square root letters in these alphabets; instead it looks like another group will beat us to the punch. But we developed a lot of interesting tricks along the way, and we thought it would be good to publish our “null result”. As always in our field, sometimes surprising simplifications are just around the corner.

Calabi-Yaus in Feynman Diagrams: Harder and Easier Than Expected

I’ve got a new paper up, about the weird geometrical spaces we keep finding in Feynman diagrams.

With Jacob Bourjaily, Andrew McLeod, and Matthias Wilhelm, and most recently Cristian Vergu and Matthias Volk, I’ve been digging up odd mathematics in particle physics calculations. In several calculations, we’ve found that we need a type of space called a Calabi-Yau manifold. These spaces are often studied by string theorists, who hope they represent how “extra” dimensions of space are curled up. String theorists have found an absurdly large number of Calabi-Yau manifolds, so many that some are trying to sift through them with machine learning. We wanted to know if our situation was quite that ridiculous: how many Calabi-Yaus do we really need?

So we started asking around, trying to figure out how to classify our catch of Calabi-Yaus. And mostly, we just got confused.

It turns out there are a lot of different tools out there for understanding Calabi-Yaus, and most of them aren’t all that useful for what we’re doing. We went in circles for a while trying to understand how to desingularize toric varieties, and other things that will sound like gibberish to most of you. In the end, though, we noticed one small thing that made our lives a whole lot simpler.

It turns out that all of the Calabi-Yaus we’ve found are, in some sense, the same. While the details of the physics varies, the overall “space” is the same in each case. It’s a space we kept finding for our “Calabi-Yau bestiary”, but it turns out one of the “traintrack” diagrams we found earlier can be written in the same way. We found another example too, a “wheel” that seems to be the same type of Calabi-Yau.

And that actually has a sensible name

We also found many examples that we don’t understand. Add another rung to our “traintrack” and we suddenly can’t write it in the same space. (Personally, I’m quite confused about this one.) Add another spoke to our wheel and we confuse ourselves in a different way.

So while our calculation turned out simpler than expected, we don’t think this is the full story. Our Calabi-Yaus might live in “the same space”, but there are also physics-related differences between them, and these we still don’t understand.

At some point, our abstract included the phrase “this paper raises more questions than it answers”. It doesn’t say that now, but it’s still true. We wrote this paper because, after getting very confused, we ended up able to say a few new things that hadn’t been said before. But the questions we raise are if anything more important. We want to inspire new interest in this field, toss out new examples, and get people thinking harder about the geometry of Feynman integrals.

The Changing Meaning of “Explain”

This is another “explanations are weird” post.

I’ve been reading a biography of James Clerk Maxwell, who formulated the theory of electromagnetism. Nowadays, we think about the theory in terms of fields: we think there is an “electromagnetic field”, filling space and time. At the time, though, this was a very unusual way to think, and not even Maxwell was comfortable with it. He felt that he had to present a “physical model” to justify the theory: a picture of tiny gears and ball bearings, somehow occupying the same space as ordinary matter.

Bang! Bang! Maxwell’s silver bearings…

Maxwell didn’t think space was literally filled with ball bearings. He did, however, believe he needed a picture that was sufficiently “physical”, that wasn’t just “mathematics”. Later, when he wrote down a theory that looked more like modern field theory, he still thought of it as provisional: a way to use Lagrange’s mathematics to ignore the unknown “real physical mechanism” and just describe what was observed. To Maxwell, field theory was a description, but not an explanation.

This attitude surprised me. I would have thought physicists in Maxwell’s day could have accepted fields. After all, they had accepted Newton.

In his time, there was quite a bit of controversy about whether Newton’s theory of gravity was “physical”. When rival models described planets driven around by whirlpools, Newton simply described the mathematics of the force, an “action at a distance”. Newton famously insisted hypotheses non fingo, “I feign no hypotheses”, and insisted that he wasn’t saying anything about why gravity worked, merely how it worked. Over time, as the whirlpool models continued to fail, people gradually accepted that gravity could be explained as action at a distance.

You’d think that this would make them able to accept fields as well. Instead, by Maxwell’s day the options for a “physical explanation” had simply been enlarged by one. Now instead of just explaining something with mechanical parts, you could explain it with action at a distance as well. Indeed, many physicists tried to explain electricity and magnetism with some sort of gravity-like action at a distance. They failed, though. You really do need fields.

The author of the biography is an engineer, not a physicist, so I find his perspective unusual at times. After discussing Maxwell’s discomfort with fields, the author says that today physicists are different: instead of insisting on a physical explanation, they accept that there are some things they just cannot know.

At first, I wanted to object: we do have physical explanations, we explain things with fields! We have electromagnetic fields and electron fields, gluon fields and Higgs fields, even a gravitational field for the shape of space-time. These fields aren’t papering over some hidden mechanism, they are the mechanism!

Are they, though?

Fields aren’t quite like the whirlpools and ball bearings of historical physicists. Sometimes fields that look different are secretly the same: the two “different explanations” will give the same result for any measurement you could ever perform. In my area of physics, we try to avoid this by focusing on the measurements instead, building as much as we can out of observable quantities instead of fields. In effect we’re going back yet another layer, another dose of hypotheses non fingo.

Physicists still ask for “physical explanations”, and still worry that some picture might be “just mathematics”. But what that means has changed, and continues to change. I don’t think we have a common standard right now, at least nothing as specific as “mechanical parts or action at a distance, and nothing else”. Somehow, we still care about whether we’ve given an explanation, or just a description, even though we can’t define what an explanation is.