Tag Archives: science communication

Socratic Grilling, Crackpots, and Trolls

The blog Slate Star Codex had an interesting post last month, titled Socratic Grilling. The post started with a dialogue, a student arguing with a teacher about germ theory.

Student: Hey, wait. If germs are spread from person to person on touch, why doesn’t the government just mandate one week when nobody is allowed to touch anyone else? Then all the germs will die and we’ll never have to worry about germs again.

Out of context, the student looks like a crackpot. But in context, the student is just trying to learn, practicing a more aggressive version of Socratic questioning which the post dubbed “Socratic grilling”.

The post argued that Socratic grilling is normal and unavoidable, and that experts treat it with far more hostility than they should. Experts often reject this kind of questioning as arrogant, unless the non-expert doing the grilling is hilariously deferential. (The post’s example: “I know I am but a mere student, and nowhere near smart enough to actually challenge you, so I’m sure I’m just misunderstanding this, but the thing you just said seems really confusing to me, and I’m not saying it’s not true, but I can’t figure out how it possibly could be true, which is my fault and not yours, but could you please try to explain it differently?”)

The post made me think a bit about my own relationship with crackpots. I’d like to say that when a non-expert challenges me I listen to them regardless of their tone, that you don’t need to be so deferential around me. In practice, though…well, it certainly helps.

What I want (or at least what I want to want) is not humility, but intellectual humility. You shouldn’t have to talk about how inexperienced you are to get me to listen to you. But you should make clear what you know, how you know it, and what the limits of that evidence are. If I’m right, it helps me understand what you’re misunderstanding. If you’re right, it helps me get why your argument works.

I’ve referred to both non-experts and crackpots in this post. To be clear, I think of one as a subgroup of the other. When I refer to crackpots, I’m thinking of a specific sort of non-expert: one with a very detailed idea they have invested a lot of time and passion into, which the mainstream considers impossible. If you’re just skeptical of general relativity or quantum mechanics, you’re not a crackpot. But if you’ve come up with your own replacement to general relativity or quantum mechanics, you probably are. Note also that, no matter how dumb their ideas, I don’t think of experts in a topic as crackpots on that topic. Garrett Lisi is silly, and probably wrong, but he’s not a crackpot.

A result of this is that crackpots (as I define them) rarely do actual Socratic grilling. For a non-expert who hasn’t developed their own theory, Socratic grilling can be a good way to figure out what the heck those experts are thinking. But for a crackpot, the work they have invested in their ideas means they’re often much less interested in what the experts have to say.

This isn’t always the case. I’ve had some perfectly nice conversations with crackpots. I remember an email exchange with a guy who had drawn what he thought were Feynman diagrams without really knowing what they were, and wanted me to calculate them. While I quit that conversation out of frustration, it was my fault, not his.

Sometimes, though, it’s clear from the tactics that someone isn’t trying to learn. There’s a guy who has tried to post variations of the same comment on this blog sixteen times. He picks a post that mentions math, and uses that as an excuse to bring up his formula for the Hubble constant (“you think you’re so good at math, then explain this!”). He says absolutely nothing about the actual post, and concludes by mentioning that his book is available on Kindle.

It’s pretty clear that spammers like that aren’t trying to learn. They aren’t doing Socratic grilling, they’re just trying (and failing) to get people to buy their book.

It’s less clear how to distinguish Socratic grilling from trolling. Sometimes, someone asks an aggressive series of questions because they think you’re wrong, and want to clarify why. Sometimes, though, someone asks an aggressive series of questions because they want to annoy you.

How can you tell if someone is just trolling? Inconsistency is one way. A Socratic grill-er will have a specific position in mind, even if you can’t quite tell what it is. A troll will say whatever they need to to keep arguing. If it becomes clear that there isn’t any consistent picture behind what the other person is saying, they’re probably just a troll.

In the end, no-one is a perfect teacher. If you aren’t making headway explaining something, if an argument just keeps going in circles, then you probably shouldn’t continue. You may be dealing with a troll, or it might just be honest Socratic grilling, but either way it doesn’t matter: if you’re stuck, you’re stuck, and it’s more productive to back off than to get in a screaming match.

That’s been my philosophy anyway. I engage with Socratic grilling as long as it’s productive, whether or not you’re a crackpot. But if you spam, I’ll block your comments, while if I think you’re trolling or not listening I’ll just stop responding. It’s not worth my time at that point, and it’s not worth yours either.

Communicating the Continuum Hypothesis

I have a friend who is shall we say, pessimistic, about science communication. He thinks it’s too much risk for too little gain, too many misunderstandings while the most important stuff is so abstract the public will never understand it anyway. When I asked him for an example, he started telling me about a professor who works on the continuum hypothesis.

The continuum hypothesis is about different types of infinity. You might have thought there was only one type of infinity, but in the nineteenth century the mathematician Georg Cantor showed there were more, the most familiar of which are countable and uncountable. If you have a countably infinite number of things, then you can “count” them, “one, two, three…”, assigning a number to each one (even if, since they’re still infinite, you never actually finish). To imagine something uncountably infinite, think of a continuum, like distance on a meter stick, where you can always look at smaller and smaller distances. Cantor proved, using various ingenious arguments, that these two types of infinity are different: the continuum is “bigger” than a mere countable infinity.

Cantor wondered if there could be something in between, a type of infinity bigger than countable and smaller than uncountable. His hypothesis (now called the continuum hypothesis) was that there wasn’t: he thought there was no type of infinite between countable and uncountable.

(If you think you have an easy counterexample, you’re wrong. In particular, fractions are countable.)

Kurt Gödel didn’t prove the continuum hypothesis, but in 1940 he showed that at least it couldn’t be disproved, which you’d think would be good enough. In 1964, though, another mathematician named Paul Cohen showed that the continuum hypothesis also can’t be proved, at least with mathematicians’ usual axioms.

In science, if something can’t be proved or disproved, then we shrug our shoulders and say we don’t know. Math is different. In math, we choose the axioms. All we have to do is make sure they’re consistent.

What Cohen and Gödel really showed is that mathematics is consistent either way: if the continuum hypothesis is true or false, the rest of mathematics still works just as well. You can add it as an extra axiom, and add-on that gives you different types of infinity but doesn’t change everyday arithmetic.

You might think that this, finally, would be the end of the story. Instead, it was the beginning of a lively debate that continues to this day. It’s a debate that touches on what mathematics is for, whether infinity is merely a concept or something out there in the world, whether some axioms are right or wrong and what happens when you change them. It involves attempts to codify intuition, arguments about which rules “make sense” that blur the boundary between philosophy and mathematics. It also involves the professor my friend mentioned, W. H. Woodin.

Now, can I explain Woodin’s research to you?

No. I don’t understand it myself, it’s far more abstract and weird than any mathematics I’ve ever touched.

Despite that, I can tell you something about it. I can tell you about the quest he’s on, its history and its relevance, what is and is not at stake. I can get you excited, for the same reasons that I’m excited, I can show you it’s important for the same reasons I think it’s important. I can give you the “flavor” of the topic, and broaden your view of the world you live in, one containing a hundred-year conversation about the nature of infinity.

My friend is right that the public will never understand everything. I’ll never understand everything either. But what we can do, what I strive to do, is to appreciate this wide weird world in all its glory. That, more than anything, is why I communicate science.

Reader Background Poll Reflections

A few weeks back I posted a poll, asking you guys what sort of physics background you have. The idea was to follow up on a poll I did back in 2015, to see how this blog’s audience has changed.

One thing that immediately leaped out of the data was how many of you are physicists. As of writing this, 66% of readers say they either have a PhD in physics or a related field, or are currently in grad school. This includes 7% specifically from my sub-field, “amplitudeology” (though this number may be higher than usual since we just had our yearly conference, and more amplitudeologists were reminded my blog exists).

I didn’t use the same categories in 2015, so the numbers can’t be easily compared. In 2015 only 2.5% of readers described themselves as amplitudeologists. Adding these up with the physics PhDs and grad students gives 59%, which goes up to 64.5% if I include the mathematicians (who this year might have put either “PhD in a related field” or “Other Academic”). So overall the percentages are pretty similar, though now it looks like more of my readers are grad students.

Despite the small difference, I am a bit worried: it looks like I’m losing non-physicist readers. I could flatter myself and think that I inspired those non-physicists to go to grad school, but more realistically I should admit that fewer of my posts have been interesting to a non-physics audience. In 2015 I worked at the Perimeter Institute, and helped out with their public lectures. Now I’m at the Niels Bohr Institute, and I get fewer opportunities to hear questions from non-physicists. I get fewer ideas for interesting questions to answer.

I want to keep this blog’s language accessible and its audience general. I appreciate that physicists like this blog and view it as a resource, but I don’t want it to turn into a blog for physicists only. I’d like to encourage the non-physicists in the audience: ask questions! Don’t worry if it sounds naive, or if the question seems easy: if you’re confused, likely others are too.

Reader Background Poll 2.0

Back in 2015, I did a poll asking how much physics background you guys had. Now four years and many new readers later, I’d like to revisit the question. I’ll explain the categories below the poll:

Amplitudeologist: You have published a paper about scattering amplitudes in quantum field theories, or expect to publish one within the next year or so.

Physics (or related field) PhD: You have a PhD in physics, or in a field with related background such as astronomy or some parts of mathematics.

Physics (or related field) Grad Student: You are a graduate student in physics or a related field. Specifically, you are either a PhD student, or a Master’s student in a research-focused program.

Undergrad or Lower: You are currently an undergraduate student (studying for a Bachelor’s degree) or are in an earlier stage of education (for example a high school student).

Physics Autodidact: Included by popular demand from the last poll: while you don’t have a physics PhD, you have taught yourself about the subject extensively beyond your formal schooling.

Other Academic: You work in Academia, but not in physics or a closely related field.

Other Technical Profession: You work in a technical profession, such as engineering, medicine, or STEM teaching.

None of the Above: Something else.

If you fit more than one category, pick the first that matches you: for example, if you are an undergrad with a published paper in Amplitudes, list yourself as an Amplitudeologist (also, well done!)

Book Review: Thirty Years That Shook Physics and Mr Tompkins in Paperback

George Gamow was one of the “quantum kids” who got their start at the Niels Bohr Institute in the 30’s. He’s probably best known for the Alpher, Bethe, Gamow paper, which managed to combine one of the best sources of evidence we have for the Big Bang with a gratuitous Greek alphabet pun. He was the group jester in a lot of ways: the historians here have archives full of his cartoons and in-jokes.

Naturally, he also did science popularization.

I recently read two of Gamow’s science popularization books, “Mr Tompkins” and “Thirty Years That Shook Physics”. Reading them was a trip back in time, to when people thought about physics in surprisingly different ways.

“Mr. Tompkins” started as a series of articles in Discovery, a popular science magazine. They were published as a book in 1940, with a sequel in 1945 and an update in 1965. Apparently they were quite popular among a certain generation: the edition I’m reading has a foreword by Roger Penrose.

(As an aside: Gamow mentions that the editor of Discovery was C. P. Snow…that C. P. Snow?)

Mr Tompkins himself is a bank clerk who decides on a whim to go to a lecture on relativity. Unable to keep up, he falls asleep, and dreams of a world in which the speed of light is much slower than it is in our world. Bicyclists visibly redshift, and travelers lead much longer lives than those who stay at home. As the book goes on he meets the same professor again and again (eventually marrying his daughter) and sits through frequent lectures on physics, inevitably falling asleep and experiencing it first-hand: jungles where Planck’s constant is so large that tigers appear as probability clouds, micro-universes that expand and collapse in minutes, and electron societies kept strictly monogamous by “Father Paulini”.

The structure definitely feels dated, and not just because these days people don’t often go to physics lectures for fun. Gamow actually includes the full text of the lectures that send Mr Tompkins to sleep, and while they’re not quite boring enough to send the reader to sleep they are written on a higher level than the rest of the text, with more technical terms assumed. In the later additions to the book the “lecture” aspect grows: the last two chapters involve a dream of Dirac explaining antiparticles to a dolphin in basically the same way he would explain them to a human, and a discussion of mesons in a Japanese restaurant where the only fantastical element is a trio of geishas acting out pion exchange.

Some aspects of the physics will also feel strange to a modern audience. Gamow presents quantum mechanics in a way that I don’t think I’ve seen in a modern text: while modern treatments start with uncertainty and think of quantization as a consequence, Gamow starts with the idea that there is a minimum unit of action, and derives uncertainty from that. Some of the rest is simply limited by timing: quarks weren’t fully understood even by the 1965 printing, in 1945 they weren’t even a gleam in a theorist’s eye. Thus Tompkins’ professor says that protons and neutrons are really two states of the same particle and goes on to claim that “in my opinion, it is quite safe to bet your last dollar that the elementary particles of modern physics [electrons, protons/neutrons, and neutrinos] will live up to their name.” Neutrinos also have an amusing status: they hadn’t been detected when the earlier chapters were written, and they come across rather like some people write about dark matter today, as a silly theorist hypothesis that is all-too-conveniently impossible to observe.

“Thirty Years That Shook Physics”, published in 1966, is a more usual sort of popular science book, describing the history of the quantum revolution. While mostly focused on the scientific concepts, Gamow does spend some time on anecdotes about the people involved. If you’ve read much about the time period, you’ll probably recognize many of the anecdotes (for example, the Pauli Principle that a theorist can break experimental equipment just by walking in to the room, or Dirac’s “discovery” of purling), even the ones specific to Gamow have by now been spread far and wide.

Like Mr Tompkins, the level in this book is not particularly uniform. Gamow will spend a paragraph carefully defining an average, and then drop the word “electroscope” as if everyone should know what it is. The historical perspective taught me a few things I perhaps should have already known, but found surprising anyway. (The plum-pudding model was an actual mathematical model, and people calculated its consequences! Muons were originally thought to be mesons!)

Both books are filled with Gamow’s whimsical illustrations, something he was very much known for. Apparently he liked to imitate other art styles as well, which is visible in the portraits of physicists at the front of each chapter.

Pictured: the electromagnetic spectrum as an infinite piano

1966 was late enough that this book doesn’t have the complacency of the earlier chapters in Mr Tompkins: Gamow knew that there were more particles than just electrons, nucleons, and neutrinos. It was still early enough, though, that the new particles were not fully understood. It’s interesting seeing how Gamow reacts to this: his expectation was that physics was on the cusp of another massive change, a new theory built on new fundamental principles. He speculates that there might be a minimum length scale (although oddly enough he didn’t expect it to be related to gravity).

It’s only natural that someone who lived through the dawn of quantum mechanics should expect a similar revolution to follow. Instead, the revolution of the late 60’s and early 70’s was in our understanding: not new laws of nature so much as new comprehension of just how much quantum field theory can actually do. I wonder if the generation who lived through that later revolution left it with the reverse expectation: that the next crisis should be solved in a similar way, that the world is quantum field theory (or close cousins, like string theory) all the way down and our goal should be to understand the capabilities of these theories as well as possible.

The final section of the book is well worth waiting for. In 1932, Gamow directed Bohr’s students in staging a play, the “Blegdamsvej Faust”. A parody of Faust, it features Bohr as god, Pauli as Mephistopheles, and Ehrenfest as the “erring Faust” (Gamow’s pun, not mine) that he tempts to sin with the promise of the neutrino, Gretchen. The piece, translated to English by Gamow’s wife Barbara, is filled with in-jokes on topics as obscure as Bohr’s habitual mistakes when speaking German. It’s gloriously weird and well worth a read. If you’ve ever seen someone do a revival performance, let me know!

A Newtonmas Present of Internet Content

I’m lazy this Newtonmas, so instead of writing a post of my own I’m going to recommend a few other people who do excellent work.

Quantum Frontiers is a shared blog updated by researchers connected to Caltech’s Institute for Quantum Information and Matter. While the whole blog is good, I’m going to be more specific and recommend the posts by Nicole Yunger Halpern. Nicole is really a great writer, and her posts are full of vivid imagery and fun analogies. If she’s not as well-known, it’s only because she lacks the attention-grabbing habit of getting into stupid arguments with other bloggers. Definitely worth a follow.

Recommending Slate Star Codex feels a bit strange, because it seems like everyone I’ve met who would enjoy the blog already reads it. It’s not a physics blog by any stretch, so it’s also an unusual recommendation to give here. Slate Star Codex writes about a wide variety of topics, and while the author isn’t an expert in most of them he does a lot more research than you or I would. If you’re interested in up-to-date meta-analyses on psychology, social science, and policy, pored over by someone with scrupulous intellectual honesty and an inexplicably large amount of time to indulge it, then Slate Star Codex is the blog for you.

I mentioned Piled Higher and Deeper a few weeks back, when I reviewed the author’s popular science book We Have No Idea. Piled Higher and Deeper is a webcomic about life in grad school. Humor is all about exaggeration, and it’s true that Piled Higher and Deeper exaggerates just how miserable and dysfunctional grad school can be…but not by as much as you’d think. I recommend that anyone considering grad school read Piled Higher and Deeper, and take it seriously. Grad school can really be like that, and if you don’t think you can deal with spending five or six years in the world of that comic you should take that into account.

This Week, at Scientific American

I’ve written an article for Scientific American! It went up online this week, the print versions go out on the 25th. The online version is titled “Loopy Particle Math”, the print one is “The Particle Code”, but they’re the same article.

For those who don’t subscribe to Scientific American, sorry about the paywall!

“The Particle Code” covers what will be familiar material to regulars on this blog. I introduce Feynman diagrams, and talk about the “amplitudeologists” who try to find ways around them. I focus on my corner of the amplitudes field, how the work of Goncharov, Spradlin, Vergu, and Volovich introduced us to “symbology”, a set of tricks for taking apart more complicated integrals (or “periods”) into simple logarithmic building blocks. I talk about how my collaborators and I use symbology, using these building blocks to compute amplitudes that would have been impossible with other techniques. Finally, I talk about the frontier of the field, the still-mysterious “elliptic polylogarithms” that are becoming increasingly well-understood.

(I don’t talk about the even more mysterious “Calabi-Yau polylogarithms“…another time for those!)

Working with Scientific American was a fun experience. I got to see how the professionals do things. They got me to clarify and explain, pointing out terms I needed to define and places I should pause to summarize. They took my rough gel-pen drawings and turned them into polished graphics. While I’m still a little miffed about them removing all the contractions, overall I learned a lot, and I think they did a great job of bringing the article to the printed page.