Tag Archives: science fiction

The Multiverse You Can Visit Is Not the True Multiverse

I don’t want to be the kind of science blogger who constantly complains about science fiction, but sometimes I can’t help myself.

When I blogged about zero-point energy a few weeks back, there was a particular book that set me off. Ian McDonald’s River of Gods depicts the interactions of human and AI agents in a fragmented 2047 India. One subplot deals with a power company pursuing zero-point energy, using an imagined completion of M theory called M* theory. This post contains spoilers for that subplot.

What frustrated me about River of Gods is that the physics in it almost makes sense. It isn’t just an excuse for magic, or a standard set of tropes. Even the name “M* theory” is extremely plausible, the sort of term that could get used for technical reasons in a few papers and get accidentally stuck as the name of our fundamental theory of nature. But because so much of the presentation makes sense, it’s actively frustrating when it doesn’t.

The problem is the role the landscape of M* theory plays in the story. The string theory (or M theory) landscape is the space of all consistent vacua, a list of every consistent “default” state the world could have. In the story, one of the AIs is trying to make a portal to somewhere else in the landscape, a world of pure code where AIs can live in peace without competing with humans.

The problem is that the landscape is not actually a real place in string theory. It’s a metaphorical mathematical space, a list organized by some handy coordinates. The other vacua, the other “default states”, aren’t places you can travel to, there just other ways the world could have been.

Ok, but what about the multiverse?

There are physicists out there who like to talk about multiple worlds. Some think they’re hypothetical, others argue they must exist. Sometimes they’ll talk about the string theory landscape. But to get a multiverse out of the string theory landscape, you need something else as well.

Two options for that “something else” exist. One is called eternal inflation, the other is the many-worlds interpretation of quantum mechanics. And neither lets you travel around the multiverse.

In eternal inflation, the universe is expanding faster and faster. It’s expanding so fast that, in most places, there isn’t enough time for anything complicated to form. Occasionally, though, due to quantum randomness, a small part of the universe expands a bit more slowly: slow enough for stars, planets, and maybe life. Each small part like that is its own little “Big Bang”, potentially with a different “default” state, a different vacuum from the string landscape. If eternal inflation is true then you can get multiple worlds, but they’re very far apart, and getting farther every second: not easy to visit.

The many-worlds interpretation is a way to think about quantum mechanics. One way to think about quantum mechanics is to say that quantum states are undetermined until you measure them: a particle could be spinning left or right, Schrödinger’s cat could be alive or dead, and only when measured is their state certain. The many-worlds interpretation offers a different way: by doing away with measurement, it instead keeps the universe in the initial “undetermined” state. The universe only looks determined to us because of our place in it: our states become entangled with those of particles and cats, so that our experiences only correspond to one determined outcome, the “cat alive branch” or the “cat dead branch”. Combine this with the string landscape, and our universe might have split into different “branches” for each possible stable state, each possible vacuum. But you can’t travel to those places, your experiences are still “just on one branch”. If they weren’t, many-worlds wouldn’t be an interpretation, it would just be obviously wrong.

In River of Gods, the AI manipulates a power company into using a particle accelerator to make a bubble of a different vacuum in the landscape. Surprisingly, that isn’t impossible. Making a bubble like that is a bit like what the Large Hadron Collider does, but on a much larger scale. When the Large Hadron Collider detected a Higgs boson, it had created a small ripple in the Higgs field, a small deviation from its default state. One could imagine a bigger ripple doing more: with vastly more energy, maybe you could force the Higgs all the way to a different default, a new vacuum in its landscape of possibilities.

Doing that doesn’t create a portal to another world, though. It destroys our world.

That bubble of a different vacuum isn’t another branch of quantum many-worlds, and it isn’t a far-off big bang from eternal inflation. It’s a part of our own universe, one with a different “default state” where the particles we’re made of can’t exist. And typically, a bubble like that spreads at the speed of light.

In the story, they have a way to stabilize the bubble, stop it from growing or shrinking. That’s at least vaguely believable. But it means that their “portal to another world” is just a little bubble in the middle of a big expensive device. Maybe the AI can live there happily…until the humans pull the plug.

Or maybe they can’t stabilize it, and the bubble spreads and spreads at the speed of light destroying everything. That would certainly be another way for the AI to live without human interference. It’s a bit less peaceful than advertised, though.

Zero-Point Energy, Zero-Point Diagrams

Listen to a certain flavor of crackpot, or a certain kind of science fiction, and you’ll hear about zero-point energy. Limitless free energy drawn from quantum space-time itself, zero-point energy probably sounds like bullshit. Often it is. But lurking behind the pseudoscience and the fiction is a real physics concept, albeit one that doesn’t really work like those people imagine.

In quantum mechanics, the zero-point energy is the lowest energy a particular system can have. That number doesn’t actually have to be zero, even for empty space. People sometimes describe this in terms of so-called virtual particles, popping up from nothing in particle-antiparticle pairs only to annihilate each other again, contributing energy in the absence of any “real particles”. There’s a real force, the Casimir effect, that gets attributed to this, a force that pulls two metal plates together even with no charge or extra electromagnetic field. The same bubbling of pairs of virtual particles also gets used to explain the Hawking radiation of black holes.

I’d like to try explaining all of these things in a different way, one that might clear up some common misconceptions. To start, let’s talk about, not zero-point energy, but zero-point diagrams.

Feynman diagrams are a tool we use to study particle physics. We start with a question: if some specific particles come together and interact, what’s the chance that some (perhaps different) particles emerge? We start by drawing lines representing the particles going in and out, then connect them in every way allowed by our theory. Finally we translate the diagrams to numbers, to get an estimate for the probability. In particle physics slang, the number of “points” is the total number of particles: particles in, plus particles out. For example, let’s say we want to know the chance that two electrons go in and two electrons come out. That gives us a “four-point” diagram: two in, plus two out. A zero-point diagram, then, means zero particles in, zero particles out.

A four-point diagram and a zero-point diagram

(Note that this isn’t why zero-point energy is called zero-point energy, as far as I can tell. Zero-point energy is an older term from before Feynman diagrams.)

Remember, each Feynman diagram answers a specific question, about the chance of particles behaving in a certain way. You might wonder, what question does a zero-point diagram answer? The chance that nothing goes to nothing? Why would you want to know that?

To answer, I’d like to bring up some friends of mine, who do something that might sound equally strange: they calculate one-point diagrams, one particle goes to none. This isn’t strange for them because they study theories with defects.

For some reason, they didn’t like my suggestion to use this stamp on their papers

Normally in particle physics, we think about our particles in an empty, featureless space. We don’t have to, though. One thing we can do is introduce features in this space, like walls and mirrors, and try to see what effect they have. We call these features “defects”.

If there’s a defect like that, then it makes sense to calculate a one-point diagram, because your one particle can interact with something that’s not a particle: it can interact with the defect.

A one-point diagram with a wall, or “defect”

You might see where this is going: let’s say you think there’s a force between two walls, that comes from quantum mechanics, and you want to calculate it. You could imagine it involves a diagram like this:

A “zero-point diagram” between two walls

Roughly speaking, this is the kind of thing you could use to calculate the Casimir effect, that mysterious quantum force between metal plates. And indeed, it involves a zero-point diagram.

Here’s the thing, though: metal plates aren’t just “defects”. They’re real physical objects, made of real physical particles. So while you can think of the Casimir effect with a “zero-point diagram” like that, you can also think of it with a normal diagram, more like the four-point diagram I showed you earlier: one that computes, not a force between defects, but a force between the actual electrons and protons that make up the two plates.

A lot of the time when physicists talk about pairs of virtual particles popping up out of the vacuum, they have in mind a picture like this. And often, you can do the same trick, and think about it instead as interactions between physical particles. There’s a story of roughly this kind for Hawking radiation: you can think of a black hole event horizon as “cutting in half” a zero-point diagram, and see pairs of particles going out from the black hole…but you can also do a calculation that looks more like particles interacting with a gravitational field.

This also might help you understand why, contra the crackpots and science fiction writers, zero-point energy isn’t a source of unlimited free energy. Yes, a force like the Casimir effect comes “from the vacuum” in some sense. But really, it’s a force between two particles. And just like the gravitational force between two particles, this doesn’t give you unlimited free power. You have to do the work to move the particles back over and over again, using the same amount of power you gained from the force to begin with. And unlike the forces you’re used to, these are typically very small effects, as usual for something that depends on quantum mechanics. So it’s even less useful than more everyday forces for this.

Why do so many crackpots and authors expect zero-point energy to be a massive source of power? In part, this is due to mistakes physicists made early on.

Sometimes, when calculating a zero-point diagram (or any other diagram), we don’t get a sensible number. Instead, we get infinity. Physicists used to be baffled by this. Later, they understood the situation a bit better, and realized that those infinities were probably just due to our ignorance. We don’t know the ultimate high-energy theory, so it’s possible something happens at high energies to cancel those pesky infinities. Without knowing exactly what happened, physicists would estimate by using a “cutoff” energy where they expected things to change.

That kind of calculation led to an estimate you might have heard of, that the zero-point energy inside single light bulb could boil all the world’s oceans. That estimate gives a pretty impressive mental image…but it’s also wrong.

This kind of estimate led to “the worst theoretical prediction in the history of physics”, that the cosmological constant, the force that speeds up the expansion of the universe, is 120 orders of magnitude higher than its actual value (if it isn’t just zero). If there really were energy enough inside each light bulb to boil the world’s oceans, the expansion of the universe would be quite different than what we observe.

At this point, it’s pretty clear there is something wrong with these kinds of “cutoff” estimates. The only unclear part is whether that’s due to something subtle or something obvious. But either way, this particular estimate is just wrong, and you shouldn’t take it seriously. Zero-point energy exists, but it isn’t the magical untapped free energy you hear about in stories. It’s tiny quantum corrections to the forces between particles.

Science as Hermeneutics: Closer Than You’d Think

This post is once again inspired by a Ted Chiang short story. This time, it’s “The Evolution of Human Science”, which imagines a world in which super-intelligent “metahumans” have become incomprehensible to the ordinary humans they’ve left behind. Human scientists in that world practice “hermeneutics“: instead of original research, they try to interpret what the metahumans are doing, reverse-engineering their devices and observing their experiments.

Much like a blogger who, out of ideas, cribs them from books.

It’s a thought-provoking view of what science in the distant future could become. But it’s also oddly familiar.

You might think I’m talking about machine learning here. It’s true that in recent years people have started using machine learning in science, with occasionally mysterious results. There are even a few cases of physicists using machine-learning to suggest some property, say of Calabi-Yau manifolds, and then figuring out how to prove it. It’s not hard to imagine a day when scientists are reduced to just interpreting whatever the AIs throw at them…but I don’t think we’re quite there yet.

Instead, I’m thinking about my own work. I’m a particular type of theoretical physicist. I calculate scattering amplitudes, formulas that tell us the probabilities that subatomic particles collide in different ways. We have a way to calculate these, Feynman’s famous diagrams, but they’re inefficient, so researchers like me look for shortcuts.

How do we find those shortcuts? Often, it’s by doing calculations the old, inefficient way. We use older methods, look at the formulas we get, and try to find patterns. Each pattern is a hint at some new principle that can make our calculations easier. Sometimes we can understand the pattern fully, and prove it should hold. Other times, we observe it again and again and tentatively assume it will keep going, and see what happens if it does.

Either way, this isn’t so different from the hermeneutics scientists practice in the story. Feynman diagrams already “know” every pattern we find, like the metahumans in the story who already know every result the human scientists can discover. But that “knowledge” isn’t in a form we can understand or use. We have to learn to interpret it, to read between the lines and find underlying patterns, to end up with something we can hold in our own heads and put into action with our own hands. The truth may be “out there”, but scientists can’t be content with that. We need to get the truth “in here”. We need to interpret it for ourselves.

Book Review: Thirty Years That Shook Physics and Mr Tompkins in Paperback

George Gamow was one of the “quantum kids” who got their start at the Niels Bohr Institute in the 30’s. He’s probably best known for the Alpher, Bethe, Gamow paper, which managed to combine one of the best sources of evidence we have for the Big Bang with a gratuitous Greek alphabet pun. He was the group jester in a lot of ways: the historians here have archives full of his cartoons and in-jokes.

Naturally, he also did science popularization.

I recently read two of Gamow’s science popularization books, “Mr Tompkins” and “Thirty Years That Shook Physics”. Reading them was a trip back in time, to when people thought about physics in surprisingly different ways.

“Mr. Tompkins” started as a series of articles in Discovery, a popular science magazine. They were published as a book in 1940, with a sequel in 1945 and an update in 1965. Apparently they were quite popular among a certain generation: the edition I’m reading has a foreword by Roger Penrose.

(As an aside: Gamow mentions that the editor of Discovery was C. P. Snow…that C. P. Snow?)

Mr Tompkins himself is a bank clerk who decides on a whim to go to a lecture on relativity. Unable to keep up, he falls asleep, and dreams of a world in which the speed of light is much slower than it is in our world. Bicyclists visibly redshift, and travelers lead much longer lives than those who stay at home. As the book goes on he meets the same professor again and again (eventually marrying his daughter) and sits through frequent lectures on physics, inevitably falling asleep and experiencing it first-hand: jungles where Planck’s constant is so large that tigers appear as probability clouds, micro-universes that expand and collapse in minutes, and electron societies kept strictly monogamous by “Father Paulini”.

The structure definitely feels dated, and not just because these days people don’t often go to physics lectures for fun. Gamow actually includes the full text of the lectures that send Mr Tompkins to sleep, and while they’re not quite boring enough to send the reader to sleep they are written on a higher level than the rest of the text, with more technical terms assumed. In the later additions to the book the “lecture” aspect grows: the last two chapters involve a dream of Dirac explaining antiparticles to a dolphin in basically the same way he would explain them to a human, and a discussion of mesons in a Japanese restaurant where the only fantastical element is a trio of geishas acting out pion exchange.

Some aspects of the physics will also feel strange to a modern audience. Gamow presents quantum mechanics in a way that I don’t think I’ve seen in a modern text: while modern treatments start with uncertainty and think of quantization as a consequence, Gamow starts with the idea that there is a minimum unit of action, and derives uncertainty from that. Some of the rest is simply limited by timing: quarks weren’t fully understood even by the 1965 printing, in 1945 they weren’t even a gleam in a theorist’s eye. Thus Tompkins’ professor says that protons and neutrons are really two states of the same particle and goes on to claim that “in my opinion, it is quite safe to bet your last dollar that the elementary particles of modern physics [electrons, protons/neutrons, and neutrinos] will live up to their name.” Neutrinos also have an amusing status: they hadn’t been detected when the earlier chapters were written, and they come across rather like some people write about dark matter today, as a silly theorist hypothesis that is all-too-conveniently impossible to observe.

“Thirty Years That Shook Physics”, published in 1966, is a more usual sort of popular science book, describing the history of the quantum revolution. While mostly focused on the scientific concepts, Gamow does spend some time on anecdotes about the people involved. If you’ve read much about the time period, you’ll probably recognize many of the anecdotes (for example, the Pauli Principle that a theorist can break experimental equipment just by walking in to the room, or Dirac’s “discovery” of purling), even the ones specific to Gamow have by now been spread far and wide.

Like Mr Tompkins, the level in this book is not particularly uniform. Gamow will spend a paragraph carefully defining an average, and then drop the word “electroscope” as if everyone should know what it is. The historical perspective taught me a few things I perhaps should have already known, but found surprising anyway. (The plum-pudding model was an actual mathematical model, and people calculated its consequences! Muons were originally thought to be mesons!)

Both books are filled with Gamow’s whimsical illustrations, something he was very much known for. Apparently he liked to imitate other art styles as well, which is visible in the portraits of physicists at the front of each chapter.

Pictured: the electromagnetic spectrum as an infinite piano

1966 was late enough that this book doesn’t have the complacency of the earlier chapters in Mr Tompkins: Gamow knew that there were more particles than just electrons, nucleons, and neutrinos. It was still early enough, though, that the new particles were not fully understood. It’s interesting seeing how Gamow reacts to this: his expectation was that physics was on the cusp of another massive change, a new theory built on new fundamental principles. He speculates that there might be a minimum length scale (although oddly enough he didn’t expect it to be related to gravity).

It’s only natural that someone who lived through the dawn of quantum mechanics should expect a similar revolution to follow. Instead, the revolution of the late 60’s and early 70’s was in our understanding: not new laws of nature so much as new comprehension of just how much quantum field theory can actually do. I wonder if the generation who lived through that later revolution left it with the reverse expectation: that the next crisis should be solved in a similar way, that the world is quantum field theory (or close cousins, like string theory) all the way down and our goal should be to understand the capabilities of these theories as well as possible.

The final section of the book is well worth waiting for. In 1932, Gamow directed Bohr’s students in staging a play, the “Blegdamsvej Faust”. A parody of Faust, it features Bohr as god, Pauli as Mephistopheles, and Ehrenfest as the “erring Faust” (Gamow’s pun, not mine) that he tempts to sin with the promise of the neutrino, Gretchen. The piece, translated to English by Gamow’s wife Barbara, is filled with in-jokes on topics as obscure as Bohr’s habitual mistakes when speaking German. It’s gloriously weird and well worth a read. If you’ve ever seen someone do a revival performance, let me know!

Cosmology, or Cosmic Horror?

Around Halloween, I have a tradition of posting about the “spooky” side of physics. This year, I’ll be comparing two no doubt often confused topics, Cosmic Horror and Cosmology.

cthulhu_and_r27lyeh

Pro tip: if this guy shows up, it’s probably Cosmic Horror

Cosmic Horror

Cosmology

Started in the 1920’s with the work of Howard Phillips Lovecraft Started in the 1920’s with the work of Alexander Friedmann
Unimaginably ancient universe Precisely imagined ancient universe
In strange ages even death may die Strange ages, what redshift is that?
An expedition to Antarctica uncovers ruins of a terrifying alien civilization An expedition to Antarctica uncovers…actually, never mind, just dust
Alien beings may propagate in hidden dimensions Gravitons may propagate in hidden dimensions
Cultists compete to be last to be eaten by the Elder Gods Grad students compete to be last to realize there are no jobs
Oceanic “deep ones” breed with humans Have you seen daycare costs in a university town? No way.
Variety of inventive and bizarre creatures, inspiring libraries worth of copycat works Fritz Zwicky
Hollywood adaptations are increasingly popular, not very faithful to source material Actually this is exactly the same
Can waste hours on an ultimately fruitless game of Arkham Horror Can waste hours on an ultimately fruitless argument with Paul Steinhardt
No matter what we do, eventually Azathoth will kill us all No matter what we do, eventually vacuum decay will kill us all

Classical Teleportation Is Easier Than Quantum Teleportation

Quantum teleportation confuses people.

Maybe you’ve heard the buzzword, and you imagine science fiction become reality: teleporting people across the galaxy, or ansibles communicating faster than light. Maybe you’ve heard a bit more, and know that quantum teleportation can’t transfer information faster than light, that it hasn’t been used on something even as complicated as a molecule…and you’re still confused, because if so, why call it teleportation in the first place?

There’s a simple way to clear up this confusion. You just have to realize that classical teleportation is easy.

What do I mean by “classical teleportation”?

Let’s start with the simplest teleporter you could imagine. It scans you on one end, then vaporizes you, and sends your information to a teleportation pad on the other end. The other end uses that information to build a copy of your body from some appropriate raw materials, and there you are!

(If the machine doesn’t vaporize you, then you end up with an army of resurrected Derek Parfits.)

Doing this with a person is, of course, absurdly difficult, and well beyond the reach of current technology.

transporter2

And no, nothing about the Star Trek version changes that

Do it with a document, though, and you’ve essentially invented the fax machine.

Yes, faxes don’t copy a piece of paper atom by atom, but they don’t need to: they just send what’s written on it. This sort of “classical teleportation” is commonplace. Trade Pokémon, and your Pikachu gets “classical teleported” from one device to another. Send an email, and your laptop teleports it to someone else. The ability to “classically teleport” is essential for computers to function, the idea that you can take the “important information” about something and copy it somewhere else.

Note that under this definition, “classical teleportation” is not faster than light. You still need to send a signal, between a “scanner” and a “printer”, and that’s only as fast as your signal normally is. Note also that the “printer” needs some “ink”, you still need the right materials to build or record whatever is being teleported over.

So suppose you’re building a quantum computer, one that uses the unique properties of quantum mechanics. Naturally, you want to be able to take a quantum state and copy it somewhere else. You need “quantum teleportation”. And the first thing you realize is that it’s harder than it looks.

The problem comes when you try to “scan” your quantum state. You might have heard quantum states described as “inherently uncertain” or “inherently indeterminate”. For this post, a better way to think about them is “inherently unknown”. For any quantum state, there is something you can’t know about its behavior. You can’t know which slit the next electron will go through, you can’t know whether Schrödinger’s cat is alive or dead. If you did, the state wouldn’t be quantum: no matter how you figure it out, there isn’t a way to discover which slit the electron will go through without getting rid of the quantum diffraction pattern.

This means that if you try to just “classically teleport” a quantum state, you lose the very properties you care about. To “scan” your state, you have to figure out everything important about it. The only way to do that, for an arbitrary state on your teleportation pad, is to observe its behavior. If you do that, though, you’ll end up knowing too much: a state whose behavior you know is not a quantum state, and it won’t do what you want it to on the other end. You’ve tried to “clone” it, and there’s a theorem proving you can’t.

(Note that this description should make sense even if you believe in a “hidden variable” interpretation of quantum mechanics. Those hidden variables have to be “non-local”, they aren’t close enough for your “scanner” to measure them.)

Since you can’t “classically teleport” your quantum state, you have to do something more subtle. That’s where “quantum teleportation” comes in. Quantum teleportation uses “entanglement”, long-distance correlations between quantum states. With a set of two entangled states, you can sneak around the “scanning” part, manipulating the states on one end to compute instructions that let someone use the other entangled particle to rebuild the “teleported” state.

Those instructions still have to be transferred normally, once again quantum teleportation isn’t faster than light. You still need the right kind of quantum state at your target, your “printer” still needs ink. What you get, though, is a way to transport the “inherently unknown” behavior of a quantum state, without scanning it and destroying the “mystery”. Quantum teleportation isn’t easier than classical teleportation, it’s harder. What’s exciting is that it’s possible at all.

 


 

On an unrelated topic, KKLT have fired back at their critics, with an impressive salvo of papers. (See also this one from the same day.) I don’t have the time or expertise to write a good post about this at the moment, currently hoping someone else does!

Bubbles of Nothing

I recently learned about a very cool concept, called a bubble of nothing.

Read about physics long enough, and you’ll hear all sorts of cosmic disaster scenarios. If the Higgs vacuum decays, and the Higgs field switches to a different value, then the masses of most fundamental particles would change. It would be the end of physics, and life, as we know it.

A bubble of nothing is even more extreme. In a bubble of nothing, space itself ceases to exist.

The idea was first explored by Witten in 1982. Witten started with a simple model, a world with our four familiar dimensions of space and time, plus one curled-up extra dimension. What he found was that this simple world is unstable: quantum mechanics (and, as was later found, thermodynamics) lets it “tunnel” to another world, one that contains a small “bubble”, a sphere in which nothing at all exists.

giphy

Except perhaps the Nowhere Man

A bubble of nothing might sound like a black hole, but it’s quite different. Throw a particle into a black hole and it will fall in, never to return. Throw it into a bubble of nothing, though, and something more interesting happens. As you get closer, the extra dimension of space gets smaller and smaller. Eventually, it stops, smoothly closing off. The particle you threw in will just bounce back, smoothly, off the outside of the bubble. Essentially, it reached the edge of the universe.

The bubble starts out small, comparable to the size of the curled-up dimension. But it doesn’t stay that way. In Witten’s setup, the bubble grows, faster and faster, until it’s moving at the speed of light, erasing the rest of the universe from existence.

You probably shouldn’t worry about this happening to us. As far as I’m aware, nobody has written down a realistic model that can transform into a bubble of nothing.

Still, it’s an evocative concept, and one I’m surprised isn’t used more often in science fiction. I could see writers using a bubble of nothing as a risk from an experimental FTL drive, or using a stable (or slowly growing) bubble as the relic of some catastrophic alien war. The idea of a bubble of literal nothing is haunting enough that it ought to be put to good use.

Popularization as News, Popularization as Signpost

Lubos Motl has responded to my post from last week about the recent Caltech short, Quantum is Calling. His response is pretty much exactly what you’d expect, including the cameos by Salma Hayek and Kaley Cuoco.

The only surprise was his lack of concern for accuracy. Quantum is Calling got the conjecture it was trying to popularize almost precisely backwards. I was expecting that to bother him, at least a little.

Should it bother you?

That depends on what you think Quantum is Calling is trying to do.

Science popularization, even good science popularization, tends to get things wrong. Some of that is inevitable, a result of translating complex concepts to a wider audience.

Sometimes, though, you can’t really chalk it up to translation. Interstellar had some extremely accurate visualizations of black holes, but it also had an extremely silly love-powered tesseract. That wasn’t their attempt to convey some subtle scientific truth, it was just meant to sound cool.

And the thing is, that’s not a bad thing to do. For a certain kind of piece, sounding cool really is the point.

Imagine being an explorer. You travel out into the wilderness and find a beautiful waterfall.

south_falls_silver_falls_state_park

Example:

How do you tell people about it?

One option is the press. The news can cover your travels, so people can stay up to date with the latest in waterfall discoveries. In general, you’d prefer this sort of thing to be fairly accurate: the goal here is to inform people, to give them a better idea of the world around them.

Alternatively, you can advertise. You put signposts up around town pointing toward the waterfall, complete with vivid pictures. Here, accuracy matters a lot less: you’re trying to get people excited, knowing that as they get closer they can get more detailed information.

In science popularization, the “news” here isn’t just news. It’s also blog posts, press releases, and public lectures. It’s the part of science popularization that’s supposed to keep people informed, and it’s one that we hope is mostly accurate, at least as far as possible.

The “signposts”, meanwhile, are things like Interstellar. Their audience is as wide as it can possibly be, and we don’t expect them to get things right. They’re meant to excite people, to get them interested in science. The expectation is that a few students will find the imagery interesting enough to go further, at which point they can learn the full story and clear up any remaining misconceptions.

Quantum is Calling is pretty clearly meant to be a signpost. The inaccuracy is one way to tell, but it should be clear just from the context. We’re talking about a piece with Hollywood stars here. The relative star-dom of Zoe Saldana and Keanu Reeves doesn’t matter, the presence of any mainstream film stars whatsoever means they’re going for the broadest possible audience.

(Of course, the fact that it’s set up to look like an official tie-in to the Star Trek films doesn’t hurt matters either.)

They’re also quite explicit about their goals. The piece’s predecessor has Keanu Reeves send a message back in time, with the goal of inspiring a generation of young scientists to build a future paradise. They’re not subtle about this.

Ok, so what’s the problem? Signposts are allowed to be inaccurate, so the inaccuracy shouldn’t matter. Eventually people will climb up to the waterfall and see it for themselves, right?

What if the waterfall isn’t there?

wonder_mountain_dry_backside_waterfall

Like so:

The evidence for ER=EPR (the conjecture that Quantum is Calling is popularizing) isn’t like seeing a waterfall. It’s more like finding it via surveying. By looking at the slope of nearby terrain and following the rivers, you can get fairly confident that there should be a waterfall there, even if you can’t yet see it over the next ridge. You can then start sending scouts, laying in supplies, and getting ready for a push to the waterfall. You can alert the news, telling journalists of the magnificent waterfall you expect to find, so the public can appreciate the majesty of your achievement.

What you probably shouldn’t do is put up a sign for tourists.

As I hope I made clear in my last post, ER=EPR has some decent evidence. It hasn’t shown that it can handle “foot traffic”, though. The number of researchers working on it is still small. (For a fun but not especially rigorous exercise, try typing “ER=EPR” and “AdS/CFT” into physics database INSPIRE.) Conjectures at this stage are frequently successful, but they often fail, and ER=EPR still has a decent chance of doing so. Tying your inspiring signpost to something that may well not be there risks sending tourists up to an empty waterfall. They won’t come down happy.

As such, I’m fine with “news-style” popularizations of ER=EPR. And I’m fine with “signposts” for conjectures that have shown they can handle some foot traffic. (A piece that sends Zoe Saldana to the holodeck to learn about holography could be fun, for example.) But making this sort of high-profile signpost for ER=EPR feels irresponsible and premature. There will be plenty of time for a Star Trek tie-in to ER=EPR once it’s clear the idea is here to stay.

The Universe, Astronomy’s Lab

There’s a theme in a certain kind of science fiction.

Not in the type with laser swords and space elves, and not in cyberpunk dystopias…but when sci-fi tries to explore what humanity might do if it really got a chance to explore its own capabilities. In a word, the theme is scale.

We start out with a Dyson sphere, built around our own sun to trap its energy. As time goes on, the projects get larger and larger, involving multiple stars and, eventually, reshaping the galaxy.

There’s an expectation, though, that this sort of thing is far in our future. Treating the galaxy as a resource, as a machine, seems well beyond our present capabilities.

On Wednesday, Victoria Kaspi gave a public lecture at Perimeter about neutron stars. At the very end of the lecture, she talked a bit about something she covered in more detail during her colloquium earlier that day, called a Pulsar Timing Array.

Neutron stars are one of the ways a star can end its life. Too big to burn out quietly and form a white dwarf, and too small to collapse all the way into a black hole, the progenitors of neutron stars have so much gravity that they force protons and electrons to merge, so that the star ends up as a giant ball of neutrons, like an enormous atomic nucleus.

Many of these neutron stars have strong magnetic fields. A good number of them are what are called pulsars: stars that emit powerful pulses of electromagnetic radiation, often at regular intervals. Some of these pulsars are very regular indeed, rivaling atomic clocks in their precision. The idea of a Pulsar Timing Array is to exploit this regularity by using these pulsars as a gravitational wave telescope.

Gravitational waves are ripples in space-time. They were predicted by Einstein’s theory, and we’ve observed their indirect effects, but so far we have yet to detect them directly. Attempts have been made: vast detectors like LIGO have been built that bounce light across long “arms”, trying to detect minute disruptions in space. The problem is, it’s hard to distinguish these disruptions from ordinary vibrations in the area, like minor earthquakes. Size also limits the effectiveness of these detectors, with larger detectors able to see the waves from bigger astronomical events.

Pulsar Timing Arrays sidestep both of those problems. Instead of trying to build a detector on the ground like LIGO (or even in space like LISA), they use the pulsars themselves as the “arms” of a galaxy-sized detector. Because these pulsars emit light so regularly, small disruptions can be a sign that a gravitational wave is passing by the earth and disrupting the signal. Because they are spread roughly evenly across the galaxy, we can correlate signals across multiple pulsars, to make sure we’re really seeing gravitational waves. And because they’re so far apart, we can use them to detect waves from some of the biggest astronomical events, like galaxies colliding.

ptas

Earth very much not to scale.

Longtime readers know that I find astronomy really inspiring, but Kaspi’s talk woke me up to a completely different aspect, that of our mastery of scale.

Want to dream of a future where we use the solar system and the galaxy as resources? We’re there, and we’ve been there for a long time. We’re a civilization that used nearby planets to bootstrap up the basic laws of motion before we even had light bulbs. We’ve honed our understanding of space and time using distant stars. And now, we’re using an array of city-sized balls of neutronium, distributed across the galaxy, as a telescope. If that’s not the stuff of science fiction, I don’t know what is.


 

By the way, speaking of webcast lectures, I’m going to be a guest on the Alda Center’s Science Unplugged show next week. Tune in if you want to hear about the sort of stuff I work on, using string theory as a tool to develop shortcuts for particle physics calculations.

No-One Can Tell You What They Don’t Understand

On Wednesday, Amanda Peet gave a Public Lecture at Perimeter on string theory and black holes, while I and other Perimeter-folk manned the online chat. If you missed it, it’s recorded online here.

We get a lot of questions in the online chat. Some are quite insightful, some are basic, and some…well, some are kind of strange. Like the person who asked us how holography could be compatible with irrational numbers.

In physics, holography is the idea that you can encode the physics of a wider space using only information on its boundary. If you remember the 90’s or read Buzzfeed a lot, you might remember holograms: weird rainbow-colored images that looked 3d when you turned your head.

On a computer screen, they instead just look awkward.

Holograms in physics are a lot like that, but rather than a 2d image looking like a 3d object, they can be other combinations of dimensions as well. The most famous, AdS/CFT, relates a ten-dimensional space full of strings to a four-dimensional space on its boundary, where the four-dimensional space contains everybody’s favorite theory, N=4 super Yang-Mills.

So from this explanation, it’s probably not obvious what holography has to do with irrational numbers. That’s because there is no connection: holography has nothing to do with irrational numbers.

Naturally, we were all a bit confused, so one of us asked this person what they meant. They responded by asking if we knew what holograms and irrational numbers were. After all, the problem should be obvious then, right?

In this sort of situation, it’s tempting to assume you’re being trolled. In reality, though, the problem was one of the most common in science communication: people can’t tell you what they don’t understand, because they don’t understand it.

When a teacher asks “any questions?”, they’re assuming students will know what they’re missing. But a deep enough misunderstanding doesn’t show itself that way. Misunderstand things enough, and you won’t know you’re missing anything. That’s why it takes real insight to communicate science: you have to anticipate ways that people might misunderstand you.

In this situation, I thought about what associations people have with holograms. While some might remember the rainbow holograms of old, there are other famous holograms that might catch peoples’ attention.

Please state the nature of the medical emergency.

In science fiction, holograms are 3d projections, ways that computers can create objects out of thin air. The connection to a 2d image isn’t immediately apparent, but the idea that holograms are digital images is central.

Digital images are the key, here. A computer has to express everything in a finite number of bits. It can’t express an irrational number, a number with a decimal expansion that goes on to infinity, at least not without tricks. So if you think that holography is about reality being digital, rather than lower-dimensional, then the question makes perfect sense: how could a digital reality contain irrational numbers?

This is the sort of thing we have to keep in mind when communicating science. It’s easy to misunderstand, to take some aspect of what someone said and read it through a different lens. We have to think about how others will read our words, we have to be willing to poke and prod until we root out the source of the confusion. Because nobody is just going to tell us what they don’t get.