Tag Archives: science fiction

Sorry Science Fiction, Quantum Gravity Doesn’t Do What You Think It Does

I saw Interstellar this week. There’s been a lot of buzz among physicists about it, owing in part to the involvement of black hole expert Kip Thorne in the film’s development. I’d just like to comment on one aspect of the film that bugged me, a problem that shows up pretty frequently in science fiction.

In the film, Michael Caine plays a theoretical physicist working for NASA. His dream is to save humanity from an Earth plagued by a blight that is killing off the world’s food supply. To do this, he plans to build giant anti-gravity spaceships capable of taking as many people as possible away from the dying Earth to find a new planet capable of supporting human life. And in order to do that, apparently, he needs a theory of quantum gravity.

The thing is, quantum gravity has nothing to do with making giant anti-gravity spaceships.

Michael Caine lied to us?

This mistake isn’t unique to Interstellar. Lots of science fiction works assume that once we understand quantum gravity then everything else will follow: faster than light travel, wormholes, anti-gravity…pretty much every sci-fi staple.

It’s not just present in science fiction, either. Plenty of science popularizers like to mention all of the marvelous technology that’s going to come out of quantum gravity, including people who really should know better. A good example comes from a recent piece by quantum gravity researcher Sabine Hossenfelder:

But especially in high energy physics and quantum gravity, progress has basically stalled since the development of the standard model in the mid 70s. […] it is a frustrating situation and this makes you wonder if not there are other reasons for lack of progress, reasons that we can do something about. Especially in a time when we really need a game changer, some breakthrough technology, clean energy, that warp drive, a transporter!

None of these are things we’re likely to get from quantum gravity, and the reason is rather basic. It boils down to one central issue: if we can’t control the classical physics, we can’t control the quantum physics.

When science fiction authors speculate about the benefits of quantum gravity, they’re thinking about the benefits of quantum mechanics. Understanding the quantum world has allowed some of the greatest breakthroughs of the 20th century, from miniaturizing circuits to developing novel materials.

The assumption writers make is that the same will be true for quantum gravity: understand it, and gravity technology will flow. But this assumption forgets that quantum mechanics was so successful because it let us understand things we were already working with.

In order to miniaturize circuits, you have to know how to build a circuit in the first place. Only then, when you try to make the circuit smaller and don’t understand why it stops working, does quantum mechanics step in to tell you what you’re missing. Quantum mechanics helps us develop new materials because it helps us understand how existing materials work.

We don’t have any gravity circuits to shrink down, or gravity materials to understand. When gravity limits our current technology, it does so on a macro level (such as the effect of the Earth’s gravity on GPS satellites) not on a quantum level. If there isn’t a way to build anti-gravity technology using classical physics, there probably isn’t a way using quantum physics.

Scientists and popularizers generally argue that we can’t know what the future will bring. This is true, up to a point. When Maxwell wrote down equations to unify electricity and magnetism he could not have imagined the wealth of technology we have today. And often, technologies come from unexpected places. The spinoff technologies of the space race are the most popular example, another is that CERN (the facility that houses the Large Hadron Collider) was instrumental in developing the world wide web.

While it’s great to emphasize the open-ended promise of scientific advances (especially on grant applications!), in this context it’s misleading because it erases the very real progress people are making on these issues without quantum gravity.

Want to invest in clean energy? There are a huge number of scientists working on it, with projects ranging from creating materials that can split water using solar energy to nuclear fusion. Quantum gravity is just about the last science likely to give us clean energy, and I’m including the social sciences in that assessment.

How about a warp drive?

Indeed, how about one?

That’s not obviously related to quantum gravity either. There has actually been some research into warp drives, but they’re based on a solution to Einstein’s equations without quantum mechanics. It’s not clear whether quantum gravity has something meaningful to say about them…while there are points to be made, from what I’ve been able to gather they’re more related to talking about how other quantum systems interact with gravity than the quantum properties of gravity itself. The same seems to apply to the difficulties involved in wormholes, another sci-fi concept that comes straight out of Einstein’s theory.

As for teleportation, that’s an entirely different field, and it probably doesn’t work how you think it does.

So what is quantum gravity actually good for?

Quantum gravity becomes relevant when gravity becomes very strong, places where Einstein’s theory would predict infinitely dense singularities. That means the inside of black holes, and the Big Bang. Quantum gravity smooths out these singularities, which means it can tell you about the universe’s beginnings (by smoothing out the big bang and showing what could cause it), or its long-term future (for example, problems with the long-term evolution of black holes).

These are important questions! They tell us about where we come from and where we’re going: in short, about our ultimate place in the universe. Almost every religion in history has tried to answer these questions. They’re very important to us as a species, even if they don’t directly impact our daily lives.

What they are not, however, is a source of technology.

So please, science fiction, use some other field for your plot-technology. There are plenty of scientific advances to choose from, people who are really working on cutting-edge futuristic stuff. They don’t need to wait on a theory of quantum gravity to get their work done. Neither do you.

Made of Energy, or Made of Nonsense?

I did a few small modifications to the blog settings this week. Comments now support Markdown, reply-chains in the comments can go longer, and there are a few more sharing buttons on the posts. I’m gearing up to do a more major revamp of the blog in July for when the name changes over from 4 gravitons and a grad student to just 4 gravitons.

io9 did an article recently on scientific ideas that scientists wish the public would stop misusing. They’ve got a lot of good ones (Proof, Quantum, Organic), but they somehow managed to miss one of the big ones: Energy. Matt Strassler has a nice, precise article on this particular misconception, but nonetheless I think it’s high time I wrote my own.

There’s a whole host of misconceptions regarding energy. Some of them are simple misuses of language, like zero-calorie energy drinks:

Zero Purpose

Energy can be measured in several different units. You can use Joules, or electron-Volts, or dynes…or calories. Calories are a measure of energy, so zero calories quite literally means zero energy.

Now, that’s not to say the makers of zero calorie energy drinks are lying. They’re just using a different meaning of energy from the scientific one. Their drinks give you vim and vigor, the get-up-and-go required to make money playing computer games. For most of the public, that “get-up-and-go” is called energy, even if scientifically it’s not.

That’s not really a misconception, more of an amusing use of language. This next one though really makes my blood boil.

Raise your hand if you’ve seen a Sci-Fi movie or TV show where some creature is described as being made of “pure energy”. Whether they’re peaceful, ultra-advanced ascended beings, or genocidal maniacs from another dimension, the concept of creatures made of “pure energy” shows up again and again and again.

You can’t fight the Drej, they’re pure bullshit!

Even if you aren’t the type to take Sci-Fi technobabble seriously, you’ve probably heard that matter and antimatter annihilate to form energy, or that photons are made out of energy. These sound more reasonable, but they rest on the same fundamental misconception:

Nothing is “made out of energy”.

Rather,

Energy is a property that things have.

Energy isn’t a substance, it isn’t a fluid, it isn’t some kind of nebulous stuff you can make into an indestructible alien body. Things have energy, but nothing is energy.

What about light, then? And what happens when antimatter collides with matter?

Light, just like anything else, has energy. The difference between light and most other things is that light also does not have mass.

In everyday life, we like to think of mass as some sort of basic “stuff”. If things are “made out of mass” or “made out of matter”, and something like light doesn’t have mass, then it must be made out of some other “stuff”, right?

The thing is, mass isn’t really “stuff” any more than energy is. Just like energy, mass is a property that things have. In fact, as I’ve talked about some before, mass is really just a type of energy. Specifically, mass is the energy something has when left alone and at rest. That’s the meaning of Einstein’s famous equation, E equals m c squared: it tells you how to take a known mass and calculate the rest energy that it implies.

Lots of hype for a unit conversion formula, huh?

In the case of light, all of its energy can be thought of in terms of its (light-speed) motion, so it has no mass. That might tempt you to think of it as being “made of energy”, but really, you and light are not so different.

You are made of atoms, and atoms are made of protons, neutrons, and electrons. Let’s consider a proton. A proton’s mass, expressed in the esoteric units physicists favor, is 938 Mega-electron-Volts. That’s how much energy a proton has alone and and rest. A proton is made of three quarks, so you’d think that they would contribute most of its mass. In reality, though, the quarks in protons have masses of only a few Mega-electron-Volts. Most of a proton’s mass doesn’t come from the mass of the quarks.

Quarks interact with each other via the strong nuclear force, the strongest fundamental force in existence. That interaction has a lot of energy, and when viewed from a distance that energy contributes almost all of the proton’s mass. So if light is “made of energy”, so are you.

So why do people say that matter and anti-matter annihilate to make energy?

A matter particle and its anti-matter partner are opposite in a lot of ways. In particular, they have opposite charges: not just electric charge, but other types of charge too.

Charge must be conserved, so if a particle collides with its anti-particle the result has a total charge of zero, as the opposite charges of the two cancel each other out. Light has zero charge, so it’s one of the most common results of a matter-antimatter collision. When people say that matter and antimatter produce “pure energy”, they really just mean that they produce light.

So next time someone says something is “made of energy”, be wary. Chances are, they aren’t talking about something fully scientific.

Particles are not Species

It has been estimated that there are 7.5 million undiscovered species of animals, plants and fungi. Most of these species are insects. If someone wanted billions of dollars to search the Amazon rainforest with the goal of cataloging every species of insect, you’d want them to have a pretty good reason. Maybe they are searching for genes that could cure diseases, or trying to understand why an ecosystem is dying.

The primary goal of the Large Hadron Collider is to search for new subatomic particles. If we’re spending billions searching for these things, they must have some use, right? After all, it’s all well and good knowing about a bunch of different particles, but there must be a whole lot of sorts of particles out there, at least if you judge by science fiction (these two are also relevant). Surely we could just focus on finding the useful ones, and ignore the rest?

The thing is, particle physics isn’t like that. Particles aren’t like insects, you don’t find rare new types scattered in out-of-the-way locations. That’s because each type of particle isn’t like a species of animal. Instead, each particle is a fundamental law of nature.

Move over Linnaeus.

Move over Linnaeus.

It wasn’t always like this. In the late 50’s and early 60’s, particle accelerators were producing a zoo of new particles with no clear rhyme or reason, and it looked like they would just keep producing more. That impression changed when Murray Gell-Mann proposed his Eightfold Way, which led to the development of the quark model. He explained the mess of new particles in terms of a few fundamental particles, the quarks, which made up the more complicated particles that were being discovered.

Nowadays, the particles that we’re trying to discover aren’t, for the most part, the zoo of particles of yesteryear. Instead, we’re looking for new fundamental particles.

What makes a particle fundamental?

The new particles of the early 60’s were a direct consequence of the existence of quarks. Once you understood how quarks worked, you could calculate the properties of all of the new particles, and even predict ones that hadn’t been found yet.

By contrast, fundamental particles aren’t based on any other particles, and you can’t predict everything about them. When we discover a new fundamental particle like the Higgs boson, we’re discovering a new, independent law of nature. Each fundamental particle is a law that states, across all of space and time, “if this happens, make this particle”. It’s a law that holds true always and everywhere, regardless of how often the particle is actually produced.

Think about the laws of physics like the cockpit of a plane. In front of the pilot is a whole mess of controls, dials and switches and buttons. Some of those controls are used every flight, some much more rarely. There are probably buttons on that plane that have never been used. But if a single button is out of order, the plane can’t take off.

Each fundamental particle is like a button on that plane. Some turn “on” all the time, while some only turn “on” in special circumstances. But each button is there all the same, and if you’re missing one, your theory is incomplete. It may agree with experiments now, but eventually you’re going to run into problems of one sort or another that make your theory inconsistent.

The point of discovering new particles isn’t just to find the one that will give us time travel or let us blow up Vulcan. Technological applications would be nice, but the real point is deeper: we want to know how reality works, and for every new fundamental particle we discover, we’ve found out a fact that’s true about the whole universe.