Category Archives: Gravity

Breakthrough Prize for Supergravity

This week, $3 Million was awarded by the Breakthrough Prize to Sergio Ferrara, Daniel Z. Freedman and Peter van Nieuwenhuizen, the discoverers of the theory of supergravity, part of a special award separate from their yearly Fundamental Physics Prize. There’s a nice interview with Peter van Nieuwenhuizen on the Stony Brook University website, about his reaction to the award.

The Breakthrough Prize was designed to complement the Nobel Prize, rewarding deserving researchers who wouldn’t otherwise get the Nobel. The Nobel Prize is only awarded to theoretical physicists when they predict something that is later observed in an experiment. Many theorists are instead renowned for their mathematical inventions, concepts that other theorists build on and use but that do not by themselves make testable predictions. The Breakthrough Prize celebrates these theorists, and while it has also been awarded to others who the Nobel committee could not or did not recognize (various large experimental collaborations, Jocelyn Bell Burnell), this has always been the physics prize’s primary focus.

The Breakthrough Prize website describes supergravity as a theory that combines gravity with particle physics. That’s a bit misleading: while the theory does treat gravity in a “particle physics” way, unlike string theory it doesn’t solve the famous problems with combining quantum mechanics and gravity. (At least, as far as we know.)

It’s better to say that supergravity is a theory that links gravity to other parts of particle physics, via supersymmetry. Supersymmetry is a relationship between two types of particles: bosons, like photons, gravitons, or the Higgs, and fermions, like electrons or quarks. In supersymmetry, each type of boson has a fermion “partner”, and vice versa. In supergravity, gravity itself gets a partner, called the gravitino. Supersymmetry links the properties of particles and their partners together: both must have the same mass and the same charge. In a sense, it can unify different types of particles, explaining both under the same set of rules.

In the real world, we don’t see bosons and fermions with the same mass and charge. If gravitinos exist, then supersymmetry would have to be “broken”, giving them a high mass that makes them hard to find. Some hoped that the Large Hadron Collider could find these particles, but now it looks like it won’t, so there is no evidence for supergravity at the moment.

Instead, supergravity’s success has been as a tool to understand other theories of gravity. When the theory was proposed in the 1970’s, it was thought of as a rival to string theory. Instead, over the years it consistently managed to point out aspects of string theory that the string theorists themselves had missed, for example noticing that the theory needed not just strings but higher-dimensional objects called “branes”. Now, supergravity is understood as one part of a broader string theory picture.

In my corner of physics, we try to find shortcuts for complicated calculations. We benefit a lot from toy models: simpler, unrealistic theories that let us test our ideas before applying them to the real world. Supergravity is one of the best toy models we’ve got, a theory that makes gravity simple enough that we can start to make progress. Right now, colleagues of mine are developing new techniques for calculations at LIGO, the gravitational wave telescope. If they hadn’t worked with supergravity first, they would never have discovered these techniques.

The discovery of supergravity by Ferrara, Freedman, and van Nieuwenhuizen is exactly the kind of work the Breakthrough Prize was created to reward. Supergravity is a theory with deep mathematics, rich structure, and wide applicability. There is of course no guarantee that such a theory describes the real world. What is guaranteed, though, is that someone will find it useful.

What’s in a Conjecture? An ER=EPR Example

A few weeks back, Caltech’s Institute of Quantum Information and Matter released a short film titled Quantum is Calling. It’s the second in what looks like will become a series of pieces featuring Hollywood actors popularizing ideas in physics. The first used the game of Quantum Chess to talk about superposition and entanglement. This one, featuring Zoe Saldana, is about a conjecture by Juan Maldacena and Leonard Susskind called ER=EPR. The conjecture speculates that pairs of entangled particles (as investigated by Einstein, Podolsky, and Rosen) are in some sense secretly connected by wormholes (or Einstein-Rosen bridges).

The film is fun, but I’m not sure ER=EPR is established well enough to deserve this kind of treatment.

At this point, some of you are nodding your heads for the wrong reason. You’re thinking I’m saying this because ER=EPR is a conjecture.

I’m not saying that.

The fact of the matter is, conjectures play a very important role in theoretical physics, and “conjecture” covers a wide range. Some conjectures are supported by incredibly strong evidence, just short of mathematical proof. Others are wild speculations, “wouldn’t it be convenient if…” ER=EPR is, well…somewhere in the middle.

Most popularizers don’t spend much effort distinguishing things in this middle ground. I’d like to talk a bit about the different sorts of evidence conjectures can have, using ER=EPR as an example.

octopuswormhole_v1

Our friendly neighborhood space octopus

The first level of evidence is motivation.

At its weakest, motivation is the “wouldn’t it be convenient if…” line of reasoning. Some conjectures never get past this point. Hawking’s chronology protection conjecture, for instance, points out that physics (and to some extent logic) has a hard time dealing with time travel, and wouldn’t it be convenient if time travel was impossible?

For ER=EPR, this kind of motivation comes from the black hole firewall paradox. Without going into it in detail, arguments suggested that the event horizons of older black holes would resemble walls of fire, incinerating anything that fell in, in contrast with Einstein’s picture in which passing the horizon has no obvious effect at the time. ER=EPR provides one way to avoid this argument, making event horizons subtle and smooth once more.

Motivation isn’t just “wouldn’t it be convenient if…” though. It can also include stronger arguments: suggestive comparisons that, while they could be coincidental, when put together draw a stronger picture.

In ER=EPR, this comes from certain similarities between the type of wormhole Maldacena and Susskind were considering, and pairs of entangled particles. Both connect two different places, but both do so in an unusually limited way. The wormholes of ER=EPR are non-traversable: you cannot travel through them. Entangled particles can’t be traveled through (as you would expect), but more generally can’t be communicated through: there are theorems to prove it. This is the kind of suggestive similarity that can begin to motivate a conjecture.

(Amusingly, the plot of the film breaks this in both directions. Keanu Reeves can neither steal your cat through a wormhole, nor send you coded messages with entangled particles.)

rjxhfqj

Nor live forever as the portrait in his attic withers away

Motivation is a good reason to investigate something, but a bad reason to believe it. Luckily, conjectures can have stronger forms of evidence. Many of the strongest conjectures are correspondences, supported by a wealth of non-trivial examples.

In science, the gold standard has always been experimental evidence. There’s a reason for that: when you do an experiment, you’re taking a risk. Doing an experiment gives reality a chance to prove you wrong. In a good experiment (a non-trivial one) the result isn’t obvious from the beginning, so that success or failure tells you something new about the universe.

In theoretical physics, there are things we can’t test with experiments, either because they’re far beyond our capabilities or because the claims are mathematical. Despite this, the overall philosophy of experiments is still relevant, especially when we’re studying a correspondence.

“Correspondence” is a word we use to refer to situations where two different theories are unexpectedly computing the same thing. Often, these are very different theories, living in different dimensions with different sorts of particles. With the right “dictionary”, though, you can translate between them, doing a calculation in one theory that matches a calculation in the other one.

Even when we can’t do non-trivial experiments, then, we can still have non-trivial examples. When the result of a calculation isn’t obvious from the beginning, showing that it matches on both sides of a correspondence takes the same sort of risk as doing an experiment, and gives the same sort of evidence.

Some of the best-supported conjectures in theoretical physics have this form. AdS/CFT is technically a conjecture: a correspondence between string theory in a hyperbola-shaped space and my favorite theory, N=4 super Yang-Mills. Despite being a conjecture, the wealth of nontrivial examples is so strong that it would be extremely surprising if it turned out to be false.

ER=EPR is also a correspondence, between entangled particles on the one hand and wormholes on the other. Does it have nontrivial examples?

Some, but not enough. Originally, it was based on one core example, an entangled state that could be cleanly matched to the simplest wormhole. Now, new examples have been added, covering wormholes with electric fields and higher spins. The full “dictionary” is still unclear, with some pairs of entangled particles being harder to describe in terms of wormholes. So while this kind of evidence is being built, it isn’t as solid as our best conjectures yet.

I’m fine with people popularizing this kind of conjecture. It deserves blog posts and press articles, and it’s a fine idea to have fun with. I wouldn’t be uncomfortable with the Bohemian Gravity guy doing a piece on it, for example. But for the second installment of a star-studded series like the one Caltech is doing…it’s not really there yet, and putting it there gives people the wrong idea.

I hope I’ve given you a better idea of the different types of conjectures, from the most fuzzy to those just shy of certain. I’d like to do this kind of piece more often, though in future I’ll probably stick with topics in my sub-field (where I actually know what I’m talking about 😉 ). If there’s a particular conjecture you’re curious about, ask in the comments!

You Go, LIGO!

Well folks, they did it. LIGO has detected gravitational waves!

FAQ:

What’s a gravitational wave?

Gravitational waves are ripples in space and time. As Einstein figured out a century ago, masses bend space and time, which causes gravity. Wiggle masses in the right way and you get a gravity wave, like a ripple on a pond.

Ok, but what is actually rippling? It’s some stuff, right? Dust or something?

In a word, no. Not everything has to be “stuff”. Energy isn’t “stuff”, and space-time isn’t either, but space-time is really what vibrates when a gravitational wave passes by. Distances themselves are changing, in a way that is described by the same math and physics as a ripple in a pond.

What’s LIGO?

LIGO is the Laser Interferometer Gravitational-Wave Observatory. In simple terms, it’s an observatory (or rather, a pair of observatories in Washington and Louisiana) that can detect gravitational waves. It does this using beams of laser light four kilometers long. Gravitational waves change the length of these beams when they pass through, causing small but measurable changes in the laser light observed.

Are there other gravitational wave observatories?

Not currently in operation. LIGO originally ran from 2002 to 2010, and during that time there were other gravitational wave observatories also in operation (VIRGO in Italy and GEO600 in Germany). All of them (including LIGO) failed to detect anything, and so LIGO and VIRGO were shut down in order for them to be upgraded to more sensitive, advanced versions. Advanced LIGO went into operation first, and made the detection. VIRGO is still under construction, as is KAGRA, a detector in Japan. There are also plans for a detector in India.

Other sorts of experiments can detect gravitational waves on different scales. eLISA is a planned space-based gravitational wave observatory, while Pulsar Timing Arrays could use distant neutron stars as an impromptu detector.

What did they detect? What could they detect?

The gravitational waves that LIGO detected came from a pair of black holes merging. In general, gravitational waves come from a pair of masses, or one mass with an uneven and rapidly changing shape. As such, LIGO and future detectors might be able to observe binary stars, supernovas, weird-shaped neutron stars, colliding galaxies…pretty much any astrophysical event involving large things moving comparatively fast.

What does this say about string theory?

Basically nothing. There are gravity waves in string theory, sure (and they play a fairly important role), but there were gravity waves in Einstein’s general relativity. As far as I’m aware, no-one at this point seriously thought that gravitational waves didn’t exist. Nothing that LIGO observed has any bearing on the quantum properties of gravity.

But what about cosmic strings? They mentioned those in the announcement!

Cosmic strings, despite the name, aren’t a unique prediction of string theory. They’re big, string-shaped wrinkles in space and time, possible results of the rapid expansion of space during cosmic inflation. You can think of them a bit like the cracks that form in an over-inflated balloon right before it bursts.

Cosmic strings, if they exist, should produce gravitational waves. This means that in the future we may have concrete evidence of whether or not they exist. This wouldn’t say all that much about string theory: while string theory does have its own explanations for cosmic strings, it’s unclear whether it actually has unique predictions about them. It would say a lot about cosmic inflation, though, and would presumably help distinguish it from proposed alternatives. So keep your eyes open: in the next few years, gravitational wave observatories may well have something important to say about the overall history of the universe.

Why is this discovery important, though? If we already knew that gravitational waves existed, why does discovering them matter?

LIGO didn’t discover that gravitational waves exist. LIGO discovered that we can detect them.

The existence of gravitational waves is no discovery. But the fact that we now have observatories sensitive enough to detect them is huge. It opens up a whole new type of astronomy: we can now observe the universe not just by the light it sheds (and neutrinos), but through a whole new lens. And every time we get another observational tool like this, we notice new things, things we couldn’t have seen without it. It’s the dawn of a new era in astronomy, and LIGO was right to announce it with all the pomp and circumstance they could muster.

 

My impressions from the announcement:

Speaking of pomp and circumstance, I was impressed by just how well put-together LIGO’s announcement was.

As the US presidential election heats up, I’ve seen a few articles about the various candidates’ (well, usually Trump’s) use of the language of political propaganda. The idea is that there are certain visual symbols at political events for which people have strong associations, whether with historical events or specific ideas or the like, and that using these symbols makes propaganda more powerful.

What I haven’t seen is much discussion of a language of scientific propaganda. Still, the overwhelming impression I got from LIGO’s announcement is that it was shaped by a master in the use of such a language. They tapped in to a wide variety of powerful images: from the documentary-style interviews at the beginning, to Weiss’s tweed jacket and handmade demos, to the American flag in the background, that tied LIGO’s result to the history of scientific accomplishment.

Perimeter’s presentations tend to have a slicker look, my friends at Stony Brook are probably better at avoiding jargon. But neither is quite as good at propaganda, at saying “we are part of history” and doing so without a hitch, as the folks at LIGO have shown themselves to be with this announcement.

I was also fairly impressed that they kept this under wraps for so long. While there were leaks, I don’t think many people had a complete grasp of what was going to be announced until the week before. Somehow, LIGO made sure a collaboration of thousands was able to (mostly) keep their mouths shut!

Beyond the organizational and stylistic notes, my main thought was “What’s next?” They’ve announced the detection of one event. I’ve heard others rattle off estimates, that they should be detecting anywhere from one black hole merger per year to a few hundred. Are we going to see more events soon, or should we settle into a long wait? Could they already have detected more, with the evidence buried in their data, to be revealed by careful analysis? (The waves from this black hole merger were clear enough for them to detect them in real-time, but more subtle events might not make things so easy!) Should we be seeing more events already, and does not seeing them tell us something important about the universe?

Most of the reason I delayed my post till this week was to see if anyone had an answer to these questions. So far, I haven’t seen one, besides the “one to a few hundred” estimate mentioned. As more people weigh in and more of LIGO’s run is analyzed, it will be interesting to see where that side of the story goes.

Gravitational Waves, and Valentine’s Day Physics Poem 2016

By the time this post goes up, you’ll probably have seen Advanced LIGO’s announcement of the first direct detection of a gravitational wave. We got the news a bit early here at Perimeter, which is why we were able to host a panel discussion right after the announcement.

From what I’ve heard, this is the real deal. They’ve got a beautifully clear signal, and unlike BICEP, they kept this under wraps until they could get it looked at by non-LIGO physicists. While I think peer review gets harped on a little too much in these sorts of contexts, in this case their paper getting through peer review is a good sign that they’re really seeing something.

IMG_20160211_104600

Pictured: a very clear, very specific something

I’ll have more to say next week: explanations of gravitational waves and LIGO for my non-expert audience, and impressions from the press release and PI’s panel discussion for those who are interested. For now, though, I’ll wait until the dust (metaphorical this time) settles. If you’re hungry for immediate coverage, I’m sure that half the blogs on my blogroll have posts up, or will in the next few days.

In the meantime, since Valentine’s Day is in two days, I’ll continue this blog’s tradition and post one of my old physics poems.


 

When a sophisticated string theorist seeks an interaction

He does not go round and round in loops

As a young man would.

 

Instead he turns to topology.

 

Mature, the string theorist knows

That what happens on

(And between)

The (world) sheets,

Is universal.

 

That the process is the same

No matter which points

Which interactions

One chooses.

 

Only the shapes of things matter.

 

Only the topology.

 

For such a man there is no need.

To obsess

To devote

To choose

One point or another.

The interaction is the same.

 

The world, though

Is not an exercise in theory.

Is not a mere possibility.

And if a theorist would compute

An experiment

A probability

 

He must pick and choose

Obsess and devote

Label his interactions with zeroes and infinities

 

Because there is more to life

Than just the shapes of things

Than just topology.

 

The “Lies to Children” Model of Science Communication, and The “Amplitudes Are Weird” Model of Amplitudes

Let me tell you a secret.

Scattering amplitudes in N=4 super Yang-Mills don’t actually make sense.

Scattering amplitudes calculate the probability that particles “scatter”: coming in from far away, interacting in some fashion, and producing new particles that travel far away in turn. N=4 super Yang-Mills is my favorite theory to work with: a highly symmetric version of the theory that describes the strong nuclear force. In particular, N=4 super Yang-Mills has conformal symmetry: if you re-scale everything larger or smaller, you should end up with the same predictions.

You might already see the contradiction here: scattering amplitudes talk about particles coming in from very far away…but due to conformal symmetry, “far away” doesn’t mean anything, since we can always re-scale it until it’s not far away anymore!

So when I say that I study scattering amplitudes in N=4 super Yang-Mills, am I lying?

Well…yes. But it’s a useful type of lie.

There’s a concept in science writing called “lies to children”, first popularized in a fantasy novel.

the-science-of-discworld-1

This one.

When you explain science to the public, it’s almost always impossible to explain everything accurately. So much background is needed to really understand most of modern science that conveying even a fraction of it would bore the average audience to tears. Instead, you need to simplify, to skip steps, and even (to be honest) to lie.

The important thing to realize here is that “lies to children” aren’t meant to mislead. Rather, they’re chosen in such a way that they give roughly the right impression, even as they leave important details out. When they told you in school that energy is always conserved, that was a lie: energy is a consequence of symmetry in time, and when that symmetry is broken energy doesn’t have to be conserved. But “energy is conserved” is a useful enough rule that lets you understand most of everyday life.

In this case, the “lie” that we’re calculating scattering amplitudes is fairly close to the truth. We’re using the same methods that people use to calculate scattering amplitudes in theories where they do make sense, like QCD. For a while, people thought these scattering amplitudes would have to be zero, since anything else “wouldn’t make sense”…but in practice, we found they were remarkably similar to scattering amplitudes in other theories. Now, we have more rigorous definitions for what we’re calculating that avoid this problem, involving objects called polygonal Wilson loops.

This illustrates another principle, one that hasn’t (yet) been popularized by a fantasy novel. I’d like to call it the “amplitudes are weird” principle. Time and again we amplitudes-folks will do a calculation that doesn’t really make sense, find unexpected structure, and go back to figure out what that structure actually means. It’s been one of the defining traits of the field, and we’ve got a pretty good track record with it.

A couple of weeks back, Lance Dixon gave an interview for the SLAC website, talking about his work on quantum gravity. This was immediately jumped on by Peter Woit and Lubos Motl as ammo for the long-simmering string wars. To one extent or another, both tried to read scientific arguments into the piece. This is in general a mistake: it is in the nature of a popularization piece to contain some volume of lies-to-children, and reading a piece aimed at a lower audience can be just as confusing as reading one aimed at a higher audience.

In the remainder of this post, I’ll try to explain what Lance was talking about in a slightly higher-level way. There will still be lies-t0-children involved, this is a popularization blog after all. But I should be able to clear up a few misunderstandings. Lubos probably still won’t agree with the resulting argument, but it isn’t the self-evidently wrong one he seems to think it is.

Lance Dixon has done a lot of work on quantum gravity. Those of you who’ve read my old posts might remember that quantum gravity is not so difficult in principle: general relativity naturally leads you to particles called gravitons, which can be treated just like other particles. The catch is that the theory that you get by doing this fails to be predictive: one reason why is that you get an infinite number of erroneous infinite results, which have to be papered over with an infinite number of arbitrary constants.

Working with these non-predictive theories, however, can still yield interesting results. In the article, Lance mentions the work of Bern, Carrasco, and Johansson. BCJ (as they are abbreviated) have found that calculating a gravity amplitude often just amounts to calculating a (much easier to find) Yang-Mills amplitude, and then squaring the right parts. This was originally found in the context of string theory by another three-letter group, Kawai, Lewellen, and Tye (or KLT). In string theory, it’s particularly easy to see how this works, as it’s a basic feature of how string theory represents gravity. However, the string theory relations don’t tell the whole story: in particular, they only show that this squaring procedure makes sense on a classical level. Once quantum corrections come in, there’s no known reason why this squaring trick should continue to work in non-string theories, and yet so far it has. It would be great if we had a good argument why this trick should continue to work, a proof based on string theory or otherwise: for one, it would allow us to be much more confident that our hard work trying to apply this trick will pay off! But at the moment, this falls solidly under the “amplitudes are weird” principle.

Using this trick, BCJ and collaborators (frequently including Lance Dixon) have been calculating amplitudes in N=8 supergravity, a highly symmetric version of those naive, non-predictive gravity theories. For this particular, theory, the theory you “square” for the above trick is N=4 super Yang-Mills. N=4 super Yang-Mills is special for a number of reasons, but one is that the sorts of infinite results that lose you predictive power in most other quantum field theories never come up. Remarkably, the same appears to be true of N=8 supergravity. We’re still not sure, the relevant calculation is still a bit beyond what we’re capable of. But in example after example, N=8 supergravity seems to be behaving similarly to N=4 super Yang-Mills, and not like people would have predicted from its gravitational nature. Once again, amplitudes are weird, in a way that string theory helped us discover but by no means conclusively predicted.

If N=8 supergravity doesn’t lose predictive power in this way, does that mean it could describe our world?

In a word, no. I’m not claiming that, and Lance isn’t claiming that. N=8 supergravity simply doesn’t have the right sorts of freedom to give you something like the real world, no matter how you twist it. You need a broader toolset (string theory generally) to get something realistic. The reason why we’re interested in N=8 supergravity is not because it’s a candidate for a real-world theory of quantum gravity. Rather, it’s because it tells us something about where the sorts of dangerous infinities that appear in quantum gravity theories really come from.

That’s what’s going on in the more recent paper that Lance mentioned. There, they’re not working with a supersymmetric theory, but with the naive theory you’d get from just trying to do quantum gravity based on Einstein’s equations. What they found was that the infinity you get is in a certain sense arbitrary. You can’t get rid of it, but you can shift it around (infinity times some adjustable constant 😉 ) by changing the theory in ways that aren’t physically meaningful. What this suggests is that, in a sense that hadn’t been previously appreciated, the infinite results naive gravity theories give you are arbitrary.

The inevitable question, though, is why would anyone muck around with this sort of thing when they could just use string theory? String theory never has any of these extra infinities, that’s one of its most important selling points. If we already have a perfectly good theory of quantum gravity, why mess with wrong ones?

Here, Lance’s answer dips into lies-to-children territory. In particular, Lance brings up the landscape problem: the fact that there are 10^500 configurations of string theory that might loosely resemble our world, and no clear way to sift through them to make predictions about the one we actually live in.

This is a real problem, but I wouldn’t think of it as the primary motivation here. Rather, it gets at a story people have heard before while giving the feeling of a broader issue: that string theory feels excessive.

princess_diana_wedding_dress

Why does this have a Wikipedia article?

Think of string theory like an enormous piece of fabric, and quantum gravity like a dress. You can definitely wrap that fabric around, pin it in the right places, and get a dress. You can in fact get any number of dresses, elaborate trains and frilly togas and all sorts of things. You have to do something with the extra material, though, find some tricky but not impossible stitching that keeps it out of the way, and you have a fair number of choices of how to do this.

From this perspective, naive quantum gravity theories are things that don’t qualify as dresses at all, scarves and socks and so forth. You can try stretching them, but it’s going to be pretty obvious you’re not really wearing a dress.

What we amplitudes-folks are looking for is more like a pencil skirt. We’re trying to figure out the minimal theory that covers the divergences, the minimal dress that preserves modesty. It would be a dress that fits the form underneath it, so we need to understand that form: the infinities that quantum gravity “wants” to give rise to, and what it takes to cancel them out. A pencil skirt is still inconvenient, it’s hard to sit down for example, something that can be solved by adding extra material that allows it to bend more. Similarly, fixing these infinities is unlikely to be the full story, there are things called non-perturbative effects that probably won’t be cured. But finding the minimal pencil skirt is still going to tell us something that just pinning a vast stretch of fabric wouldn’t.

This is where “amplitudes are weird” comes in in full force. We’ve observed, repeatedly, that amplitudes in gravity theories have unexpected properties, traits that still aren’t straightforwardly explicable from the perspective of string theory. In our line of work, that’s usually a sign that we’re on the right track. If you’re a fan of the amplituhedron, the project here is along very similar lines: both are taking the results of plodding, not especially deep loop-by-loop calculations, observing novel simplifications, and asking the inevitable question: what does this mean?

That far-term perspective, looking off into the distance at possible insights about space and time, isn’t my style. (It isn’t usually Lance’s either.) But for the times that you want to tell that kind of story…well, this isn’t that outlandish of a story to tell. And unless your primary concern is whether a piece gives succor to the Woits of the world, it shouldn’t be an objectionable one.

When to Look under the Bed

Last week, blogged about a rather interesting experiment, designed to test the quantum properties of gravity. Normally, quantum gravity is essentially unobservable: quantum effects are typically only relevant for very small systems, where gravity is extremely weak. However, there has been a lot of progress in putting larger and larger systems into interesting quantum states, and a team of experimentalists has recently proposed a setup. The experiment wouldn’t have enough detail to, for example, distinguish between rival models of quantum gravity, but it would provide evidence as to whether or not gravity is quantum at all.

Lubos Motl, meanwhile, argues that such an experiment is utterly pointless, because there is no possible way that gravity could not be quantum. I won’t blame you if you don’t read his argument since it’s written in his trademark…aggressive…style, but the gist is that it’s really hard to make sense of the idea that there are non-quantum things in an otherwise quantum world. It causes all sorts of issues with pretty much every interpretation of quantum mechanics, and throws the differences between those interpretations into particularly harsh and obvious light. From this perspective, checking to see if gravity might not actually be quantum (an idea called semi-classical gravity) is a bit like checking for a monster under the bed.

You might find semi-classical gravity!

In general, I share Motl’s reservations about semi-classical gravity. As I mentioned back when journalists were touting the BICEP2 results as evidence of quantum gravity, the idea that gravity could not be quantum doesn’t really make much sense. (Incidentally, Hossenfelder makes a similar point in her post.)

All that said, sometimes in science it’s absolutely worth looking under the bed.

Take another unlikely possibility, that of cell phone radiation causing cancer. Things that cause cancer do it by messing with the molecular bonds in DNA. In order to mess with molecular bonds, you need high-frequency light. That’s how UV light from the sun can cause skin cancer. Cell phones emit microwaves, which are very low-frequency light. It’s what allows them to be useful inside of buildings, where normal light wouldn’t reach. It also means it’s impossible for them to cause cancer.

Nevertheless, if nobody had ever studied whether cell phones cause cancer, it would probably be worth at least one study. If that study came back positive, it would say something interesting, either about the study’s design or about other possible causes of cancer. If negative, the topic could be put to bed more convincingly. As it happens, those studies have been done, and overall confirm the expectations we have from basic science.

Another important point here is that experimentalists and theorists have different priorities, due to their different specializations. Theorists are interested in confirmation for particular theories: they want not just an unknown particle, but a gluino, and not just a gluino, but the gluino predicted by their particular model of supersymmetry. By contrast, experimentalists typically aren’t very interested in proving or disproving one theory or another. Rather, they look for general signals that indicate broad classes of new physics. For example, experimentalists might use the LHC to look for a leptoquark, a particle that allows quarks and leptons to interact, without caring what theory might produce them. Experimentalists are also very interested in improving their techniques. Much like theorists, a lot of interesting work in the field involves pushing the current state-of-the-art as far as it will go.

So, when should we look under the bed?

Well, if nobody has ever looked under this particular bed before, and if seeing something strange under this bed would at least be informative, and if looking under the bed serves as a proving ground for the latest in bed-spelunking technology, then yes, we should absolutely look under this bed.

Just don’t expect to see any monsters.

Romeo and Juliet, through a Wormhole

Perimeter is hosting this year’s Mathematica Summer School on Theoretical Physics. The school is a mix of lectures on a topic in physics (this year, the phenomenon of quantum entanglement) and tips and tricks for using the symbolic calculation program Mathematica.

Juan Maldacena is one of the lecturers, which gave me a chance to hear his Romeo and Juliet-based explanation of the properties of wormholes. While I’ve criticized some of Maldacena’s science popularization work in the past, this one is pretty solid, so I thought I’d share it with you guys.

You probably think of wormholes as “shortcuts” to travel between two widely separated places. As it turns out, this isn’t really accurate: while “normal” wormholes do connect distant locations, they don’t do it in a way that allows astronauts to travel between them, Interstellar-style. This can be illustrated with something called a Penrose diagram:

Static

Static “Greyish Black” Diagram

In the traditional Penrose diagram, time goes upward, while space goes from side to side. In order to measure both in the same units, we use the speed of light, so one year on the time axis corresponds to one light-year on the space axis. This means that if you’re traveling at a 45 degree line on the diagram, you’re going at the speed of light. Any lower angle is impossible, while any higher angle means you’re going slower.

If we start in “our universe” in the diagram, can we get to the “other universe”?

Pretty clearly, the answer is no. As long as we go slower than the speed of light, when we pass the event horizon of the wormhole we will end up, not in the “other universe”, but at the part of the diagram labeled Future Singularity, the singularity at the center of the black hole. Even going at the speed of light only keeps us orbiting the event horizon for all eternity, at best.

What use could such a wormhole be? Well, imagine you’re Romeo or Juliet.

Romeo has been banished from Verona, but he took one end of a wormhole with him, while the other end was left with Juliet. He can’t go through and visit her, she can’t go through and visit him. But if they’re already considering taking poison, there’s an easier way. If they both jump in to the wormhole, they’ll fall in to the singularity. Crucially, though, it’s the same singularity, so once they’re past the event horizon they can meet inside the black hole, spending some time together before the end.

Depicted here for more typical quantum protagonists, Alice and Bob.

This explains what wormholes really are: two black holes that share a center.

Why was Maldacena talking about this at a school on entanglement? Maldacena has recently conjectured that quantum entanglement and wormholes are two sides of the same phenomenon, that pairs of entangled particles are actually connected by wormholes. Crucially, these wormholes need to have the properties described above: you can’t use a pair of entangled particles to communicate information faster than light, and you can’t use a wormhole to travel faster than light. However, it is the “shared” singularity that ends up particularly useful, as it suggests a solution to the problem of black hole firewalls.

Firewalls were originally proposed as a way of getting around a particular paradox relating three states connected by quantum entanglement: a particle inside a black hole, radiation just outside the black hole, and radiation far away from the black hole. The way the paradox is set up, it appears that these three states must all be connected. As it turns out, though, this is prohibited by quantum mechanics, which only allows two states to be entangled at a time. The original solution proposed for this was a “firewall”, a situation in which anyone trying to observe all three states would “burn up” when crossing the event horizon, thus avoiding any observed contradiction. Maldacena’s conjecture suggests another way: if someone interacts with the far-away radiation, they have an effect on the black hole’s interior, because the two are connected by a wormhole! This ends up getting rid of the contradiction, allowing the observer to view the black hole and distant radiation as two different descriptions of the same state, and it depends crucially on the fact that a wormhole involves a shared singularity.

There’s still a lot of detail to be worked out, part of the reason why Maldacena presented this research here was to inspire more investigation from students. But it does seem encouraging that Romeo and Juliet might not have to face a wall of fire before being reunited.