Author Archives: 4gravitons

Searching for Stefano

On Monday, Quanta magazine released an article on a man who transformed the way we do particle physics: Stefano Laporta. I’d tipped them off that Laporta would make a good story: someone who came up with the bread-and-butter algorithm that fuels all of our computations, then vanished from the field for ten years, returning at the end with an 1,100 digit masterpiece. There’s a resemblance to Searching for Sugar Man, fans and supporters baffled that their hero is living in obscurity.

If anything, I worry I under-sold the story. When Quanta interviewed me, it was clear they were looking for ties to well-known particle physics results: was Laporta’s work necessary for the Higgs boson discovery, or linked to the controversy over the magnetic moment of the muon? I was careful, perhaps too careful, in answering. The Higgs, to my understanding, didn’t require so much precision for its discovery. As for the muon, the controversial part is a kind of calculation that wouldn’t use Laporta’s methods, while the un-controversial part was found numerically by a group that doesn’t use his algorithm either.

With more time now, I can make a stronger case. I can trace Laporta’s impact, show who uses his work and for what.

In particle physics, we have a lovely database called INSPIRE that lists all our papers. Here is Laporta’s page, his work sorted by number of citations. When I look today, I find his most cited paper, the one that first presented his algorithm, at the top, with a delightfully apt 1,001 citations. Let’s listen to a few of those 1,001 tales, and see what they tell us.

Once again, we’ll sort by citations. The top paper, “Higgs boson production at hadron colliders in NNLO QCD“, is from 2002. It computes the chance that a particle collider like the LHC could produce a Higgs boson. It in turn has over a thousand citations, headlined by two from the ATLAS and CMS collaborations: “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC” and “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC“. Those are the papers that announced the discovery of the Higgs, each with more than twelve thousand citations. Later in the list, there are design reports: discussions of why the collider experiments are built a certain way. So while it’s true that the Higgs boson could be seen clearly from the data, Laporta’s work still had a crucial role: with his algorithm, we could reassure experimenters that they really found the Higgs (not something else), and even more importantly, help them design the experiment so that they could detect it.

The next paper tells a similar story. A different calculation, with almost as many citations, feeding again into planning and prediction for collider physics.

The next few touch on my own corner of the field. “New Relations for Gauge-Theory Amplitudes” triggered a major research topic in its own right, one with its own conference series. Meanwhile, “Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond” served as a foundation for my own career, among many others. None of this would have happened without Laporta’s algorithm.

After that, more applications: fundamental quantities for collider physics, pieces of math that are used again and again. In particular, they are referenced again and again by the Particle Data Group, who collect everything we know about particle physics.

Further down still, and we get to specific code: FIRE and Reduze, programs made by others to implement Laporta’s algorithm, each with many uses in its own right.

All that, just from one of Laporta’s papers.

His ten-year magnum opus is more recent, and has fewer citations: checking now, just 139. Still, there are stories to tell there too.

I mentioned earlier 1,100 digits, and this might confuse some of you. The most precise prediction in particle physics has ten digits of precision, the magnetic behavior of the electron. Laporta’s calculation didn’t change that, because what he calculated isn’t the only contribution: he calculated Feynman diagrams with four “loops”, which is its own approximation, one limited in precision by what might be contributed by more loops. The current result has Feynman diagrams with five loops as well (known to much less than 1,100 digits), but the diagrams with six or more are unknown, and can only be estimated. The result also depends on measurements, which themselves can’t reach 1,100 digits of precision.

So why would you want 1,100 digits, then? In a word, mathematics. The calculation involves exotic types of numbers called periods, more complicated cousins of numbers like pi. These numbers are related to each other, often in complicated and surprising ways, ways which are hard to verify without such extreme precision. An older result of Laporta’s inspired the physicist David Broadhurst and mathematician Anton Mellit to conjecture new relations between this type of numbers, relations that were only later proven using cutting-edge mathematics. The new result has inspired mathematicians too: Oliver Schnetz found hints of a kind of “numerical footprint”, special types of numbers tied to the physics of electrons. It’s a topic I’ve investigated myself, something I think could lead to much more efficient particle physics calculations.

In addition to being inspired by Laporta’s work, Broadhurst has advocated for it. He was the one who first brought my attention to Laporta’s story, with a moving description of welcoming him back to the community after his ten-year silence, writing a letter to help him get funding. I don’t have all the details of the situation, but the impression I get is that Laporta had virtually no academic support for those ten years: no salary, no students, having to ask friends elsewhere for access to computer clusters.

When I ask why someone with such an impact didn’t have a professorship, the answer I keep hearing is that he didn’t want to move away from his home town in Bologna. If you aren’t an academic, that won’t sound like much of an explanation: Bologna has a university after all, the oldest in the world. But that isn’t actually a guarantee of anything. Universities hire rarely, according to their own mysterious agenda. I remember another colleague whose wife worked for a big company. They offered her positions in several cities, including New York. They told her that, since New York has many universities, surely her husband could find a job at one of them? We all had a sad chuckle at that.

For almost any profession, a contribution like Laporta’s would let you live anywhere you wanted. That’s not true for academia, and it’s to our loss. By demanding that each scientist be able to pick up and move, we’re cutting talented people out of the field, filtering by traits that have nothing to do with our contributions to knowledge. I don’t know Laporta’s full story. But I do know that doing the work you love in the town you love isn’t some kind of unreasonable request. It’s a request academia should be better at fulfilling.

Don’t Trust the Experiments, Trust the Science

I was chatting with an astronomer recently, and this quote by Arthur Eddington came up:

“Never trust an experimental result until it has been confirmed by theory.”

Arthur Eddington

At first, this sounds like just typical theorist arrogance, thinking we’re better than all those experimentalists. It’s not that, though, or at least not just that. Instead, it’s commenting on a trend that shows up again and again in science, but rarely makes the history books. Again and again an experiment or observation comes through with something fantastical, something that seems like it breaks the laws of physics or throws our best models into disarray. And after a few months, when everyone has checked, it turns out there was a mistake, and the experiment agrees with existing theories after all.

You might remember a recent example, when a lab claimed to have measured neutrinos moving faster than the speed of light, only for it to turn out to be due to a loose cable. Experiments like this aren’t just a result of modern hype: as Eddington’s quote shows, they were also common in his day. In general, Eddington’s advice is good: when an experiment contradicts theory, theory tends to win in the end.

This may sound unscientific: surely we should care only about what we actually observe? If we defer to theory, aren’t we putting dogma ahead of the evidence of our senses? Isn’t that the opposite of good science?

To understand what’s going on here, we can use an old philosophical argument: David Hume’s argument against miracles. David Hume wanted to understand how we use evidence to reason about the world. He argued that, for miracles in particular, we can never have good evidence. In Hume’s definition, a miracle was something that broke the established laws of science. Hume argued that, if you believe you observed a miracle, there are two possibilities: either the laws of science really were broken, or you made a mistake. The thing is, laws of science don’t just come from a textbook: they come from observations as well, many many observations in many different conditions over a long period of time. Some of those observations establish the laws in the first place, others come from the communities that successfully apply them again and again over the years. If your miracle was real, then it would throw into doubt many, if not all, of those observations. So the question you have to ask is: it it more likely those observations were wrong? Or that you made a mistake? Put another way, your evidence is only good enough for a miracle if it would be a bigger miracle if you were wrong.

Hume’s argument always struck me as a little bit too strict: if you rule out miracles like this, you also rule out new theories of science! A more modern approach would use numbers and statistics, weighing the past evidence for a theory against the precision of the new result. Most of the time you’d reach the same conclusion, but sometimes an experiment can be good enough to overthrow a theory.

Still, theory should always sit in the background, a kind of safety net for when your experiments screw up. It does mean that when you don’t have that safety net you need to be extra-careful. Physics is an interesting case of this: while we have “the laws of physics”, we don’t have any established theory that tells us what kinds of particles should exist. That puts physics in an unusual position, and it’s probably part of why we have such strict standards of statistical proof. If you’re going to be operating without the safety net of theory, you need that kind of proof.

This post was also inspired by some biological examples. The examples are politically controversial, so since this is a no-politics blog I won’t discuss them in detail. (I’ll also moderate out any comments that do.) All I’ll say is that I wonder if in that case the right heuristic is this kind of thing: not to “trust scientists” or “trust experts” or even “trust statisticians”, but just to trust the basic, cartoon-level biological theory.

The Irons in the Fire Metric

I remember, a while back, visiting a friend in his office. He had just became a professor, and was still setting things up. I noticed a list on the chalkboard, taking up almost one whole side. Taking a closer look, I realized that list was a list of projects. To my young postdoc eyes, the list was amazing: how could one person be working on so many things?

There’s an idiom in English, “too many irons in the fire”. You can imagine a blacksmith forging many things at once, each piece of iron taking focus from the others. Too many, and a piece might break, or otherwise fail.

Perhaps the irons in the fire are fire irons

In theoretical physics, a typical PhD publishes three papers before they graduate. That usually means one project at a time, maybe two. For someone used to one or two irons in the fire, so many at a time seems an impossible feat.

Scientists grow over their careers, though, and in more than one way. What seems impossible can eventually be business as usual.

First, as your skill grows, you become more efficient. A lot of scientific work is a kind of debugging: making mistakes, and figuring out how to fix them. The more experience you have, the more you know what kinds of mistakes you might make, and the better you will be at avoiding them. (Never perfect, of course: scientists always have to debug something.)

Second, your collaborations grow. The more people you work with, the more you can share these projects, each person contributing their own piece. With time, you start supervising as well: Masters students, PhD students, postdocs. Each one adds to the number of irons you can manage in your fire. While for bad supervisors this just means having their name on lots of projects, the good supervisors will be genuinely contributing to each one. That’s yet another kind of growth: as you get further along, you get a better idea of what works and what doesn’t, so even in a quick meeting you can solve meaningful problems.

Third, you grow your system. The ideas you explore early on blossom into full-fledged methods, tricks which you can pull out again and again when you need them. The tricks combine, forming new, bigger tricks, and eventually a long list of projects becomes second nature, a natural thing your system is able to do.

As you grow as a scientist, you become more than just one researcher, one debugger at a laptop or pipetter at a lab bench. You become a research program, one that manifests across many people and laptops and labs. As your expertise grows, you become a kind of living exchange of ideas, concepts flowing through you when needed, building your own scientific world.

Facts About Math Are Facts About Us

Each year, the Niels Bohr International Academy has a series of public talks. Part of Copenhagen’s Folkeuniversitet (“people’s university”), they attract a mix of older people who want to keep up with modern developments and young students looking for inspiration. I gave a talk a few days ago, as part of this year’s program. The last time I participated, back in 2017, I covered a topic that comes up a lot on this blog: “The Quest for Quantum Gravity”. This year, I was asked to cover something more unusual: “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”.

Some of you might notice that title is already taken: it’s a famous lecture by the physicist Wigner, from 1959. Wigner posed an interesting question: why is advanced mathematics so useful in physics? Time and time again, mathematicians develop an idea purely for its own sake, only for physicists to find it absolutely indispensable to describe some part of the physical world. Should we be surprised that this keeps working? Suspicious?

I talked a bit about this: some of the answers people have suggested over the years, and my own opinion. But like most public talks, the premise was mostly a vehicle for cool examples: physicists through history bringing in new math, and surprising mathematical facts like the ones I talked about a few weeks back at Culture Night. Because of that, I was actually a bit unprepared to dive into the philosophical side of the topic (despite it being in principle a very philosophical topic!) When one of the audience members brought up mathematical Platonism, I floundered a bit, not wanting to say something that was too philosophically naive.

Well, if there’s anywhere I can be naive, it’s my own blog. I even have a label for Amateur Philosophy posts. So let’s do one.

Mathematical Platonism is the idea that mathematical truths “exist”: that they’re somewhere “out there” being discovered. On the other side, one might believe that mathematics is not discovered, but invented. For some reason, a lot of people with the latter opinion seem to think this has something to do with describing nature (for example, an essay a few years back by Lee Smolin defines mathematics as “the study of systems of evoked relationships inspired by observations of nature”).

I’m not a mathematical Platonist. I don’t even like to talk about which things do or don’t “exist”. But I also think that describing mathematics in terms of nature is missing the point. Mathematicians aren’t physicists. While there may have been a time when geometers argued over lines in the sand, these days mathematicians’ inspiration isn’t usually the natural world, at least not in the normal sense.

Instead, I think you can’t describe mathematics without describing mathematicians. A mathematical fact is, deep down, something a mathematician can say without other mathematicians shouting them down. It’s an allowed move in what my hazy secondhand memory of Wittgenstein wants to call a “language game”: something that gets its truth from a context of people interpreting and reacting to it, in the same way a move in chess matters only when everyone is playing by its rules.

This makes mathematics sound very subjective, and we’re used to the opposite: the idea that a mathematical fact is as objective as they come. The important thing to remember is that even with this kind of description, mathematics still ends up vastly less subjective than any other field. We care about subjectivity between different people: if a fact is “true” for Brits and “false” for Germans, then it’s a pretty limited fact. Mathematics is special because the “rules of its game” aren’t rules of one group or another. They’re rules that are in some sense our birthright. Any human who can read and write, or even just act and perceive, can act as a Turing Machine, a universal computer. With enough patience and paper, anything that you can prove to one person you can prove to another: you just have to give them the rules and let them follow them. It doesn’t matter how smart you are, or what you care about most: if something is mathematically true for others, it is mathematically true for you.

Some would argue that this is evidence for mathematical Platonism, that if something is a universal truth it should “exist”. Even if it does, though, I don’t think it’s useful to think of it in that way. Once you believe that mathematical truth is “out there”, you want to try to characterize it, to say something about it besides that it’s “out there”. You’ll be tempted to have an opinion on the Axiom of Choice, or the Continuum Hypothesis. And the whole point is that those aren’t sensible things to have opinions on, that having an opinion about them means denying the mathematical proofs that they are, in the “standard” axioms, undecidable. Whatever is “out there”, it has to include everything you can prove with every axiom system, whichever non-standard ones you can cook up, because mathematicians will happily work on any of them. The whole point of mathematics, the thing that makes it as close to objective as anything can be, is that openness: the idea that as long as an argument is good enough, as long as it can convince anyone prepared to wade through the pages, then it is mathematics. Nothing, so long as it can convince in the long-run, is excluded.

If we take this definition seriously, there are some awkward consequences. You could imagine a future in which every mind, everyone you might be able to do mathematics with, is crushed under some tyrant, forced to agree to something false. A real philosopher would dig in to this corner case, try to salvage the definition or throw it out. I’m not a real philosopher though. So all I can say is that while I don’t think that tyrant gets to define mathematics, I also don’t think there are good alternatives to my argument. Our only access to mathematics, and to truth in general, is through the people who pursue it. I don’t think we can define one without the other.

Serial Killers and Grad School Horror Stories

It’s time for my yearly Halloween post. My regular readers know what to expect: a horror trope and a physics topic, linked by a tortured analogy. And this year, the pun is definitely intended.

Horror movies have a fascination with serial killers. Over the years, they’ve explored every possible concept: from gritty realism to the supernatural, crude weapons to sophisticated traps, motivations straightforward to mysterious, and even killers who are puppets.

Yes I know Billy is not actually the killer in the Saw films

One common theme of all fictional serial killers is power. Serial killers are scary because they have almost all the power in a situation, turned to alien and unpredictable goals. The protagonists of a horror film are the underdogs, never knowing whether the killer will pull out some new ability or plan that makes everything they try irrelevant. Even if they get the opportunity to negotiate, the power imbalance means that they can’t count on getting what they need: anything the killer agrees will be twisted to serve their own ends.

Academics tell their own kind of horror stories. Earlier this month, the historian Brett Deveraux had a blog post about graduate school, describing what students go through to get a PhD. As he admits, parts of his story only apply to the humanities. STEM departments have more money, and pay their students a bit better. It’s not a lot better (I was making around $20,000 a year at Stony Brook), but it’s enough that I’ve never heard of a student taking out a loan to make ends meet. (At most, people took on tutoring jobs for a bit of extra cash.) We don’t need to learn new languages, and our degrees take a bit less time: six or seven years for an experimental physicist, and often five for a theoretical physicist. Finally, the work can be a lot less lonely, especially for those who work in a lab.

Still, there is a core in common, and that core once again is power. Universities have power, of course: and when you’re not a paying customer but an employee with your career on the line, that power can be quite scary. But the person with the most power over a PhD student is their advisor. Deveraux talks compellingly about the difference that power can make: how an advisor who is cruel, or indifferent, or just clueless, can make or break not just your career but your psychological well-being. The lucky students, like Deveraux and me, find supportive mentors who help us survive and move forward. The unlucky students leave with scars, even if those scars aren’t jigsaw-shaped.

Neither Deveraux or I have experience with PhD programs in Europe, which are quite different in structure from those in the US. But the power imbalance is still there, and still deadly, and so despite the different structure, I’ve seen students here break down, scarred in the same way.

Deveraux frames his post as advice for those who want to go to grad school, and his first piece of advice is “Have you tried wanting something else?” I try to echo that when I advise students. I don’t always succeed: there’s something exciting about a young person interested in the same topics we’re interested in, willing to try to make a life of it. But it is important to know what you’re getting into, and to know there’s a big world out there of other options. If, after all that, you decide to stick through it, just remember: power matters. If you give someone power over you, try to be as sure as you can that it won’t turn into a horror story.

In Uppsala for Elliptics 2021

I’m in Uppsala in Sweden this week, at an actual in-person conference.

With actual blackboards!

Elliptics started out as a series of small meetings of physicists trying to understand how to make sense of elliptic integrals in calculations of colliding particles. It grew into a full-fledged yearly conference series. I organized last year, which naturally was an online conference. This year though, the stage was set for Uppsala University to host in person.

I should say mostly in person. It’s a hybrid conference, with some speakers and attendees joining on Zoom. Some couldn’t make it because of travel restrictions, or just wanted to be cautious about COVID. But seemingly just as many had other reasons, like teaching schedules or just long distances, that kept them from coming in person. We’re all wondering if this will become a long-term trend, where the flexibility of hybrid conferences lets people attend no matter their constraints.

The hybrid format worked better than expected, but there were still a few kinks. The audio was particularly tricky, it seemed like each day the organizers needed a new microphone setup to take questions. It’s always a little harder to understand someone on Zoom, especially when you’re sitting in an auditorium rather than focused on your own screen. Still, technological experience should make this work better in future.

Content-wise, the conference began with a “mini-school” of pedagogical talks on particle physics, string theory, and mathematics. I found the mathematical talks by Erik Panzer particularly nice, it’s a topic I still feel quite weak on and he laid everything out in a very clear way. It seemed like a nice touch to include a “school” element in the conference, though I worry it ate too much into the time.

The rest of the content skewed more mathematical, and more string-theoretic, than these conferences have in the past. The mathematical content ranged from intriguing (including an interesting window into what it takes to get high-quality numerics) to intimidatingly obscure (large commutative diagrams, category theory on the first slide). String theory was arguably under-covered in prior years, but it felt over-covered this year. With the particle physics talks focusing on either general properties with perhaps some connections to elliptics, or to N=4 super Yang-Mills, it felt like we were missing the more “practical” talks from past conferences, where someone was computing something concrete in QCD and told us what they needed. Next year is in Mainz, so maybe those talks will reappear.

Outreach Talk on Math’s Role in Physics

Tonight is “Culture Night” in Copenhagen, the night when the city throws open its doors and lets the public in. Museums and hospitals, government buildings and even the Freemasons, all have public events. The Niels Bohr Institute does too, of course: an evening of physics exhibits and demos, capped off with a public lecture by Denmark’s favorite bow-tie wearing weirder-than-usual string theorist, Holger Bech Nielsen. In between, there are a number of short talks by various folks at the institute, including yours truly.

In my talk, I’m going to try and motivate the audience to care about math. Math is dry of course, and difficult for some, but we physicists need it to do our jobs. If you want to be precise about a claim in physics, you need math simply to say what you want clearly enough.

Since you guys likely don’t overlap with my audience tonight, it should be safe to give a little preview. I’ll be using a few examples, but this one is the most complicated:

I’ll be telling a story I stole from chapter seven of the web serial Almost Nowhere. (That link is to the first chapter, by the way, in case you want to read the series without spoilers. It’s very strange, very unique, and at least in my view quite worth reading.) You follow a warrior carrying a spear around a globe in two different paths. The warrior tries to always point in the same direction, but finds that the two different paths result in different spears when they meet. The story illustrates that such a simple concept as “what direction you are pointing” isn’t actually so simple: if you want to think about directions in curved space (like the surface of the Earth, but also, like curved space-time in general relativity) then you need more sophisticated mathematics (a notion called parallel transport) to make sense of it.

It’s kind of an advanced concept for a public talk. But seeing it show up in Almost Nowhere inspired me to try to get it across. I’ll let you know how it goes!

By the way, if you are interested in learning the kinds of mathematics you need for theoretical physics, and you happen to be a Bachelor’s student planning to pursue a PhD, then consider the Perimeter Scholars International Master’s Program! It’s a one-year intensive at the Perimeter Institute in Waterloo, Ontario, in Canada. In a year it gives you a crash course in theoretical physics, giving you tools that will set you ahead of other beginning PhD students. I’ve witnessed it in action, and it’s really remarkable how much the students learn in a year, and what they go on to do with it. Their early registration deadline is on November 15, just a month away, so if you’re interested you may want to start thinking about it.

Congratulations to Syukuro Manabe, Klaus Hasselmann, and Giorgio Parisi!

The 2021 Nobel Prize in Physics was announced this week, awarded to Syukuro Manabe and Klaus Hasselmann for climate modeling and Giorgio Parisi for understanding a variety of complex physical systems.

Before this year’s prize was announced, I remember a few “water cooler chats” about who might win. No guess came close, though. The Nobel committee seems to have settled in to a strategy of prizes on a loosely linked “basket” of topics, with half the prize going to a prominent theorist and the other half going to two experimental, observational, or (in this case) computational physicists. It’s still unclear why they’re doing this, but regardless it makes it hard to predict what they’ll do next!

When I read the announcement, my first reaction was, “surely it’s not that Parisi?” Giorgio Parisi is known in my field for the Altarelli-Parisi equations (more properly known as the DGLAP equations, the longer acronym because, as is often the case in physics, the Soviets got there first). These equations are in some sense why the scattering amplitudes I study are ever useful at all. I calculate collisions of individual fundamental particles, like quarks and gluons, but a real particle collider like the LHC collides protons. Protons are messy, interacting combinations of quarks and gluons. When they collide you need not merely the equations describing colliding quarks and gluons, but those that describe their messy dynamics inside the proton, and in particular how those dynamics look different for experiments with different energies. The equation that describes that is the DGLAP equation.

As it turns out, Parisi is known for a lot more than the DGLAP equation. He is best known for his work on “spin glasses”, models of materials where quantum spins try to line up with each other, never quite settling down. He also worked on a variety of other complex systems, including flocks of birds!

I don’t know as much about Manabe and Hasselmann’s work. I’ve only seen a few talks on the details of climate modeling. I’ve seen plenty of talks on other types of computer modeling, though, from people who model stars, galaxies, or black holes. And from those, I can appreciate what Manabe and Hasselmann did. Based on those talks, I recognize the importance of those first one-dimensional models, a single column of air, especially back in the 60’s when computer power was limited. Even more, I recognize how impressive it is for someone to stay on the forefront of that kind of field, upgrading models for forty years to stay relevant into the 2000’s, as Manabe did. Those talks also taught me about the challenge of coupling different scales: how small effects in churning fluids can add up and affect the simulation, and how hard it is to model different scales at once. To use these effects to discover which models are reliable, as Hasselmann did, is a major accomplishment.

Breaking Out of “Self-Promotion Voice”

What do TED talks and grant applications have in common?

Put a scientist on a stage, and what happens? Some of us panic and mumble. Others are as smooth as a movie star. Most, though, fall back on a well-practiced mode: “self-promotion voice”.

A scientist doing self-promotion voice is easy to recognize. We focus on ourselves, of course (that’s in the name!), talking about all the great things we’ve done. If we have to mention someone else, we make sure to link it in some way: “my colleague”, “my mentor”, “which inspired me to”. All vulnerability is “canned” in one way or another: “challenges we overcame”, light touches on the most sympathetic of issues. Usually, we aren’t negative towards our colleagues either: apart from the occasional very distant enemy, everyone is working with great scientific virtue. If we talk about our past, we tell the same kinds of stories, mentioning our youthful curiosity and deep buzzwordy motivations. Any jokes or references are carefully pruned, made accessible to the lowest-common-denominator. This results in a standard vocabulary: see a metaphor, a quote, or a turn of phrase, and you’re bound to see it in talks again and again and again. Things get even more repetitive when you take into account how often we lean on the voice: a given speech or piece will be assembled from elementary pieces, snippets of practiced self-promotion that we pour in like packing peanuts after a minimal edit, filling all available time and word count.

“My passion for teaching manifests…”

Packing peanuts may not be glamorous, but they get the job done. A scientist who can’t do “the voice” is going to find life a lot harder, their negativity or clumsiness turning away support when they need it most. Except for the greatest of geniuses, we all have to learn a bit of self-promotion to stay employed.

We don’t have to stop there, though. Self-promotion voice works, but it’s boring and stilted, and it all looks basically the same. If we can do something a bit more authentic then we stand out from the crowd.

I’ve been learning this more and more lately. My blog posts have always run the gamut: some are pure formula, but the ones I’m most proud of have a voice all their own. Over the years, I’ve been pushing my applications in that direction. Each grant and job application has a bit of the standard self-promotion voice pruned away, and a bit of another voice (my own voice?) sneaking in. This year, as I send out applications, I’ve been tweaking things. I almost hope the best jobs come late in the year, my applications will be better then!

Why Can’t I Pay Academics to Do Things for Me?

A couple weeks back someone linked to this blog with a problem. A non-academic, he had done some mathematical work but didn’t feel it was ready to publish. He reached out to a nearby math department and asked what they would charge to help him clean up the work. If the price was reasonable, he’d do it, if not at least he’d know what it would cost.

Neither happened. He got no response, and got more and more frustrated.

For many of you, that result isn’t a big surprise. My academic readers are probably cringing at the thought of getting an email like that. But the guy’s instinct here isn’t too off-base. Certainly, in many industries that kind of email would get a response with an actual quote. Academia happens to be different, in a way that makes the general rule not really apply.

There’s a community called Effective Altruists that evaluate charities. They have a saying, “Money is the Unit of Caring”. The point of the saying isn’t that people with more money care more, or anything like that. Rather, it’s a reminder that, whatever a charity wants to accomplish, more money makes it easier. A lawyer could work an hour in a soup kitchen, but if they donated the proceeds of an hour’s work the soup kitchen could hire four workers instead. Food banks would rather receive money than food, because the money lets them buy whatever they need in bulk. As the Simpsons meme says, “money can be exchanged for goods and services”.

If you pay a charity, or a business, it helps them achieve what they want to do. If you pay an academic, it gets a bit more complicated.

The problem is that for academics, time matters a lot more than our bank accounts. If we want to settle down with a stable job, we need to spend our time doing things that look good on job applications: writing papers, teaching students, and so on. The rest of the time gets spent resting so we have the energy to do all of that.

(What about tenured professors? They don’t have to fight for their own jobs…but by that point, they’ve gotten to know their students and other young people in their sub-field. They want them to get jobs too!)

Money can certainly help with those goals, but not personal money: grant money. With grant money we can hire students and postdocs to do some of that work for us, or pay our own salary so we’re easier for a university to hire. We can buy equipment for those who need that sort of thing, and get to do more interesting science. Rather than “Money is the Unit of Caring”, for academics, “Grant Money is the Unit of Caring”.

Personal money, in contrast, just matters for our rest time. And unless we have expensive tastes, we usually get paid enough for that.

(The exception is for extremely underpaid academics, like PhD students and adjuncts. For some of them money can make a big difference to their quality of life. I had quite a few friends during my PhD who had side gigs, like tutoring, to live a bit more comfortably.)

This is not to say that it’s impossible to pay academics to do side jobs. People do. But when it works, it’s usually due to one of these reasons:

  1. It’s fun. Side work trades against rest time, but if it helps us rest up then it’s not really a tradeoff. Even if it’s a little more boring that what we’d rather do, if it’s not so bad the money can make up the difference.
  2. It looks good on a CV. This covers most of the things academics are sometimes paid to do, like writing articles for magazines. If we can spin something as useful to our teaching or research, or as good for the greater health of the field (or just for our “personal brand”), then we can justify doing it.
  3. It’s a door out of academia. I’ve seen the occasional academic take time off to work for a company. Usually that’s a matter of seeing what it’s like, and deciding whether it looks like a better life. It’s not really “about the money”, even in those cases.

So what if you need an academic’s help with something? You need to convince them it’s worth their time. Money could do it, but only if they’re living precariously, like some PhD students. Otherwise, you need to show that what you’re asking helps the academic do what they’re trying to do: that it is likely to move the field forward, or that it fulfills some responsibility tied to their personal brand. Without that, you’re not likely to hear back.