Tag Archives: theoretical physics

Searching for Stefano

On Monday, Quanta magazine released an article on a man who transformed the way we do particle physics: Stefano Laporta. I’d tipped them off that Laporta would make a good story: someone who came up with the bread-and-butter algorithm that fuels all of our computations, then vanished from the field for ten years, returning at the end with an 1,100 digit masterpiece. There’s a resemblance to Searching for Sugar Man, fans and supporters baffled that their hero is living in obscurity.

If anything, I worry I under-sold the story. When Quanta interviewed me, it was clear they were looking for ties to well-known particle physics results: was Laporta’s work necessary for the Higgs boson discovery, or linked to the controversy over the magnetic moment of the muon? I was careful, perhaps too careful, in answering. The Higgs, to my understanding, didn’t require so much precision for its discovery. As for the muon, the controversial part is a kind of calculation that wouldn’t use Laporta’s methods, while the un-controversial part was found numerically by a group that doesn’t use his algorithm either.

With more time now, I can make a stronger case. I can trace Laporta’s impact, show who uses his work and for what.

In particle physics, we have a lovely database called INSPIRE that lists all our papers. Here is Laporta’s page, his work sorted by number of citations. When I look today, I find his most cited paper, the one that first presented his algorithm, at the top, with a delightfully apt 1,001 citations. Let’s listen to a few of those 1,001 tales, and see what they tell us.

Once again, we’ll sort by citations. The top paper, “Higgs boson production at hadron colliders in NNLO QCD“, is from 2002. It computes the chance that a particle collider like the LHC could produce a Higgs boson. It in turn has over a thousand citations, headlined by two from the ATLAS and CMS collaborations: “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC” and “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC“. Those are the papers that announced the discovery of the Higgs, each with more than twelve thousand citations. Later in the list, there are design reports: discussions of why the collider experiments are built a certain way. So while it’s true that the Higgs boson could be seen clearly from the data, Laporta’s work still had a crucial role: with his algorithm, we could reassure experimenters that they really found the Higgs (not something else), and even more importantly, help them design the experiment so that they could detect it.

The next paper tells a similar story. A different calculation, with almost as many citations, feeding again into planning and prediction for collider physics.

The next few touch on my own corner of the field. “New Relations for Gauge-Theory Amplitudes” triggered a major research topic in its own right, one with its own conference series. Meanwhile, “Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond” served as a foundation for my own career, among many others. None of this would have happened without Laporta’s algorithm.

After that, more applications: fundamental quantities for collider physics, pieces of math that are used again and again. In particular, they are referenced again and again by the Particle Data Group, who collect everything we know about particle physics.

Further down still, and we get to specific code: FIRE and Reduze, programs made by others to implement Laporta’s algorithm, each with many uses in its own right.

All that, just from one of Laporta’s papers.

His ten-year magnum opus is more recent, and has fewer citations: checking now, just 139. Still, there are stories to tell there too.

I mentioned earlier 1,100 digits, and this might confuse some of you. The most precise prediction in particle physics has ten digits of precision, the magnetic behavior of the electron. Laporta’s calculation didn’t change that, because what he calculated isn’t the only contribution: he calculated Feynman diagrams with four “loops”, which is its own approximation, one limited in precision by what might be contributed by more loops. The current result has Feynman diagrams with five loops as well (known to much less than 1,100 digits), but the diagrams with six or more are unknown, and can only be estimated. The result also depends on measurements, which themselves can’t reach 1,100 digits of precision.

So why would you want 1,100 digits, then? In a word, mathematics. The calculation involves exotic types of numbers called periods, more complicated cousins of numbers like pi. These numbers are related to each other, often in complicated and surprising ways, ways which are hard to verify without such extreme precision. An older result of Laporta’s inspired the physicist David Broadhurst and mathematician Anton Mellit to conjecture new relations between this type of numbers, relations that were only later proven using cutting-edge mathematics. The new result has inspired mathematicians too: Oliver Schnetz found hints of a kind of “numerical footprint”, special types of numbers tied to the physics of electrons. It’s a topic I’ve investigated myself, something I think could lead to much more efficient particle physics calculations.

In addition to being inspired by Laporta’s work, Broadhurst has advocated for it. He was the one who first brought my attention to Laporta’s story, with a moving description of welcoming him back to the community after his ten-year silence, writing a letter to help him get funding. I don’t have all the details of the situation, but the impression I get is that Laporta had virtually no academic support for those ten years: no salary, no students, having to ask friends elsewhere for access to computer clusters.

When I ask why someone with such an impact didn’t have a professorship, the answer I keep hearing is that he didn’t want to move away from his home town in Bologna. If you aren’t an academic, that won’t sound like much of an explanation: Bologna has a university after all, the oldest in the world. But that isn’t actually a guarantee of anything. Universities hire rarely, according to their own mysterious agenda. I remember another colleague whose wife worked for a big company. They offered her positions in several cities, including New York. They told her that, since New York has many universities, surely her husband could find a job at one of them? We all had a sad chuckle at that.

For almost any profession, a contribution like Laporta’s would let you live anywhere you wanted. That’s not true for academia, and it’s to our loss. By demanding that each scientist be able to pick up and move, we’re cutting talented people out of the field, filtering by traits that have nothing to do with our contributions to knowledge. I don’t know Laporta’s full story. But I do know that doing the work you love in the town you love isn’t some kind of unreasonable request. It’s a request academia should be better at fulfilling.

Don’t Trust the Experiments, Trust the Science

I was chatting with an astronomer recently, and this quote by Arthur Eddington came up:

“Never trust an experimental result until it has been confirmed by theory.”

Arthur Eddington

At first, this sounds like just typical theorist arrogance, thinking we’re better than all those experimentalists. It’s not that, though, or at least not just that. Instead, it’s commenting on a trend that shows up again and again in science, but rarely makes the history books. Again and again an experiment or observation comes through with something fantastical, something that seems like it breaks the laws of physics or throws our best models into disarray. And after a few months, when everyone has checked, it turns out there was a mistake, and the experiment agrees with existing theories after all.

You might remember a recent example, when a lab claimed to have measured neutrinos moving faster than the speed of light, only for it to turn out to be due to a loose cable. Experiments like this aren’t just a result of modern hype: as Eddington’s quote shows, they were also common in his day. In general, Eddington’s advice is good: when an experiment contradicts theory, theory tends to win in the end.

This may sound unscientific: surely we should care only about what we actually observe? If we defer to theory, aren’t we putting dogma ahead of the evidence of our senses? Isn’t that the opposite of good science?

To understand what’s going on here, we can use an old philosophical argument: David Hume’s argument against miracles. David Hume wanted to understand how we use evidence to reason about the world. He argued that, for miracles in particular, we can never have good evidence. In Hume’s definition, a miracle was something that broke the established laws of science. Hume argued that, if you believe you observed a miracle, there are two possibilities: either the laws of science really were broken, or you made a mistake. The thing is, laws of science don’t just come from a textbook: they come from observations as well, many many observations in many different conditions over a long period of time. Some of those observations establish the laws in the first place, others come from the communities that successfully apply them again and again over the years. If your miracle was real, then it would throw into doubt many, if not all, of those observations. So the question you have to ask is: it it more likely those observations were wrong? Or that you made a mistake? Put another way, your evidence is only good enough for a miracle if it would be a bigger miracle if you were wrong.

Hume’s argument always struck me as a little bit too strict: if you rule out miracles like this, you also rule out new theories of science! A more modern approach would use numbers and statistics, weighing the past evidence for a theory against the precision of the new result. Most of the time you’d reach the same conclusion, but sometimes an experiment can be good enough to overthrow a theory.

Still, theory should always sit in the background, a kind of safety net for when your experiments screw up. It does mean that when you don’t have that safety net you need to be extra-careful. Physics is an interesting case of this: while we have “the laws of physics”, we don’t have any established theory that tells us what kinds of particles should exist. That puts physics in an unusual position, and it’s probably part of why we have such strict standards of statistical proof. If you’re going to be operating without the safety net of theory, you need that kind of proof.

This post was also inspired by some biological examples. The examples are politically controversial, so since this is a no-politics blog I won’t discuss them in detail. (I’ll also moderate out any comments that do.) All I’ll say is that I wonder if in that case the right heuristic is this kind of thing: not to “trust scientists” or “trust experts” or even “trust statisticians”, but just to trust the basic, cartoon-level biological theory.

In Uppsala for Elliptics 2021

I’m in Uppsala in Sweden this week, at an actual in-person conference.

With actual blackboards!

Elliptics started out as a series of small meetings of physicists trying to understand how to make sense of elliptic integrals in calculations of colliding particles. It grew into a full-fledged yearly conference series. I organized last year, which naturally was an online conference. This year though, the stage was set for Uppsala University to host in person.

I should say mostly in person. It’s a hybrid conference, with some speakers and attendees joining on Zoom. Some couldn’t make it because of travel restrictions, or just wanted to be cautious about COVID. But seemingly just as many had other reasons, like teaching schedules or just long distances, that kept them from coming in person. We’re all wondering if this will become a long-term trend, where the flexibility of hybrid conferences lets people attend no matter their constraints.

The hybrid format worked better than expected, but there were still a few kinks. The audio was particularly tricky, it seemed like each day the organizers needed a new microphone setup to take questions. It’s always a little harder to understand someone on Zoom, especially when you’re sitting in an auditorium rather than focused on your own screen. Still, technological experience should make this work better in future.

Content-wise, the conference began with a “mini-school” of pedagogical talks on particle physics, string theory, and mathematics. I found the mathematical talks by Erik Panzer particularly nice, it’s a topic I still feel quite weak on and he laid everything out in a very clear way. It seemed like a nice touch to include a “school” element in the conference, though I worry it ate too much into the time.

The rest of the content skewed more mathematical, and more string-theoretic, than these conferences have in the past. The mathematical content ranged from intriguing (including an interesting window into what it takes to get high-quality numerics) to intimidatingly obscure (large commutative diagrams, category theory on the first slide). String theory was arguably under-covered in prior years, but it felt over-covered this year. With the particle physics talks focusing on either general properties with perhaps some connections to elliptics, or to N=4 super Yang-Mills, it felt like we were missing the more “practical” talks from past conferences, where someone was computing something concrete in QCD and told us what they needed. Next year is in Mainz, so maybe those talks will reappear.

Outreach Talk on Math’s Role in Physics

Tonight is “Culture Night” in Copenhagen, the night when the city throws open its doors and lets the public in. Museums and hospitals, government buildings and even the Freemasons, all have public events. The Niels Bohr Institute does too, of course: an evening of physics exhibits and demos, capped off with a public lecture by Denmark’s favorite bow-tie wearing weirder-than-usual string theorist, Holger Bech Nielsen. In between, there are a number of short talks by various folks at the institute, including yours truly.

In my talk, I’m going to try and motivate the audience to care about math. Math is dry of course, and difficult for some, but we physicists need it to do our jobs. If you want to be precise about a claim in physics, you need math simply to say what you want clearly enough.

Since you guys likely don’t overlap with my audience tonight, it should be safe to give a little preview. I’ll be using a few examples, but this one is the most complicated:

I’ll be telling a story I stole from chapter seven of the web serial Almost Nowhere. (That link is to the first chapter, by the way, in case you want to read the series without spoilers. It’s very strange, very unique, and at least in my view quite worth reading.) You follow a warrior carrying a spear around a globe in two different paths. The warrior tries to always point in the same direction, but finds that the two different paths result in different spears when they meet. The story illustrates that such a simple concept as “what direction you are pointing” isn’t actually so simple: if you want to think about directions in curved space (like the surface of the Earth, but also, like curved space-time in general relativity) then you need more sophisticated mathematics (a notion called parallel transport) to make sense of it.

It’s kind of an advanced concept for a public talk. But seeing it show up in Almost Nowhere inspired me to try to get it across. I’ll let you know how it goes!

By the way, if you are interested in learning the kinds of mathematics you need for theoretical physics, and you happen to be a Bachelor’s student planning to pursue a PhD, then consider the Perimeter Scholars International Master’s Program! It’s a one-year intensive at the Perimeter Institute in Waterloo, Ontario, in Canada. In a year it gives you a crash course in theoretical physics, giving you tools that will set you ahead of other beginning PhD students. I’ve witnessed it in action, and it’s really remarkable how much the students learn in a year, and what they go on to do with it. Their early registration deadline is on November 15, just a month away, so if you’re interested you may want to start thinking about it.

Congratulations to Syukuro Manabe, Klaus Hasselmann, and Giorgio Parisi!

The 2021 Nobel Prize in Physics was announced this week, awarded to Syukuro Manabe and Klaus Hasselmann for climate modeling and Giorgio Parisi for understanding a variety of complex physical systems.

Before this year’s prize was announced, I remember a few “water cooler chats” about who might win. No guess came close, though. The Nobel committee seems to have settled in to a strategy of prizes on a loosely linked “basket” of topics, with half the prize going to a prominent theorist and the other half going to two experimental, observational, or (in this case) computational physicists. It’s still unclear why they’re doing this, but regardless it makes it hard to predict what they’ll do next!

When I read the announcement, my first reaction was, “surely it’s not that Parisi?” Giorgio Parisi is known in my field for the Altarelli-Parisi equations (more properly known as the DGLAP equations, the longer acronym because, as is often the case in physics, the Soviets got there first). These equations are in some sense why the scattering amplitudes I study are ever useful at all. I calculate collisions of individual fundamental particles, like quarks and gluons, but a real particle collider like the LHC collides protons. Protons are messy, interacting combinations of quarks and gluons. When they collide you need not merely the equations describing colliding quarks and gluons, but those that describe their messy dynamics inside the proton, and in particular how those dynamics look different for experiments with different energies. The equation that describes that is the DGLAP equation.

As it turns out, Parisi is known for a lot more than the DGLAP equation. He is best known for his work on “spin glasses”, models of materials where quantum spins try to line up with each other, never quite settling down. He also worked on a variety of other complex systems, including flocks of birds!

I don’t know as much about Manabe and Hasselmann’s work. I’ve only seen a few talks on the details of climate modeling. I’ve seen plenty of talks on other types of computer modeling, though, from people who model stars, galaxies, or black holes. And from those, I can appreciate what Manabe and Hasselmann did. Based on those talks, I recognize the importance of those first one-dimensional models, a single column of air, especially back in the 60’s when computer power was limited. Even more, I recognize how impressive it is for someone to stay on the forefront of that kind of field, upgrading models for forty years to stay relevant into the 2000’s, as Manabe did. Those talks also taught me about the challenge of coupling different scales: how small effects in churning fluids can add up and affect the simulation, and how hard it is to model different scales at once. To use these effects to discover which models are reliable, as Hasselmann did, is a major accomplishment.

Amplitudes 2021 Retrospective

Phew!

The conference photo

Now that I’ve rested up after this year’s Amplitudes, I’ll give a few of my impressions.

Overall, I think the conference went pretty well. People seemed amused by the digital Niels Bohr, even if he looked a bit like a puppet (Lance compared him to Yoda in his final speech, which was…apt). We used Gather.town, originally just for the poster session and a “virtual reception”, but later we also encouraged people to meet up in it during breaks. That in particular was a big hit: I think people really liked the ability to just move around and chat in impromptu groups, and while nobody seemed to use the “virtual bar”, the “virtual beach” had a lively crowd. Time zones were inevitably rough, but I think we ended up with a good compromise where everyone could still see a meaningful chunk of the conference.

A few things didn’t work as well. For those planning conferences, I would strongly suggest not making a brand new gmail account to send out conference announcements: for a lot of people the emails went straight to spam. Zulip was a bust: I’m not sure if people found it more confusing than last year’s Slack or didn’t notice it due to the spam issue, but almost no-one posted in it. YouTube was complicated: the stream went down a few times and I could never figure out exactly why, it may have just been internet issues here at the Niels Bohr Institute (we did have a power outage one night and had to scramble to get internet access back the next morning). As far as I could tell YouTube wouldn’t let me re-open the previous stream so each time I had to post a new link, which probably was frustrating for those following along there.

That said, this was less of a problem than it might have been, because attendance/”viewership” as a whole was lower than expected. Zoomplitudes last year had massive numbers of people join in both on Zoom and via YouTube. We had a lot fewer: out of over 500 registered participants, we had fewer than 200 on Zoom at any one time, and at most 30 or so on YouTube. Confusion around the conference email might have played a role here, but I suspect part of the difference is simple fatigue: after over a year of this pandemic, online conferences no longer feel like an exciting new experience.

The actual content of the conference ranged pretty widely. Some people reviewed earlier work, others presented recent papers or even work-in-progress. As in recent years, a meaningful chunk of the conference focused on applications of amplitudes techniques to gravitational wave physics. This included a talk by Thibault Damour, who has by now mostly made his peace with the field after his early doubts were sorted out. He still suspected that the mismatch of scales (weak coupling on the one hand, classical scattering on the other) would cause problems in future, but after his work with Laporta and Mastrolia even he had to acknowledge that amplitudes techniques were useful.

In the past I would have put the double-copy and gravitational wave researchers under the same heading, but this year they were quite distinct. While a few of the gravitational wave talks mentioned the double-copy, most of those who brought it up were doing something quite a bit more abstract than gravitational wave physics. Indeed, several people were pushing the boundaries of what it means to double-copy. There were modified KLT kernels, different versions of color-kinematics duality, and explorations of what kinds of massive particles can and (arguably more interestingly) cannot be compatible with a double-copy framework. The sheer range of different generalizations had me briefly wondering whether the double-copy could be “too flexible to be meaningful”, whether the right definitions would let you double-copy anything out of anything. I was reassured by the points where each talk argued that certain things didn’t work: it suggests that wherever this mysterious structure comes from, its powers are limited enough to make it meaningful.

A fair number of talks dealt with what has always been our main application, collider physics. There the context shifted, but the message stayed consistent: for a “clean” enough process two or three-loop calculations can make a big difference, taking a prediction that would be completely off from experiment and bringing it into line. These are more useful the more that can be varied about the calculation: functions are more useful than numbers, for example. I was gratified to hear confirmation that a particular kind of process, where two massless particles like quarks become three massive particles like W or Z bosons, is one of these “clean enough” examples: it means someone will need to compute my “tardigrade” diagram eventually.

If collider physics is our main application, N=4 super Yang-Mills has always been our main toy model. Jaroslav Trnka gave us the details behind Nima’s exciting talk from last year, and Nima had a whole new exciting talk this year with promised connections to category theory (connections he didn’t quite reach after speaking for two and a half hours). Anastasia Volovich presented two distinct methods for predicting square-root symbol letters, while my colleague Chi Zhang showed some exciting progress with the elliptic double-box, realizing the several-year dream of representing it in a useful basis of integrals and showcasing several interesting properties. Anne Spiering came over from the integrability side to show us just how special the “planar” version of the theory really is: by increasing the number of colors of gluons, she showed that one could smoothly go between an “integrability-esque” spectrum and a “chaotic” spectrum. Finally, Lance Dixon mentioned his progress with form-factors in his talk at the end of the conference, showing off some statistics of coefficients of different functions and speculating that machine learning might be able to predict them.

On the more mathematical side, Francis Brown showed us a new way to get numbers out of graphs, one distinct but related to our usual interpretation in terms of Feynman diagrams. I’m still unsure what it will be used for, but the fact that it maps every graph to something finite probably has some interesting implications. Albrecht Klemm and Claude Duhr talked about two sides of the same story, their recent work on integrals involving Calabi-Yau manifolds. They focused on a particular nice set of integrals, and time will tell whether the methods work more broadly, but there are some exciting suggestions that at least parts will.

There’s been a resurgence of the old dream of the S-matrix community, constraining amplitudes via “general constraints” alone, and several talks dealt with those ideas. Sebastian Mizera went the other direction, and tried to test one of those “general constraints”, seeing under which circumstances he could prove that you can swap a particle going in with an antiparticle going out. Others went out to infinity, trying to understand amplitudes from the perspective of the so-called “celestial sphere” where they appear to be governed by conformal field theories of some sort. A few talks dealt with amplitudes in string theory itself: Yvonne Geyer built them out of field-theory amplitudes, while Ashoke Sen explained how to include D-instantons in them.

We also had three “special talks” in the evenings. I’ve mentioned Nima’s already. Zvi Bern gave a retrospective talk that I somewhat cheesily describe as “good for the soul”: a look to the early days of the field that reminded us of why we are who we are. Lance Dixon closed the conference with a light-hearted summary and a look to the future. That future includes next year’s Amplitudes, which after a hasty discussion during this year’s conference has now localized to Prague. Let’s hope it’s in person!

Lessons From Neutrinos, Part II

Last week I talked about the history of neutrinos. Neutrinos come in three types, or “flavors”. Electron neutrinos are the easiest: they’re produced alongside electrons and positrons in the different types of beta decay. Electrons have more massive cousins, called muon and tau particles. As it turns out, each of these cousins has a corresponding flavor of neutrino: muon neutrinos, and tau neutrinos.

For quite some time, physicists thought that all of these neutrinos had zero mass.

(If the idea of a particle with zero mass confuses you, think about photons. A particle with zero mass travels, like a photon, at the speed of light. This doesn’t make them immune to gravity: just as no light can escape a black hole, neither can any other massless particle. It turns out that once you take into account Einstein’s general theory of relativity, gravity cares about energy, not just mass.)

Eventually, physicists started to realize they were wrong, and neutrinos had a small non-zero mass after all. Their reason why might seem a bit strange, though. Physicists didn’t weigh the neutrinos, or measure their speed. Instead, they observed that different flavors of neutrinos transform into each other. We say that they oscillate: electron neutrinos oscillate into muon or tau neutrinos, which oscillate into the other flavors, and so on. Over time, a beam of electron neutrinos will become a beam of mostly tau and muon neutrinos, before becoming a beam of electron neutrinos again.

That might not sound like it has much to do with mass. To understand why it does, you’ll need to learn this post’s lesson:

Lesson 2: Mass is just How Particles Move

Oscillating particles seem like a weird sort of evidence for mass. What would be a more normal kind of evidence?

Those of you who’ve taken physics classes might remember the equation F=ma. Apply a known force to something, see how much it accelerates, and you can calculate its mass. If you’ve had a bit more physics, you’ll know that this isn’t quite the right equation to use for particles close to the speed of light, but that there are other equations we can use in a similar way. In particular, using relativity, we have E^2=p^2 c^2 + m^2 c^4. (At rest, p=0, and we have the famous E=mc^2). This lets us do the same kind of thing: give something a kick and see how it moves.

So let’s say we do that: we give a particle a kick, and measure it later. I’ll visualize this with a tool physicists use called a Feynman diagram. The line represents a particle traveling from one side to the other, from “kick” to “measurement”:

Because we only measure the particle at the end, we might miss if something happens in between. For example, it might interact with another particle or field, like this:

If we don’t know about this other field, then when we try to measure the particle’s mass we will include interactions like this. As it turns out, this is how the Higgs boson works: the Higgs field interacts with particles like electrons and quarks, changing how they move, so that they appear to have mass.

Quantum particles can do other things too. You might have heard people talk about one particle turning into a pair of temporary “virtual particles”. When people say that, they usually have a diagram in mind like this:

In particle physics, we need to take into account every diagram of this kind, every possible thing that could happen in between “kick” and measurement. The final result isn’t one path or another, but a sum of all the different things that could have happened in between. So when we measure the mass of a particle, we’re including every diagram that’s allowed: everything that starts with our “kick” and ends with our measurement.

Now what if our particle can transform, from one flavor to another?

Now we have a new type of thing that can happen in between “kick” and measurement. And if it can happen once, it can happen more than once:

Remember that, when we measure mass, we’re measuring a sum of all the things that can happen in between. That means our particle could oscillate back and forth between different flavors many many times, and we need to take every possibility into account. Because of that, it doesn’t actually make sense to ask what the mass is for one flavor, for just electron neutrinos or just muon neutrinos. Instead, mass is for the thing that actually moves: an average (actually, a quantum superposition) over all the different flavors, oscillating back and forth any number of times.

When a process like beta decay produces an electron neutrino, the thing that actually moves is a mix (again, a superposition) of particles with these different masses. Because each of these masses respond to their initial “kick” in different ways, you see different proportions of them over time. Try to measure different flavors at the end, and you’ll find different ones depending on when and where you measure. That’s the oscillation effect, and that’s why it means that neutrinos have mass.

It’s a bit more complicated to work out the math behind this, but not unreasonably so: it’s simpler than a lot of other physics calculations. Working through the math, we find that by measuring how long it takes neutrinos to oscillate we can calculate the differences between (squares of) neutrino masses. What we can’t calculate are the masses themselves. We know they’re small: neutrinos travel at almost the speed of light, and our cosmological models of the universe have surprisingly little room for massive neutrinos: too much mass, and our universe would look very different than it does today. But we don’t know much more than that. We don’t even know the order of the masses: you might assume electron neutrinos are on average lighter than muon neutrinos, which are lighter than tau neutrinos…but it could easily be the other way around! We also don’t know whether neutrinos get their mass from the Higgs like other particles do, or if they work in a completely different way.

Unlike other mysteries of physics, we’ll likely have the answer to some of these questions soon. People are already picking through the data from current experiments, seeing if they hint towards one order of masses or the other, or to one or the other way for neutrinos to get their mass. More experiments will start taking data this year, and others are expected to start later this decade. At some point, the textbooks may well have more “normal” mass numbers for each of the neutrinos. But until then, they serve as a nice illustration of what mass actually means in particle physics.

Digging for Buried Insight

The scientific method, as we usually learn it, starts with a hypothesis. The scientist begins with a guess, and asks a question with a clear answer: true, or false? That guess lets them design an experiment, observe the consequences, and improve our knowledge of the world.

But where did the scientist get the hypothesis in the first place? Often, through some form of exploratory research.

Exploratory research is research done, not to answer a precise question, but to find interesting questions to ask. Each field has their own approach to exploration. A psychologist might start with interviews, asking broad questions to find narrower questions for a future survey. An ecologist might film an animal, looking for changes in its behavior. A chemist might measure many properties of a new material, seeing if any stand out. Each approach is like digging for treasure, not sure of exactly what you will find.

Mathematicians and theoretical physicists don’t do experiments, but we still need hypotheses. We need an idea of what we plan to prove, or what kind of theory we want to build: like other scientists, we want to ask a question with a clear, true/false answer. And to find those questions, we still do exploratory research.

What does exploratory research look like, in the theoretical world? Often, it begins with examples and calculations. We can start with a known method, or a guess at a new one, a recipe for doing some specific kind of calculation. Recipe in hand, we proceed to do the same kind of calculation for a few different examples, covering different sorts of situation. Along the way, we notice patterns: maybe the same steps happen over and over, or the result always has some feature.

We can then ask, do those same steps always happen? Does the result really always have that feature? We have our guess, our hypothesis, and our attempt to prove it is much like an experiment. If we find a proof, our hypothesis was true. On the other hand, we might not be able to find a proof. Instead, exploring, we might find a counterexample – one where the steps don’t occur, the feature doesn’t show up. That’s one way to learn that our hypothesis was false.

This kind of exploration is essential to discovery. As scientists, we all have to eventually ask clear yes/no questions, to submit our beliefs to clear tests. But we can’t start with those questions. We have to dig around first, to observe the world without a clear plan, to get to a point where we have a good question to ask.

A Few Advertisements

A couple different things that some of you might like to know about:

Are you an amateur with an idea you think might revolutionize all of physics? If so, absolutely do not contact me about it. Instead, you can talk to these people. Sabine Hossenfelder runs a service that will hook you up with a scientist who will patiently listen to your idea and help you learn what you need to develop it further. They do charge for that service, and they aren’t cheap, so only do this if you can comfortably afford it. If you can’t, then I have some advice in a post here. Try to contact people who are experts in the specific topic you’re working on, ask concrete questions that you expect to give useful answers, and be prepared to do some background reading.

Are you an undergraduate student planning for a career in theoretical physics? If so, consider the Perimeter Scholars International (PSI) master’s program. Located at the Perimeter Institute in Waterloo, Canada, PSI is an intense one-year boot-camp in theoretical physics, teaching the foundational ideas you’ll need for the rest of your career. It’s something I wish I was aware of when I was applying for schools at that age. Theoretical physics is a hard field, and a big part of what makes it hard is all the background knowledge one needs to take part in it. Starting work on a PhD with that background knowledge already in place can be a tremendous advantage. There are other programs with similar concepts, but I’ve gotten a really good impression of PSI specifically so it’s them I would recommend. Note that applications for the new year aren’t open yet: I always plan to advertise them when they open, and I always forget. So consider this an extremely-early warning.

Are you an amplitudeologist? Registration for Amplitudes 2021 is now live! We’re doing an online conference this year, co-hosted by the Niels Bohr Institute and Penn State. We’ll be doing a virtual poster session, so if you want to contribute to that please include a title and abstract when you register. We also plan to stream on YouTube, and will have a fun online surprise closer to the conference date.

Who Is, and Isn’t, Counting Angels on a Pinhead

How many angels can dance on the head of a pin?

It’s a question famous for its sheer pointlessness. While probably no-one ever had that exact debate, “how many angels fit on a pin” has become a metaphor, first for a host of old theology debates that went nowhere, and later for any academic study that seems like a waste of time. Occasionally, physicists get accused of doing this: typically string theorists, but also people who debate interpretations of quantum mechanics.

Are those accusations fair? Sometimes yes, sometimes no. In order to tell the difference, we should think about what’s wrong, exactly, with counting angels on the head of a pin.

One obvious answer is that knowing the number of angels that fit on a needle’s point is useless. Wikipedia suggests that was the origin of the metaphor in the first place, a pun on “needle’s point” and “needless point”. But this answer is a little too simple, because this would still be a useful debate if angels were real and we could interact with them. “How many angels fit on the head of a pin” is really a question about whether angels take up space, whether two angels can be at the same place at the same time. Asking that question about particles led physicists to bosons and fermions, which among other things led us to invent the laser. If angelology worked, perhaps we would have angel lasers as well.

Be not afraid of my angel laser

“If angelology worked” is key here, though. Angelology didn’t work, it didn’t lead to angel-based technology. And while Medieval people couldn’t have known that for certain, maybe they could have guessed. When people accuse academics of “counting angels on the head of a pin”, they’re saying they should be able to guess that their work is destined for uselessness.

How do you guess something like that?

Well, one problem with counting angels is that nobody doing the counting had ever seen an angel. Counting angels on the head of a pin implies debating something you can’t test or observe. That can steer you off-course pretty easily, into conclusions that are either useless or just plain wrong.

This can’t be the whole of the problem though, because of mathematics. We rarely accuse mathematicians of counting angels on the head of a pin, but the whole point of math is to proceed by pure logic, without an experiment in sight. Mathematical conclusions can sometimes be useless (though we can never be sure, some ideas are just ahead of their time), but we don’t expect them to be wrong.

The key difference is that mathematics has clear rules. When two mathematicians disagree, they can look at the details of their arguments, make sure every definition is as clear as possible, and discover which one made a mistake. Working this way, what they build is reliable. Even if it isn’t useful yet, the result is still true, and so may well be useful later.

In contrast, when you imagine Medieval monks debating angels, you probably don’t imagine them with clear rules. They might quote contradictory bible passages, argue everyday meanings of words, and win based more on who was poetic and authoritative than who really won the argument. Picturing a debate over how many angels can fit on the head of a pin, it seems more like Calvinball than like mathematics.

This then, is the heart of the accusation. Saying someone is just debating how many angels can dance on a pin isn’t merely saying they’re debating the invisible. It’s saying they’re debating in a way that won’t go anywhere, a debate without solid basis or reliable conclusions. It’s saying, not just that the debate is useless now, but that it will likely always be useless.

As an outsider, you can’t just dismiss a field because it can’t do experiments. What you can and should do, is dismiss a field that can’t produce reliable knowledge. This can be hard to judge, but a key sign is to look for these kinds of Calvinball-style debates. Do people in the field seem to argue the same things with each other, over and over? Or do they make progress and open up new questions? Do the people talking seem to be just the famous ones? Or are there cases of young and unknown researchers who happen upon something important enough to make an impact? Do people just list prior work in order to state their counter-arguments? Or do they build on it, finding consequences of others’ trusted conclusions?

A few corners of string theory do have this Calvinball feel, as do a few of the debates about the fundamentals of quantum mechanics. But if you look past the headlines and blogs, most of each of these fields seems more reliable. Rather than interminable back-and-forth about angels and pinheads, these fields are quietly accumulating results that, one way or another, will give people something to build on.