Tag Archives: theoretical physics

Hexagon Functions VI: The Power Cosmic

I have a new paper out this week. It’s the long-awaited companion to a paper I blogged about a few months back, itself the latest step in a program that has made up a major chunk of my research.

The title is a bit of a mouthful, but I’ll walk you through it:

The Cosmic Galois Group and Extended Steinmann Relations for Planar N = 4 SYM Amplitudes

I calculate scattering amplitudes (roughly, probabilities that elementary particles bounce off each other) in a (not realistic, and not meant to be) theory called planar N=4 super-Yang-Mills (SYM for short). I can’t summarize everything we’ve been doing here, but if you read the blog posts I linked above and some of the Handy Handbooks linked at the top of the page you’ll hopefully get a clearer picture.

We started using the Steinmann Relations a few years ago. Discovered in the 60’s, the Steinmann relations restrict the kind of equations we can use to describe particle physics. Essentially, they mean that particles can’t travel two ways at once. In this paper, we extend the Steinmann relations beyond Steinmann’s original idea. We don’t yet know if we can prove this extension works, but it seems to be true for the amplitudes we’re calculating. While we’ve presented this in talks before, this is the first time we’ve published it, and it’s one of the big results of this paper.

The other, more exotic-sounding result, has to do with something called the Cosmic Galois Group.

Évariste Galois, the famously duel-prone mathematician, figured out relations between algebraic numbers (that is, numbers you can get out of algebraic equations) in terms of a mathematical structure called a group. Today, mathematicians are interested not just in algebraic numbers, but in relations between transcendental numbers as well, specifically a kind of transcendental number called a period. These numbers show up a lot in physics, so mathematicians have been thinking about a Galois group for transcendental numbers that show up in physics, a so-called Cosmic Galois Group.

(Cosmic here doesn’t mean it has to do with cosmology. As far as I can tell, mathematicians just thought it sounded cool and physics-y. They also started out with rather ambitious ideas about it, if you want a laugh check out the last few paragraphs of this talk by Cartier.)

For us, Cosmic Galois Theory lets us study the unusual numbers that show up in our calculations. Doing this, we’ve noticed that certain numbers simply don’t show up. For example, the Riemann zeta function shows up often in our results, evaluated at many different numbers…but never evaluated at the number three. Nor does any number related to that one through the Cosmic Galois Group show up. It’s as if the theory only likes some numbers, and not others.

This weird behavior has been observed before. Mathematicians can prove it happens for some simple theories, but it even applies to the theories that describe the real world, for example to calculations of the way an electron’s path is bent by a magnetic field. Each theory seems to have its own preferred family of numbers.

For us, this has been enormously useful. We calculate our amplitudes by guesswork, starting with the right “alphabet” and then filling in different combinations, as if we’re trying all possible answers to a word jumble. Cosmic Galois Theory and Extended Steinmann have enabled us to narrow down our guess dramatically, making it much easier and faster to get to the right answer.

More generally though, we hope to contribute to mathematicians’ investigations of Cosmic Galois Theory. Our examples are more complicated than the simple theories where they currently prove things, and contain more data than the more limited results from electrons. Hopefully together we can figure out why certain numbers show up and others don’t, and find interesting mathematical principles behind the theories that govern fundamental physics.

For now, I’ll leave you with a preview of a talk I’m giving in a couple weeks’ time:

The font, of course, is Cosmic Sans

Experimental Theoretical Physics

I was talking with some other physicists about my “Black Box Theory” thought experiment, where theorists have to compete with an impenetrable block of computer code. Even if the theorists come up with a “better” theory, that theory won’t predict anything that the code couldn’t already. If “predicting something new” is an essential part of science, then the theorists can no longer do science at all.

One of my colleagues made an interesting point: in the thought experiment, the theorists can’t predict new behaviors of reality. But they can predict new behaviors of the code.

Even when we have the right theory to describe the world, we can’t always calculate its consequences. Often we’re stuck in the same position as the theorists in the thought experiment, trying to understand the output of a theory that might as well be a black box. Increasingly, we are employing a kind of “experimental theoretical physics”. We try to predict the result of new calculations, just as experimentalists try to predict the result of new experiments.

This experimental approach seems to be a genuine cultural difference between physics and mathematics. There is such a thing as experimental mathematics, to be clear. And while mathematicians prefer proof, they’re not averse to working from a good conjecture. But when mathematicians calculate and conjecture, they still try to set a firm foundation. They’re precise about what they mean, and careful about what they imply.

“Experimental theoretical physics”, on the other hand, is much more like experimental physics itself. Physicists look for plausible patterns in the “data”, seeing if they make sense in some “physical” way. The conjectures aren’t always sharply posed, and the leaps of reasoning are often more reckless than the leaps of experimental mathematicians. We try to use intuition gleaned from a history of experiments on, and calculations about, the physical world.

There’s a real danger here, because mathematical formulas don’t behave like nature does. When we look at nature, we expect it to behave statistically. If we look at a large number of examples, we get more and more confident that they represent the behavior of the whole. This is sometimes dangerous in nature, but it’s even more dangerous in mathematics, because it’s often not clear what a good “sample” even is. Proving something is true “most of the time” is vastly different from proving it is true all of the time, especially when you’re looking at an infinity of possible examples. We can’t meet our favorite “five sigma” level of statistical confidence, or even know if we’re close.

At the same time, experimental theoretical physics has real power. Experience may be a bad guide to mathematics, but it’s a better guide to the mathematics that specifically shows up in physics. And in practice, our recklessness can accomplish great things, uncovering behaviors mathematicians would never have found by themselves.

The key is to always keep in mind that the two fields are different. “Experimental theoretical physics” isn’t mathematics, and it isn’t pretending to be, any more than experimental physics is pretending to be theoretical physics. We’re gathering data and advancing tentative explanations, but we’re fully aware that they may not hold up when examined with full rigor. We want to inspire, to raise questions and get people to think about the principles that govern the messy physical theories we use to describe our world. Experimental physics, theoretical physics, and mathematics are all part of a shared ecosystem, and each has its role to play.

Things I’d Like to Know More About

This is an accountability post, of sorts.

As a kid, I wanted to know everything. Eventually, I realized this was a little unrealistic. Doomed to know some things and not others, I picked physics as a kind of triage. Other fields I could learn as an outsider: not well enough to compete with the experts, but enough to at least appreciate what they were doing. After watching a few string theory documentaries, I realized this wasn’t the case for physics: if I was going to ever understand what those string theorists were up to, I would have to go to grad school in string theory.

Over time, this goal lost focus. I’ve become a very specialized creature, an “amplitudeologist”. I didn’t have time or energy for my old questions. In an irony that will surprise no-one, a career as a physicist doesn’t leave much time for curiosity about physics.

One of the great things about this blog is how you guys remind me of those old questions, bringing me out of my overspecialized comfort zone. In that spirit, in this post I’m going to list a few things in physics that I really want to understand better. The idea is to make a public commitment: within a year, I want to understand one of these topics at least well enough to write a decent blog post on it.

Wilsonian Quantum Field Theory:

When you first learn quantum field theory as a physicist, you learn how unsightly infinite results get covered up via an ad-hoc-looking process called renormalization. Eventually you learn a more modern perspective, that these infinite results show up because we’re ignorant of the complete theory at high energies. You learn that you can think of theories at a particular scale, and characterize them by what happens when you “zoom” in and out, in an approach codified by the physicist Kenneth Wilson.

While I understand the basics of Wilson’s approach, the courses I took in grad school skipped the deeper implications. This includes the idea of theories that are defined at all energies, “flowing” from an otherwise scale-invariant theory perturbed with extra pieces. Other physicists are much more comfortable thinking in these terms, and the topic is important for quite a few deep questions, including what it means to properly define a theory and where laws of nature “live”. If I’m going to have an informed opinion on any of those topics, I’ll need to go back and learn the Wilsonian approach properly.

Wormholes:

If you’re a fan of science fiction, you probably know that wormholes are the most realistic option for faster-than-light travel, something that is at least allowed by the equations of general relativity. “Most realistic” isn’t the same as “realistic”, though. Opening a wormhole and keeping it stable requires some kind of “exotic matter”, and that matter needs to violate a set of restrictions, called “energy conditions”, that normal matter obeys. Some of these energy conditions are just conjectures, some we even know how to violate, while others are proven to hold for certain types of theories. Some energy conditions don’t rule out wormholes, but instead restrict their usefulness: you can have non-traversable wormholes (basically, two inescapable black holes that happen to meet in the middle), or traversable wormholes where the distance through the wormhole is always longer than the distance outside.

I’ve seen a few talks on this topic, but I’m still confused about the big picture: which conditions have been proven, what assumptions were needed, and what do they all imply? I haven’t found a publicly-accessible account that covers everything. I owe it to myself as a kid, not to mention everyone who’s a kid now, to get a satisfactory answer.

Quantum Foundations:

Quantum Foundations is a field that many physicists think is a waste of time. It deals with the questions that troubled Einstein and Bohr, questions about what quantum mechanics really means, or why the rules of quantum mechanics are the way they are. These tend to be quite philosophical questions, where it’s hard to tell if people are making progress or just arguing in circles.

I’m more optimistic about philosophy than most physicists, at least when it’s pursued with enough analytic rigor. I’d like to at least understand the leading arguments for different interpretations, what the constraints on interpretations are and the main loopholes. That way, if I end up concluding the field is a waste of time at least I’d be making an informed decision.

Research Rooms, Collaboration Spaces

Math and physics are different fields with different cultures. Some of those differences are obvious, others more subtle.

I recently remembered a subtle difference I noticed at the University of Waterloo. The math building there has “research rooms”, rooms intended for groups of mathematicians to collaborate. The idea is that you invite visitors to the department, reserve the room, and spend all day with them trying to iron out a proof or the like.

Theoretical physicists collaborate like this sometimes too, but in my experience physics institutes don’t typically have this kind of “research room”. Instead, they have “collaboration spaces”. Unlike a “research room”, you don’t reserve a “collaboration space”. Typically, they aren’t even rooms: they’re a set of blackboards in the coffee room, or a cluster of chairs in the corner between two hallways. They’re open spaces, designed so that passers-by can overhear the conversation and (potentially) join in.

That’s not to say physicists never shut themselves in a room for a day (or night) to work. But when they do, it’s not usually in a dedicated space. Instead, it’s in an office, or a commandeered conference room.

Waterloo’s “research rooms” and physics institutes’ “collaboration spaces” can be used for similar purposes. The difference is in what they encourage.

The point of a “collaboration space” is to start new collaborations. These spaces are open in order to take advantage of serendipity: if you’re getting coffee or walking down the hall, you might hear something interesting and spark something new, with people you hadn’t planned to collaborate with before. Institutes with “collaboration spaces” are trying to make new connections between researchers, to be the starting point for new ideas.

The point of a “research room” is to finish a collaboration. They’re for researchers who are already collaborating, who know they’re going to need a room and can reserve it in advance. They’re enclosed in order to shut out distractions, to make sure the collaborators can sit down and focus and get something done. Institutes with “research rooms” want to give their researchers space to complete projects when they might otherwise be too occupied with other things.

I’m curious if this difference is more widespread. Do math departments generally tend to have “research rooms” or “collaboration spaces”? Are there physics departments with “research rooms”? I suspect there is a real cultural difference here, in what each field thinks it needs to encourage.

The Black Box Theory of Everything

What is science? What makes a theory scientific?

There’s a picture we learn in high school. It’s not the whole story, certainly: philosophers of science have much more sophisticated notions. But for practicing scientists, it’s a picture that often sits in the back of our minds, informing what we do. Because of that, it’s worth examining in detail.

In the high school picture, scientific theories make predictions. Importantly, postdictions don’t count: if you “predict” something that already happened, it’s too easy to cheat and adjust your prediction. Also, your predictions must be different from those of other theories. If all you can do is explain the same results with different words you aren’t doing science, you’re doing “something else” (“metaphysics”, “religion”, “mathematics”…whatever the person you’re talking to wants to make fun of, but definitely not science).

Seems reasonable, right? Let’s try a thought experiment.

In the late 1950’s, the physics of protons and neutrons was still quite mysterious. They seemed to be part of a bewildering zoo of particles that no-one could properly explain. In the 60’s and 70’s the field started converging on the right explanation, from Gell-Mann’s eightfold way to the parton model to the full theory of quantum chromodynamics (QCD for short). Today we understand the theory well enough to package things into computer code: amplitudes programs like BlackHat for collisions of individual quarks, jet algorithms that describe how those quarks become signals in colliders, lattice QCD implemented on supercomputers for pretty much everything else.

Now imagine that you had a time machine, prodigious programming skills, and a grudge against 60’s era-physicists.

Suppose you wrote a computer program that combined the best of QCD in the modern world. BlackHat and more from the amplitudes side, the best jet algorithms and lattice QCD code, and more: a program that could reproduce any calculation in QCD that anyone can do today. Further, suppose you don’t care about silly things like making your code readable. Since I began the list above with BlackHat, we’ll call the combined box of different codes BlackBox.

Now suppose you went back in time, and told the bewildered scientists of the 50’s that nuclear physics was governed by a very complicated set of laws: the ones implemented in BlackBox.

Behold, your theory

Your “BlackBox theory” passes the high school test. Not only would it match all previous observations, it could make predictions for any experiment the scientists of the 50’s could devise. Up until the present day, your theory would match observations as well as…well as well as QCD does today.

(Let’s ignore for the moment that they didn’t have computers that could run this code in the 50’s. This is a thought experiment, we can fudge things a bit.)

Now suppose that one of those enterprising 60’s scientists, Gell-Mann or Feynman or the like, noticed a pattern. Maybe they got it from an experiment scattering electrons off of protons, maybe they saw it in BlackBox’s code. They notice that different parts of “BlackBox theory” run on related rules. Based on those rules, they suggest a deeper reality: protons are made of quarks!

But is this “quark theory” scientific?

“Quark theory” doesn’t make any new predictions. Anything you could predict with quarks, you could predict with BlackBox. According to the high school picture of science, for these 60’s scientists quarks wouldn’t be scientific: they would be “something else”, metaphysics or religion or mathematics.

And in practice? I doubt that many scientists would care.

“Quark theory” makes the same predictions as BlackBox theory, but I think most of us understand that it’s a better theory. It actually explains what’s going on. It takes different parts of BlackBox and unifies them into a simpler whole. And even without new predictions, that would be enough for the scientists in our thought experiment to accept it as science.

Why am I thinking about this? For two reasons:

First, I want to think about what happens when we get to a final theory, a “Theory of Everything”. It’s probably ridiculously arrogant to think we’re anywhere close to that yet, but nonetheless the question is on physicists’ minds more than it has been for most of history.

Right now, the Standard Model has many free parameters, numbers we can’t predict and must fix based on experiments. Suppose there are two options for a final theory: one that has a free parameter, and one that doesn’t. Once that one free parameter is fixed, both theories will match every test you could ever devise (they’re theories of everything, after all).

If we come up with both theories before testing that final parameter, then all is well. The theory with no free parameters will predict the result of that final experiment, the other theory won’t, so the theory without the extra parameter wins the high school test.

What if we do the experiment first, though?

If we do, then we’re in a strange situation. Our “prediction” of the one free parameter is now a “postdiction”. We’ve matched numbers, sure, but by the high school picture we aren’t doing science. Our theory, the same theory that was scientific if history went the other way, is now relegated to metaphysics/religion/mathematics.

I don’t know about you, but I’m uncomfortable with the idea that what is or is not science depends on historical chance. I don’t like the idea that we could be stuck with a theory that doesn’t explain everything, simply because our experimentalists were able to work a bit faster.

My second reason focuses on the here and now. You might think we have nothing like BlackBox on offer, no time travelers taunting us with poorly commented code. But we’ve always had the option of our own Black Box theory: experiment itself.

The Standard Model fixes some of its parameters from experimental results. You do a few experiments, and you can predict the results of all the others. But why stop there? Why not fix all of our parameters with experiments? Why not fix everything with experiments?

That’s the Black Box Theory of Everything. Each individual experiment you could possibly do gets its own parameter, describing the result of that experiment. You do the experiment, fix that parameter, then move on to the next experiment. Your theory will never be falsified, you will never be proven wrong. Sure, you never predict anything either, but that’s just an extreme case of what we have now, where the Standard Model can’t predict the mass of the Higgs.

What’s wrong with the Black Box Theory? (I trust we can all agree that it’s wrong.)

It’s not just that it can’t make predictions. You could make it a Black Box All But One Theory instead, that predicts one experiment and takes every other experiment as input. You could even make a Black Box Except the Standard Model Theory, that predicts everything we can predict now and just leaves out everything we’re still confused by.

The Black Box Theory is wrong because the high school picture of what counts as science is wrong. The high school picture is a useful guide, it’s a good rule of thumb, but it’s not the ultimate definition of science. And especially now, when we’re starting to ask questions about final theories and ultimate parameters, we can’t cling to the high school picture. We have to be willing to actually think, to listen to the philosophers and consider our own motivations, to figure out what, in the end, we actually mean by science.


Nonperturbative Methods for Conformal Theories in Natal

I’m at a conference this week, on Nonperturbative Methods for Conformal Theories, in Natal on the northern coast of Brazil.

Where even the physics institutes have their own little rainforests.

“Nonperturbative” means that most of the people at this conference don’t use the loop-by-loop approximation of Feynman diagrams. Instead, they try to calculate things that don’t require approximations, finding formulas that work even for theories where the forces involved are very strong. In practice this works best in what are called “conformal” theories, roughly speaking these are theories that look the same whichever “scale” you use. Sometimes these theories are “integrable”, theories that can be “solved” exactly with no approximation. Sometimes these theories can be “bootstrapped”, starting with a guess and seeing how various principles of physics constrain it, mapping out a kind of “space of allowed theories”. Both approaches, integrability and bootstrap, are present at this conference.

This isn’t quite my community, but there’s a fair bit of overlap. We care about many of the same theories, like N=4 super Yang-Mills. We care about tricks to do integrals better, or to constrain mathematical guesses better, and we can trade these kinds of tricks and give each other advice. And while my work is typically “perturbative”, I did have one nonperturbative result to talk about, one which turns out to be more closely related to the methods these folks use than I had appreciated.

Hexagon Functions V: Seventh Heaven

I’ve got a new paper out this week, a continuation of a story that has threaded through my career since grad school. With a growing collaboration (now Simon Caron-Huot, Lance Dixon, Falko Dulat, Andrew McLeod, and Georgios Papathanasiou) I’ve been calculating six-particle scattering amplitudes in my favorite theory-that-does-not-describe-the-real-world, N=4 super Yang-Mills. We’ve been pushing to more and more “loops”: tougher and tougher calculations that approximate the full answer better and better, using the “word jumble” trick I talked about in Scientific American. And each time, we learn something new.

Now we’re up to seven loops for some types of particles, and six loops for the rest. In older blog posts I talked in megabytes: half a megabyte for three loops, 15 MB for four loops, 300 MB for five loops. I don’t have a number like that for six and seven loops: we don’t store the result in that way anymore, it just got too cumbersome. We have to store it in a simplified form, and even that takes 80 MB.

Some of what we learned has to do with the types of mathematical functions that we need: our “guess” for the result at each loop. We’ve honed that guess down a lot, and discovered some new simplifications along the way. I won’t tell that story here (except to hint that it has to do with “cosmic Galois theory”) because we haven’t published it yet. It will be out in a companion paper soon.

This paper focused on the next step, going from our guess to the correct six- and seven-loop answers. Here too there were surprises. For the last several loops, we’d observed a surprisingly nice pattern: different configurations of particles with different numbers of loops were related, in a way we didn’t know how to explain. The pattern stuck around at five loops, so we assumed it was the real deal, and guessed the new answer would obey it too.

Yes, in our field this counts as surprisingly nice

Usually when scientists tell this kind of story, the pattern works, it’s a breakthrough, everyone gets a Nobel prize, etc. This time? Nope!

The pattern failed. And it failed in a way that was surprisingly difficult to detect.

The way we calculate these things, we start with a guess and then add what we know. If we know something about how the particles behave at high energies, or when they get close together, we use that to pare down our guess, getting rid of pieces that don’t fit. We kept adding these pieces of information, and each time the pattern seemed ok. It was only when we got far enough into one of these approximations that we noticed a piece that didn’t fit.

That piece was a surprisingly stealthy mathematical function, one that hid from almost every test we could perform. There aren’t any functions like that at lower loops, so we never had to worry about this before. But now, in the rarefied land of six-loop calculations, they finally start to show up.

We have another pattern, like the old one but that isn’t broken yet. But at this point we’re cautious: things get strange as calculations get more complicated, and sometimes the nice simplifications we notice are just accidents. It’s always important to check.

Deep physics or six-loop accident? You decide!

This result was a long time coming. Coordinating a large project with such a widely spread collaboration is difficult, and sometimes frustrating. People get distracted by other projects, they have disagreements about what the paper should say, even scheduling Skype around everyone’s time zones is a challenge. I’m more than a little exhausted, but happy that the paper is out, and that we’re close to finishing the companion paper as well. It’s good to have results that we’ve been hinting at in talks finally out where the community can see them. Maybe they’ll notice something new!