Most conferences focus on a specific sub-field. If you call a conference “Strings” or “Amplitudes”, people know what to expect. Likewise if you focus on something more specific, say Elliptic Integrals. But what if your conference is named after two sub-fields?

The most successful “X Meets Y” conferences involve two sub-fields that have been working together for quite some time. At that point, you don’t just have “X” researchers and “Y” researchers, but “X and Y” researchers, people who work on the connection between both topics. These people can glue a conference together, showing the separate “X” and “Y” researchers what “X and Y” research looks like. At a conference like that speakers have a clear idea of what to talk about: the “X” researchers know how to talk to the “Y” researchers, and vice versa, and the organizers can invite speakers who they know can talk to both groups.

If the sub-fields have less history of collaboration, “X Meets Y” conferences become trickier. You need at least a few “X and Y” researchers (or at least aspiring “X and Y” researchers) to guide the way. Even if most of the “X” researchers don’t know how to talk to “Y” researchers, the “X and Y” researchers can give suggestions, telling “X” which topics would be most interesting to “Y” and vice versa. With that kind of guidance, “X Meets Y” conferences can inspire new directions of research, opening one field up to the tools of another.

The biggest risk in an “X Meets Y” conference, that becomes more likely the fewer “X and Y” researchers there are, is that everyone just gives their usual talks. The “X” researchers talk about their “X”, and the “Y” researchers talk about their “Y”, and both groups nod politely and go home with no new ideas whatsoever. Scientists are fundamentally lazy creatures. If we already have a talk written, we’re tempted to use it, even if it doesn’t quite fit the occasion. Counteracting that is a tough job, and one that isn’t always feasible.

“X Meets Y” conferences can be very productive, the beginning of new interdisciplinary ideas. But they’re certainly hard to get right. Overall, they’re one of the trickier parts of the social side of science.

I’m at the Aspen Center for Physics this week, for a workshop on Scattering Amplitudes and the Conformal Bootstrap.

Aspen is part of a long and illustrious tradition of physics conference sites located next to ski resorts. It’s ten years younger than its closest European counterpart Les Houches School of Physics, but if anything its traditions are stricter: all blackboard talks, and a minimum two-week visit. Instead of the summer schools of Les Houches, Aspen’s goal is to inspire collaboration: to get physicists to spend time working and hiking around each other until inspiration strikes.

This workshop is a meeting between two communities: people who study the Conformal Bootstrap (nice popular description here) and my own field of Scattering Amplitudes. The Conformal Boostrap is one of our closest sister-fields, so there may be a lot of potential for collaboration. This week’s talks have been amplitudes-focused, I’m looking forward to the talks next week that will highlight connections between the two fields.

The Breakthrough Prize was designed to complement the Nobel Prize, rewarding deserving researchers who wouldn’t otherwise get the Nobel. The Nobel Prize is only awarded to theoretical physicists when they predict something that is later observed in an experiment. Many theorists are instead renowned for their mathematical inventions, concepts that other theorists build on and use but that do not by themselves make testable predictions. The Breakthrough Prize celebrates these theorists, and while it has also been awarded to others who the Nobel committee could not or did not recognize (various large experimental collaborations, Jocelyn Bell Burnell), this has always been the physics prize’s primary focus.

The Breakthrough Prize website describes supergravity as a theory that combines gravity with particle physics. That’s a bit misleading: while the theory does treat gravity in a “particle physics” way, unlike string theory it doesn’t solve the famous problems with combining quantum mechanics and gravity. (At least, as far as we know.)

It’s better to say that supergravity is a theory that links gravity to other parts of particle physics, via supersymmetry. Supersymmetry is a relationship between two types of particles: bosons, like photons, gravitons, or the Higgs, and fermions, like electrons or quarks. In supersymmetry, each type of boson has a fermion “partner”, and vice versa. In supergravity, gravity itself gets a partner, called the gravitino. Supersymmetry links the properties of particles and their partners together: both must have the same mass and the same charge. In a sense, it can unify different types of particles, explaining both under the same set of rules.

In the real world, we don’t see bosons and fermions with the same mass and charge. If gravitinos exist, then supersymmetry would have to be “broken”, giving them a high mass that makes them hard to find. Some hoped that the Large Hadron Collider could find these particles, but now it looks like it won’t, so there is no evidence for supergravity at the moment.

Instead, supergravity’s success has been as a tool to understand other theories of gravity. When the theory was proposed in the 1970’s, it was thought of as a rival to string theory. Instead, over the years it consistently managed to point out aspects of string theory that the string theorists themselves had missed, for example noticing that the theory needed not just strings but higher-dimensional objects called “branes”. Now, supergravity is understood as one part of a broader string theory picture.

The discovery of supergravity by Ferrara, Freedman, and van Nieuwenhuizen is exactly the kind of work the Breakthrough Prize was created to reward. Supergravity is a theory with deep mathematics, rich structure, and wide applicability. There is of course no guarantee that such a theory describes the real world. What is guaranteed, though, is that someone will find it useful.

I’m back from Amplitudes 2019, and since I have more time I figured I’d write down a few more impressions.

Amplitudes runs all the way from practical LHC calculations to almost pure mathematics, and this conference had plenty of both as well as everything in between. On the more practical side a standard “pipeline” has developed: get a large number of integrals from generalized unitarity, reduce them to a more manageable number with integration-by-parts, and then compute them with differential equations. Vladimir Smirnov and Johannes Henn presented the state of the art in this pipeline, challenging QCD calculations that required powerful methods. Others aimed to replace various parts of the pipeline. Integration-by-parts could be avoided in the numerical unitarity approach discussed by Ben Page, or alternatively with the intersection theory techniques showcased by Pierpaolo Mastrolia. More radical departures included Stefan Weinzierl’s refinement of loop-tree duality, and Jacob Bourjaily’s advocacy of prescriptive unitarity. Robert Schabinger even brought up direct integration, though I mostly viewed his talk as an independent confirmation of the usefulness of Erik Panzer’s thesis. It also showcased an interesting integral that had previously been represented by Lorenzo Tancredi and collaborators as elliptic, but turned out to be writable in terms of more familiar functions. It’s going to be interesting to see whether other such integrals arise, and whether they can be spotted in advance.

On the other end of the scale, Francis Brown was the only speaker deep enough in the culture of mathematics to insist on doing a blackboard talk. Since the conference hall didn’t actually have a blackboard, this was accomplished by projecting video of a piece of paper that he wrote on as the talk progressed. Despite the awkward setup, the talk was impressively clear, though there were enough questions that he ran out of time at the end and had to “cheat” by just projecting his notes instead. He presented a few theorems about the sort of integrals that show up in string theory. Federico Zerbini and Eduardo Casali’s talks covered similar topics, with the latter also involving intersection theory. Intersection theory also appeared in a poster from grad student Andrzej Pokraka, which overall is a pretty impressively broad showing for a part of mathematics that Sebastian Mizera first introduced to the amplitudes community less than two years ago.

Nima Arkani-Hamed’s talk on Wednesday fell somewhere in between. A series of airline mishaps brought him there only a few hours before his talk, and his own busy schedule sent him back to the airport right after the last question. The talk itself covered several topics, tied together a bit better than usual by a nice account in the beginning of what might motivate a “polytope picture” of quantum field theory. One particularly interesting aspect was a suggestion of a space, smaller than the amplituhedron, that might more accuractly the describe the “alphabet” that appears in N=4 super Yang-Mills amplitudes. If his proposal works, it may be that the infinite alphabet we were worried about for eight-particle amplitudes is actually finite. Ömer Gürdoğan’s talk mentioned this, and drew out some implications. Overall, I’m still unclear as to what this story says about whether the alphabet contains square roots, but that’s a topic for another day. My talk was right after Nima’s, and while he went over-time as always I compensated by accidentally going under-time. Overall, I think folks had fun regardless.

It’s that time of year again, and I’m at Amplitudes, my field’s big yearly conference. This year we’re in Dublin, hosted by Trinity.

Increasingly, the organizers of Amplitudes have been setting aside a few slots for talks from people in other fields. This year the “closest” such speaker was Kirill Melnikov, who pointed out some of the hurdles that make it difficult to have useful calculations to compare to the LHC. Many of these hurdles aren’t things that amplitudes-people have traditionally worked on, but are still things that might benefit from our particular expertise. Another such speaker, Maxwell Hansen, is from a field called Lattice QCD. While amplitudeologists typically compute with approximations, order by order in more and more complicated diagrams, Lattice QCD instead simulates particle physics on supercomputers, chopping up their calculations on a grid. This allows them to study much stronger forces, including the messy interactions of quarks inside protons, but they have a harder time with the situations we’re best at, where two particles collide from far away. Apparently, though, they are making progress on that kind of calculation, with some clever tricks to connect it to calculations they know how to do. While I was a bit worried that this would let them fire all the amplitudeologists and replace us with supercomputers, they’re not quite there yet, nonetheless they are doing better than I would have expected. Other speakers from other fields included Leron Borsten, who has been applying the amplitudes concept of the “double copy” to M theory and Andrew Tolley, who uses the kind of “positivity” properties that amplitudeologists find interesting to restrict the kinds of theories used in cosmology.

The biggest set of “non-traditional-amplitudes” talks focused on using amplitudes techniques to calculate the behavior not of particles but of black holes, to predict the gravitational wave patterns detected by LIGO. This year featured a record six talks on the topic, a sixth of the conference. Last year I commented that the research ideas from amplitudeologists on gravitational waves had gotten more robust, with clearer proposals for how to move forward. This year things have developed even further, with several initial results. Even more encouragingly, while there are several groups doing different things they appear to be genuinely listening to each other: there were plenty of references in the talks both to other amplitudes groups and to work by more traditional gravitational physicists. There’s definitely still plenty of lingering confusion that needs to be cleared up, but it looks like the community is robust enough to work through it.

I’m still busy with the conference, but I’ll say more when I’m back next week. Stay tuned for square roots, clusters, and Nima’s travel schedule. And if you’re a regular reader, please fill out last week’s poll if you haven’t already!

The title is a bit of a mouthful, but I’ll walk you through it:

The Cosmic Galois Group and Extended Steinmann Relations for Planar N = 4 SYM Amplitudes

I calculate scattering amplitudes (roughly, probabilities that elementary particles bounce off each other) in a (not realistic, and not meant to be) theory called planar N=4 super-Yang-Mills (SYM for short). I can’t summarize everything we’ve been doing here, but if you read the blog posts I linked above and some of the Handy Handbooks linked at the top of the page you’ll hopefully get a clearer picture.

We started using the Steinmann Relationsa few years ago. Discovered in the 60’s, the Steinmann relations restrict the kind of equations we can use to describe particle physics. Essentially, they mean that particles can’t travel two ways at once. In this paper, we extend the Steinmann relations beyond Steinmann’s original idea. We don’t yet know if we can prove this extension works, but it seems to be true for the amplitudes we’re calculating. While we’ve presented this in talks before, this is the first time we’ve published it, and it’s one of the big results of this paper.

The other, more exotic-sounding result, has to do with something called the Cosmic Galois Group.

Évariste Galois, the famously duel-prone mathematician, figured out relations between algebraic numbers (that is, numbers you can get out of algebraic equations) in terms of a mathematical structure called a group. Today, mathematicians are interested not just in algebraic numbers, but in relations between transcendental numbers as well, specifically a kind of transcendental number called a period. These numbers show up a lot in physics, so mathematicians have been thinking about a Galois group for transcendental numbers that show up in physics, a so-called Cosmic Galois Group.

(Cosmic here doesn’t mean it has to do with cosmology. As far as I can tell, mathematicians just thought it sounded cool and physics-y. They also started out with rather ambitious ideas about it, if you want a laugh check out the last few paragraphs of this talk by Cartier.)

For us, Cosmic Galois Theory lets us study the unusual numbers that show up in our calculations. Doing this, we’ve noticed that certain numbers simply don’t show up. For example, the Riemann zeta function shows up often in our results, evaluated at many different numbers…but never evaluated at the number three. Nor does any number related to that one through the Cosmic Galois Group show up. It’s as if the theory only likes some numbers, and not others.

For us, this has been enormously useful. We calculate our amplitudes by guesswork, starting with the right “alphabet” and then filling in different combinations, as if we’re trying all possible answers to a word jumble. Cosmic Galois Theory and Extended Steinmann have enabled us to narrow down our guess dramatically, making it much easier and faster to get to the right answer.

More generally though, we hope to contribute to mathematicians’ investigations of Cosmic Galois Theory. Our examples are more complicated than the simple theories where they currently prove things, and contain more data than the more limited results from electrons. Hopefully together we can figure out why certain numbers show up and others don’t, and find interesting mathematical principles behind the theories that govern fundamental physics.

For now, I’ll leave you with a preview of a talk I’m giving in a couple weeks’ time:

I was talking with some other physicists about my “Black Box Theory” thought experiment, where theorists have to compete with an impenetrable block of computer code. Even if the theorists come up with a “better” theory, that theory won’t predict anything that the code couldn’t already. If “predicting something new” is an essential part of science, then the theorists can no longer do science at all.

One of my colleagues made an interesting point: in the thought experiment, the theorists can’t predict new behaviors of reality. But they can predict new behaviors of the code.

Even when we have the right theory to describe the world, we can’t always calculate its consequences. Often we’re stuck in the same position as the theorists in the thought experiment, trying to understand the output of a theory that might as well be a black box. Increasingly, we are employing a kind of “experimental theoretical physics”. We try to predict the result of new calculations, just as experimentalists try to predict the result of new experiments.

This experimental approach seems to be a genuine cultural difference between physics and mathematics. There is such a thing as experimental mathematics, to be clear. And while mathematicians prefer proof, they’re not averse to working from a good conjecture. But when mathematicians calculate and conjecture, they still try to set a firm foundation. They’re precise about what they mean, and careful about what they imply.

“Experimental theoretical physics”, on the other hand, is much more like experimental physics itself. Physicists look for plausible patterns in the “data”, seeing if they make sense in some “physical” way. The conjectures aren’t always sharply posed, and the leaps of reasoning are often more reckless than the leaps of experimental mathematicians. We try to use intuition gleaned from a history of experiments on, and calculations about, the physical world.

There’s a real danger here, because mathematical formulas don’t behave like nature does. When we look at nature, we expect it to behave statistically. If we look at a large number of examples, we get more and more confident that they represent the behavior of the whole. This is sometimes dangerous in nature, but it’s even more dangerous in mathematics, because it’s often not clear what a good “sample” even is. Proving something is true “most of the time” is vastly different from proving it is true all of the time, especially when you’re looking at an infinity of possible examples. We can’t meet our favorite “five sigma” level of statistical confidence, or even know if we’re close.

At the same time, experimental theoretical physics has real power. Experience may be a bad guide to mathematics, but it’s a better guide to the mathematics that specifically shows up in physics. And in practice, our recklessness can accomplish great things, uncovering behaviors mathematicians would never have found by themselves.

The key is to always keep in mind that the two fields are different. “Experimental theoretical physics” isn’t mathematics, and it isn’t pretending to be, any more than experimental physics is pretending to be theoretical physics. We’re gathering data and advancing tentative explanations, but we’re fully aware that they may not hold up when examined with full rigor. We want to inspire, to raise questions and get people to think about the principles that govern the messy physical theories we use to describe our world. Experimental physics, theoretical physics, and mathematics are all part of a shared ecosystem, and each has its role to play.