Tag Archives: grad school

When to Read Someone Else’s Thesis

There’s a cynical truism we use to reassure grad students. A thesis is a big, daunting project, but it shouldn’t be too stressful: in the end, nobody else is going to read it.

This is mostly true. In many fields your thesis is a mix of papers you’ve already published, stitched together into your overall story. Anyone who’s interested will have read the papers the thesis is based on, they don’t need to read the thesis too.

Like every good truism, though, there is an exception. Some rare times, you will actually want to read someone else’s thesis. This isn’t usually because the material is new: rather it’s because it’s well explained.

When we academics publish, we’re often in a hurry, and there isn’t time to write well. When we publish more slowly, often we have more collaborators, so the paper is a set of compromises written by committee. Either way, we rarely make a concept totally crystal-clear.

A thesis isn’t always crystal-clear either, but it can be. It’s written by just one person, and that person is learning. A grad student who just learned a topic can be in the best position to teach it: they know exactly what confused them when they start out. Thesis-writing is also a slower process, one that gives more time to hammer at a text until it’s right. Finally, a thesis is written for a committee, and that committee usually contains people from different fields. A thesis needs to be an accessible introduction, in a way that a published paper doesn’t.

There are topics that I never really understood until I looked up the thesis of the grad student who helped discover it. There are tricks that never made it to published papers, that I’ve learned because they were tucked in to the thesis of someone who went on to do great things.

So if you’re finding a subject confusing, if you’ve read all the papers and none of them make any sense, look for the grad students. Sometimes the best explanation of a tricky topic isn’t in the published literature, it’s hidden away in someone’s thesis.

Academic Age

Growing up in the US there are a lot of age-based milestones. You can drive at 16, vote at 18, and drink at 21. Once you’re in academia though, your actual age becomes much less relevant. Instead, academics are judged based on academic age, the time since you got your PhD.

And no, we don’t get academic birthdays

Grants often have restrictions based on academic age. The European Research Council’s Starting Grant, for example, demands an academic age of 2-7. If you’re academically “older”, they expect more from you: you must instead apply for a Consolidator Grant, or an Advanced Grant.

More generally, when academics apply for jobs they are often weighed in terms of academic age. Compared to others, how long have you spent as a postdoc since your PhD? How many papers have you published since then, and how well cited were they? The longer you spend without finding a permanent position, the more likely employers are to wonder why, and the reasons they assume are rarely positive.

This creates some weird incentives. If you have a choice, it’s often better to graduate late than to graduate early. Employers don’t check how long you took to get your PhD, but they do pay attention to how many papers you published. If it’s an option, staying in school to finish one more project can actually be good for your career.

Biological age matters, but mostly for biological reasons: for example, if you plan to have children. Raising a family is harder if you have to move every few years, so those who find permanent positions by then have an easier time of it. That said, as academics have to take more temporary positions before settling down fewer people have this advantage.

Beyond that, biological age only matters again at the end of your career, especially if you work somewhere with a mandatory retirement age. Even then, retirement for academics doesn’t mean the same thing as for normal people: retired professors often have emeritus status, meaning that while technically retired they keep a role at the university, maintaining an office and often still doing some teaching or research.

A Newtonmas Present of Internet Content

I’m lazy this Newtonmas, so instead of writing a post of my own I’m going to recommend a few other people who do excellent work.

Quantum Frontiers is a shared blog updated by researchers connected to Caltech’s Institute for Quantum Information and Matter. While the whole blog is good, I’m going to be more specific and recommend the posts by Nicole Yunger Halpern. Nicole is really a great writer, and her posts are full of vivid imagery and fun analogies. If she’s not as well-known, it’s only because she lacks the attention-grabbing habit of getting into stupid arguments with other bloggers. Definitely worth a follow.

Recommending Slate Star Codex feels a bit strange, because it seems like everyone I’ve met who would enjoy the blog already reads it. It’s not a physics blog by any stretch, so it’s also an unusual recommendation to give here. Slate Star Codex writes about a wide variety of topics, and while the author isn’t an expert in most of them he does a lot more research than you or I would. If you’re interested in up-to-date meta-analyses on psychology, social science, and policy, pored over by someone with scrupulous intellectual honesty and an inexplicably large amount of time to indulge it, then Slate Star Codex is the blog for you.

I mentioned Piled Higher and Deeper a few weeks back, when I reviewed the author’s popular science book We Have No Idea. Piled Higher and Deeper is a webcomic about life in grad school. Humor is all about exaggeration, and it’s true that Piled Higher and Deeper exaggerates just how miserable and dysfunctional grad school can be…but not by as much as you’d think. I recommend that anyone considering grad school read Piled Higher and Deeper, and take it seriously. Grad school can really be like that, and if you don’t think you can deal with spending five or six years in the world of that comic you should take that into account.

Interdisciplinarity Is Good for the Soul

Interdisciplinary research is trendy these days. Grant agencies love it, for one. But talking to people in other fields isn’t just promoted by the authorities: like eating your vegetables, it’s good for you too.

If you talk only to people from your own field, you can lose track of what matters in the wider world. There’s a feedback effect where everyone in a field works on what everyone else in the field finds interesting, and the field spirals inward. “Interesting” starts meaning what everyone else is working on, without fulfilling any other criteria. Interdisciplinary contacts hold that back: not only can they call bullshit when you’re deep in your field’s arcane weirdness, they can also point out things that are more interesting than you expected, ideas that your field has seen so often they look boring but that are actually more surprising or useful than you realize.

Interdisciplinary research is good for self-esteem, too. As a young researcher, you can easily spend all your time talking to people who know more about your field than you do. Branching out reminds you of how much you’ve learned: all that specialized knowledge may be entry-level in your field, but it still puts you ahead of the rest of the world. Even as a grad student, you can be someone else’s guest expert if the right topic comes up.

Why Physicists Leave Physics

It’s an open secret that many physicists end up leaving physics. How many depends on how you count things, but for a representative number, this report has 31% of US physics PhDs in the private sector after one year. I’d expect that number to grow with time post-PhD. While some of these people might still be doing physics, in certain sub-fields that isn’t really an option: it’s not like there are companies that do R&D in particle physics, astrophysics, or string theory. Instead, these physicists get hired in data science, or quantitative finance, or machine learning. Others stay in academia, but stop doing physics: either transitioning to another field, or taking teaching-focused jobs that don’t leave time for research.

There’s a standard economic narrative for why this happens. The number of students grad schools accept and graduate is much higher than the number of professor jobs. There simply isn’t room for everyone, so many people end up doing something else instead.

That narrative is probably true, if you zoom out far enough. On the ground, though, the reasons people leave academia don’t feel quite this “economic”. While they might be indirectly based on a shortage of jobs, the direct reasons matter. Physicists leave physics for a wide variety of reasons, and many of them are things the field could improve on. Others are factors that will likely be present regardless of how many students graduate, or how many jobs there are. I worry that an attempt to address physics attrition on a purely economic level would miss these kinds of details.

I thought I’d talk in this post about a few reasons why physicists leave physics. Most of this won’t be new information to anyone, but I hope some of it is at least a new perspective.

First, to get it out of the way: almost no-one starts a physics PhD with the intention of going into industry. I’ve met a grand total of one person who did, and he’s rather unusual. Almost always, leaving physics represents someone’s dreams not working out.

Sometimes, that just means realizing you aren’t suited for physics. These are people who feel like they aren’t able to keep up with the material, or people who find they aren’t as interested in it as they expected. In my experience, people realize this sort of thing pretty early. They leave in the middle of grad school, or they leave once they have their PhD. In some sense, this is the healthy sort of attrition: without the ability to perfectly predict our interests and abilities, there will always be people who start a career and then decide it’s not for them.

I want to distinguish this from a broader reason to leave, disillusionment. These are people who can do physics, and want to do physics, but encounter a system that seems bent on making them do anything but. Sometimes this means disillusionment with the field itself: phenomenologists sick of tweaking models to lie just beyond the latest experimental bounds, or theorists who had hoped to address the real world but begin to see that they can’t. This kind of motivation lay behind several great atomic physicists going into biology after the second world war, to work on “life rather than death”. Sometimes instead it’s disillusionment with academia: people who have been bludgeoned by academic politics or bureaucracy, who despair of getting the academic system to care about real research or teaching instead of its current screwed-up priorities or who just don’t want to face that kind of abuse again.

When those people leave, it’s at every stage in their career. I’ve seen grad students disillusioned into leaving without a PhD, and successful tenured professors who feel like the field no longer has anything to offer them. While occasionally these people just have a difference of opinion, a lot of the time they’re pointing out real problems with the system, problems that actually should be fixed.

Sometimes, life intervenes. The classic example is the two-body problem, where you and your spouse have trouble finding jobs in the same place. There aren’t all that many places in the world that hire theoretical physicists, and still fewer with jobs open. One or both partners end up needing to compromise, and that can mean switching to a career with a bit more choice in location. People also move to take care of their parents, or because of other connections.

This seems closer to the economic picture, but I don’t think it quite lines up. Even if there were a lot fewer physicists applying for the same number of jobs, it’s still not certain that there’s a job where you want to live, specifically. You’d still end up with plenty of people leaving the field.

A commenter here frequently asks why physicists have to travel so much. Especially for a theorist, why can’t we just work remotely? With current technology, shouldn’t that be pretty easy to do?

I’ve done a lot of remote collaboration, it’s not impossible. But there really isn’t a substitute for working in the same place, for being able to meet someone in the hall and strike up a conversation around a blackboard. Remote collaborations are an ok way to keep a project going, but a rough way to start one. Institutes realize this, which is part of why most of the time they’ll only pay you a salary if they think you’re actually going to show up.

Could I imagine this changing? Maybe. The technology doesn’t exist right now, but maybe someday someone will design a social network with the right features, one where you can strike up and work on collaborations as naturally as you can in person. Then again, maybe I’m silly for imagining a technological solution to the problem in the first place.

What about more direct economic reasons? What about when people leave because of the academic job market itself?

This certainly happens. In my experience though, a lot of the time it’s pre-emptive. You’d think that people would apply for academic jobs, get rejected, and quit the field. More often, I’ve seen people notice the competition for jobs and decide at the outset that it’s not worth it for them. Sometimes this happens right out of grad school. Other times it’s later. In the latter case, these are often people who are “keeping up”, in that their career is moving roughly as fast as everyone else’s. Rather, it’s the stress, of keeping ahead of the field and marketing themselves and applying for every grant in sight and worrying that it could come crashing down any moment, that ends up too much to deal with.

What about the people who do get rejected over and over again?

Physics, like life in Jurassic Park, finds a way. Surprisingly often, these people manage to stick around. Without faculty positions they scrabble up postdoc after postdoc, short-term position after short-term position. They fund their way piece by piece, grant by grant. Often they get depressed, and cynical, and pissed off, and insist that this time they’re just going to quit the field altogether. But from what I’ve seen, once someone is that far in, they often don’t go through with it.

If fewer people went to physics grad school, or more professors were hired, would fewer people leave physics? Yes, absolutely. But there’s enough going on here, enough different causes and different motivations, that I suspect things wouldn’t work out quite as predicted. Some attrition is here to stay, some is independent of the economics. And some, perhaps, is due to problems we ought to actually solve.

Grad School Changes You

Occasionally, you’ll see people argue that PhD degrees are unnecessary. Sometimes they’re non-scientists who don’t know what they’re talking about, sometimes they’re Freeman Dyson.

With the wide range of arguers comes a wide range of arguments, and I don’t pretend to be able to address them all. But I do think that PhD programs, or something like them, are necessary. Grad school performs a task that almost nothing else can: it turns students into researchers.

The difference between studying a subject and researching it is a bit like the difference between swimming laps in a pool and being a fish. You can get pretty good at swimming, to the point where you can go back and forth with no real danger of screwing up. But a fish lives there.

To do research in a subject, you really have to be able to “live there”. It doesn’t have to be your whole life, or even the most important part of your life. But it has to be somewhere you’re comfortable, where you can immerse yourself and interact with it naturally. You have to have “fluency”, in the same sort of sense you can be fluent in a language. And just as you can learn a language much faster by immersion than by just taking classes, most people find it a lot easier to become a researcher if they’re in an environment built around research.

Does that have to be grad school? Not necessarily. Some people get immersed in real research from an early age (Dyson certainly fell into that category). But even (especially) for a curious person, it’s easy to get immersed in something else instead. As a kid, I would probably happily have become a Dungeons and Dragons researcher if that was a real thing.

Grad school is a choice, to immerse yourself in something specific. You want to become a physicist? You can go somewhere where everyone cares about physics. A mathematician? Same deal. They even pay you, so you don’t need to try to fit research in between a bunch of part-time jobs. They have classes for those who learn better from classes, libraries for those who learn better from books, and for those who learn from conversation you can walk down the hall, knock on a door, and learn something new. You get the opportunity to surround yourself with a topic, to work it into your bones.

And the crazy thing? It really works. You go in with a student’s knowledge of a subject, often decades out of date, and you end up giving talks in front of the world’s experts. In most cases, you end up genuinely shocked by how much you’ve changed, how much you’ve grown. I know I was.

I’m not saying that all aspects of grad school are necessary. The thesis doesn’t make sense in every field, there’s a reason why theoretical physicists usually just staple their papers together and call it a day. Different universities have quite different setups for classes and teaching experience, so it’s unlikely that there’s one true way to arrange those. Even the concept of a single advisor might be more of an administrative convenience than a real necessity. But the core idea, of a place that focuses on the transformation from student to researcher, that pays you and gives you access to what you need…I don’t think that’s something we can do without.

Tutoring at GGI

I’m still at the Galileo Galilei Institute this week, tutoring at the winter school.

At GGI’s winter school, each week is featuring a pair of lecturers. This week, the lectures alternate between Lance Dixon covering the basics of amplitudeology and Csaba Csaki, discussing ways in which the Higgs could be a composite made up of new fundamental particles.

Most of the students at this school are phenomenologists, physicists who make predictions for particle physics. I’m an amplitudeologist, I study the calculation tools behind those predictions. You’d think these would be very close areas, but it’s been interesting seeing how different our approaches really are.

Some of the difference is apparent just from watching the board. In Csaki’s lectures, the equations that show up are short, a few terms long at most. When amplitudes show up, it’s for their general properties: how many factors of the coupling constant, or the multipliers that show up with loops. There aren’t any long technical calculations, and in general they aren’t needed: he’s arguing about the kinds of physics that can show up, not the specifics of how they give rise to precise numbers.

In contrast, Lance’s board filled up with longer calculations, each with many moving parts. Even things that seem simple from our perspective take a decent amount of board space to derive, and involve no small amount of technical symbol-shuffling. For most of the students, working out an amplitude this complicated was an unfamiliar experience. There are a few applications for which you need the kind of power that amplitudeology provides, and a few students were working on them. For the rest, it was a bit like learning about a foreign culture, an exercise in understanding what other people are doing rather than picking up a new skill themselves. Still, they made a strong go at it, and it was enlightening to see the pieces that ended up mattering to them, and to hear the kinds of questions they asked.