Tag Archives: grad school

Learning for a Living

It’s a question I’ve now heard several times, in different forms. People hear that I’ll be hired as a researcher at an institute of theoretical physics, and they ask, “what, exactly, are they paying you to research?”

The answer, with some caveats: “Whatever I want.”

When a company hires a researcher, they want to accomplish specific things: to improve their products, to make new ones, to cut down on fraud or out-think the competition. Some government labs are the same: if you work for NIST, for example, your work should contribute in some way to achieving more precise measurements and better standards for technology.

Other government labs, and universities, are different. They pursue basic research, research not on any specific application but on the general principles that govern the world. Researchers doing basic research are given a lot of freedom, and that freedom increases as their careers go on.

As a PhD student, a researcher is a kind of apprentice, working for their advisor. Even then, they have some independence: an advisor may suggest projects, but PhD students usually need to decide how to execute them on their own. In some fields, there can be even more freedom: in theoretical physics, it’s not unusual for the more independent students to collaborate with other people than just their advisor.

Postdocs, in turn, have even more freedom. In some fields they get hired to work on a specific project, but they tend to have more freedom as to how to execute it than a PhD student would. Other fields give them more or less free rein: in theoretical physics, a postdoc will have some guidance, but often will be free to work on whatever they find interesting.

Professors, and other long-term researchers, have the most freedom of all. Over the climb from PhD to postdoc to professor, researchers build judgement, demonstrating a track record for tackling worthwhile scientific problems. Universities, and institutes of basic research, trust that judgement. They hire for that judgement. They give their long-term researchers free reign to investigate whatever questions they think are valuable.

In practice, there are some restrictions. Usually, you’re supposed to research in a particular field: at an institute for theoretical physics, I should probably research theoretical physics. (But that can mean many things: one of my future colleagues studies the science of cities.) Further pressure comes from grant funding, money you need to hire other researchers or buy equipment that can come with restrictions attached. When you apply for a grant, you have to describe what you plan to do. (In practice, grant agencies are more flexible about this than you might expect, allowing all sorts of changes if you have a good reason…but you still can’t completely reinvent yourself.) Your colleagues themselves also have an impact: it’s much easier to work on something when you can walk down the hall and ask an expert when you get stuck. It’s why we seek out colleagues who care about the same big questions as we do.

Overall, though, research is one of the free-est professions there is. If you can get a job learning for a living, and do it well enough, then people will trust your judgement. They’ll set you free to ask your own questions, and seek your own answers.

The Many Varieties of Journal Club

Across disciplines, one tradition seems to unite all academics: the journal club. In a journal club, we gather together to discuss papers in academic journals. Typically, one person reads the paper in depth in advance, and comes prepared with a short presentation, then everyone else asks questions. Everywhere I’ve worked has either had, or aspired to have, a journal club, and every academic I’ve talked to recognizes the concept.

Beyond that universal skeleton, though, are a lot of variable details. Each place seems to interpret journal clubs just a bit differently. Sometimes a lot differently.

For example, who participates in journal clubs? In some places, journal clubs are a student thing, organized by PhD or Master’s students to get more experience with their new field. Some even have journal clubs as formal courses, for credit and everything. In other places, journal clubs are for everyone, from students up through the older professors.

What kind of papers? Some read old classic papers, knowing that without an excuse we’d never take the time to read them and would miss valuable insights. Some instead focus on the latest results, as a way to keep up with progress in the field.

Some variation is less intentional. Academics are busy, so it can be hard to find a volunteer to prepare a presentation on a paper every week. This leads journal clubs to cut corners, in once again a variety of ways. A journal club focused on the latest papers can sometimes only find volunteers interested in presenting their own work (which we usually already have a presentation prepared for). Sometimes this goes a step further, and the journal club becomes a kind of weekly seminar: a venue for younger visitors to talk about their work that’s less formal than a normal talk. Sometimes, instead of topic, the corner cut is preparation: people still discuss new papers, but instead of preparing a presentation they just come and discuss on the fly. This gets dangerous, because after a certain point people may stop reading the papers altogether, hoping that someone else will come having read it to explain it!

Journal clubs are tricky. Academics are curious, but we’re also busy and lazy. We know it would be good for us to discuss, to keep up with new papers or read the old classics… but actually getting organized, that’s another matter!

When Your Research Is a Cool Toy

Merry Newtonmas, everyone!

In the US, PhD students start without an advisor. As they finish their courses, different research groups make their pitch, trying to get them to join. Some promise interesting puzzles and engaging mysteries, others talk about the importance of their work, how it can help society or understand the universe.

Thinking back to my PhD, there is one pitch I remember to this day. The pitch was from the computational astrophysics group, and the message was a simple one: “we blow up stars”.

Obviously, these guys didn’t literally blow up stars: they simulated supernovas. They weren’t trying to make some weird metaphysical argument, they didn’t believe their simulation was somehow the real thing. The point they were making, instead, was emotional: blowing up stars feels cool.

Scientists can be motivated by curiosity, fame, or altruism, and these are familiar things. But an equally important motivation is a sense of play. If your job is to build tiny cars for rats, some of your motivation has to be the sheer joy of building tiny cars for rats. If you simulate supernovas, then part of your motivation can be the same as my nephew hurling stuffed animals down the stairs: that joyful moment when you yell “kaboom!”

Probably, your motivation shouldn’t just be to play with a cool toy. You need some of those “serious” scientific motivations as well. But for those of you blessed with a job where you get to say “kaboom”, you have that extra powerful reason to get up in the morning. And for those of you just starting a scientific career, may you have some cool toys under your Newtonmas tree!

No, PhD Students Are Not Just Cheap Labor

Here’s a back-of-the-envelope calculation:

In 2019, there were 83,050 unionized graduate students in the US. Let’s assume these are mostly PhD students, since other graduate students are not usually university employees. I can’t find an estimate of the total number of PhD students in the US, but in 2019, 55,614 of them graduated. In 2020, the average US doctorate took 7.5 years to complete. That implies that 83,050/(55,614 x 7.5) = about one-fifth of PhD students in the US are part of a union.

That makes PhD student unions common, but not the majority. It means they’re not unheard of and strange, but a typical university still isn’t unionized. It’s the sweet spot for controversy. It leads to a lot of dumb tweets.

I saw one such dumb tweet recently, from a professor arguing that PhD students shouldn’t unionize. The argument was that if PhD students were paid more, then professors would prefer to hire postdocs, researchers who already have a doctoral degree.

(I won’t link to the tweet, in part because this person is probably being harassed enough already.)

I don’t know how things work in this professor’s field. But the implication, that professors primarily take on PhD students because they’re cheaper, not only doesn’t match my experience: it also just doesn’t make very much sense.

Imagine a neighborhood where the children form a union. They decide to demand a higher allowance, and to persuade any new children in the neighborhood to follow their lead.

Now imagine a couple in that neighborhood, deciding whether to have a child. Do you think that they might look at the fees the “children’s union” charges, and decide to hire an adult to do their chores instead?

Maybe there’s a price where they’d do that. If neighborhood children demanded thousands of dollars in allowance, maybe the young couple would decide that it’s too expensive to have a child. But a small shift is unlikely to change things very much: people have kids for many reasons, and those reasons don’t usually include cheap labor.

The reasons professors take on PhD students are similar to the reasons parents decide to have children. Some people have children because they want a legacy, something of theirs that survives to the next generation. For professors, PhD students are our legacy, our chance to raise someone on our ideas and see how they build on them. Some people have children because they love the act of child-raising: helping someone grow and learn about the world. The professors who take on students like taking on students: teaching is fun, after all.

That doesn’t mean there won’t be cases “on the margin”, where a professor finds they can’t afford a student they previously could. (And to be fair to the tweet I’m criticizing, they did even use the word “marginal”.) But they would have to be in a very tight funding situation, with very little flexibility.

And even for situations like that, long-term, I’m not sure anything would change.

I did my PhD in the US. I was part of a union, and in part because of that (though mostly because I was in a physics department), I was paid relatively decently for a PhD student. Relatively decently is still not that great, though. This was the US, where universities still maintain the fiction that PhD students only work 20 hours a week and pay proportionate to that, and where salaries in a university can change dramatically from student to postdoc to professor.

One thing I learned during my PhD is that despite our low-ish salaries, we cost our professors about as much as postdocs did. The reason why is tuition: PhD students don’t pay their own tuition, but that tuition still exists, and is paid by the professors who hire those students out of their grants. A PhD salary plus a PhD tuition ended up roughly equal to a postdoc salary.

Now, I’m working in a very different system. In a Danish university, wages are very flat. As a postdoc, a nice EU grant put me at almost the same salary as the professors. As a professor, my salary is pretty close to that of one of the better-paying schoolteacher jobs.

At the same time, tuition is much less relevant. Undergraduates don’t pay tuition at all, so PhD tuition isn’t based on theirs. Instead, it’s meant to cover costs of the PhD program as a whole.

I’ve filled out grants here in Denmark, so I know how much PhD students cost, and how much postdocs cost. And since the situation is so different, you might expect a difference here too.

There isn’t one. Hiring a PhD student, salary plus tuition, costs about as much as hiring a postdoc.

Two very different systems, with what seem to be very different rules, end up with the same equation. PhD students and postdocs cost about as much as each other, even if every assumption that you think would affect the outcome turns out completely different.

This is why I expect that, even if PhD students get paid substantially more, they still won’t end up that out of whack with postdocs. There appears to be an iron law of academic administration keeping these two numbers in line, one that holds across nations and cultures and systems. The proportion of unionized PhD students in the US will keep working its way upwards, and I don’t expect it to have any effect on whether professors take on PhDs.

From Journal to Classroom

As part of the pedagogy course I’ve been taking, I’m doing a few guest lectures in various courses. I’ve got one coming up in a classical mechanics course (“intermediate”-level, so not Newton’s laws, but stuff the general public doesn’t know much about like Hamiltonians). They’ve been speeding through the core content, so I got to cover a “fun” topic, and after thinking back to my grad school days I chose a topic I think they’ll have a lot of fun with: Chaos theory.

Getting the obligatory Warhammer reference out of the way now

Chaos is one of those things everyone has a vague idea about. People have heard stories where a butterfly flaps its wings and causes a hurricane. Maybe they’ve heard of the rough concept, determinism with strong dependence on the initial conditions, so a tiny change (like that butterfly) can have huge consequences. Maybe they’ve seen pictures of fractals, and got the idea these are somehow related.

Its role in physics is a bit more detailed. It’s one of those concepts that “intermediate classical mechanics” is good for, one that can be much better understood once you’ve been introduced to some of the nineteenth century’s mathematical tools. It felt like a good way to show this class that the things they’ve learned aren’t just useful for dusty old problems, but for understanding something the public thinks is sexy and mysterious.

As luck would have it, the venerable textbook the students are using includes a (2000’s era) chapter on chaos. I read through it, and it struck me that it’s a very different chapter from most of the others. This hit me particularly when I noticed a section describing a famous early study of chaos, and I realized that all the illustrations were based on the actual original journal article.

I had surprisingly mixed feelings about this.

On the one hand, there’s a big fashion right now for something called research-based teaching. That doesn’t mean “using teaching methods that are justified by research” (though you’re supposed to do that too), but rather, “tying your teaching to current scientific research”. This is a fashion that makes sense, because learning about cutting-edge research in an undergraduate classroom feels pretty cool. It lets students feel more connected with the scientific community, it inspires them to get involved, and it gets them more used to what “real research” looks like.

On the other hand, structuring your textbook based on the original research papers feels kind of lazy. There’s a reason we don’t teach Newtonian mechanics the way Newton would have. Pedagogy is supposed to be something we improve at over time: we come up with better examples and better notation, more focused explanations that teach what we want students to learn. If we just summarize a paper, we’re not really providing “added value”: we should hope, at this point, that we can do better.

Thinking about this, I think the distinction boils down to why you’re teaching the material in the first place.

With a lot of research-based teaching, the goal is to show the students how to interact with current literature. You want to show them journal papers, not because the papers are the best way to teach a concept or skill, but because reading those papers is one of the skills you want to teach.

That makes sense for very current topics, but it seems a bit weird for the example I’ve been looking at, an early study of chaos from the 60’s. It’s great if students can read current papers, but they don’t necessarily need to read older ones. (At least, not yet.)

What then, is the textbook trying to teach? Here things get a bit messy. For a relatively old topic, you’d ideally want to teach not just a vague impression of what was discovered, but concrete skills. Here though, those skills are just a bit beyond the students’ reach: chaos is more approachable than you’d think, but still not 100% something the students can work with. Instead they’re learning to appreciate concepts. This can be quite valuable, but it doesn’t give the kind of structure that a concrete skill does. In particular, it makes it hard to know what to emphasize, beyond just summarizing the original article.

In this case, I’ve come up with my own way forward. There are actually concrete skills I’d like to teach. They’re skills that link up with what the textbook is teaching, skills grounded in the concepts it’s trying to convey, and that makes me think I can convey them. It will give some structure to the lesson, a focus on not merely what I’d like the students to think but what I’d like them to do.

I won’t go into too much detail: I suspect some of the students may be reading this, and I don’t want to spoil the surprise! But I’m looking forward to class, and to getting to try another pedagogical experiment.

Cabinet of Curiosities: The Coaction

I had two more papers out this week, continuing my cabinet of curiosities. I’ll talk about one of them today, and the other in (probably) two weeks.

This week, I’m talking about a paper I wrote with an excellent Master’s student, Andreas Forum. Andreas came to me looking for a project on the mathematical side. I had a rather nice idea for his project at first, to explain a proof in an old math paper so it could be used by physicists.

Unfortunately, the proof I sent him off to explain didn’t actually exist. Fortunately, by the time we figured this out Andreas had learned quite a bit of math, so he was ready for his next project: a coaction for Calabi-Yau Feynman diagrams.

We chose to focus on one particular diagram, called a sunrise diagram for its resemblance to a sun rising over the sea:

This diagram

Feynman diagrams depict paths traveled by particles. The paths are a metaphor, or organizing tool, for more complicated calculations: computations of the chances fundamental particles behave in different ways. Each diagram encodes a complicated integral. This one shows one particle splitting into many, then those many particles reuniting into one.

Do the integrals in Feynman diagrams, and you get a variety of different mathematical functions. Many of them integrate to functions called polylogarithms, and we’ve gotten really really good at working with them. We can integrate them up, simplify them, and sometimes we can guess them so well we don’t have to do the integrals at all! We can do all of that because we know how to break polylogarithm functions apart, with a mathematical operation called a coaction. The coaction chops polylogarithms up to simpler parts, parts that are easier to work with.

More complicated Feynman diagrams give more complicated functions, though. Some of them give what are called elliptic functions. You can think of these functions as involving a geometrical shape, in this case a torus.

Other functions involve more complicated geometrical shapes, in some cases very complicated. For example, some involve the Calabi-Yau manifolds studied by string theorists. These sunrise diagrams are some of the simplest to involve such complicated geometry.

Other researchers had proposed a coaction for elliptic functions back in 2018. When they derived it, though, they left a recipe for something more general. Follow the instructions in the paper, and you could in principle find a coaction for other diagrams, even the Calabi-Yau ones, if you set it up right.

I had an idea for how to set it up right, and in the grand tradition of supervisors everywhere I got Andreas to do the dirty work of applying it. Despite the delay of our false start and despite the fact that this was probably in retrospect too big a project for a normal Master’s thesis, Andreas made it work!

Our result, though, is a bit weird. The coaction is a powerful tool for polylogarithms because it chops them up finely: keep chopping, and you get down to very simple functions. Our coaction isn’t quite so fine: we don’t chop our functions into as many parts, and the parts are more mysterious, more difficult to handle.

We think these are temporary problems though. The recipe we applied turns out to be a recipe with a lot of choices to make, less like Julia Child and more like one of those books where you mix-and-match recipes. We believe the community can play with the parameters of this recipe, finding new version of the coaction for new uses.

This is one of the shiniest of the curiosities in my cabinet this year, I hope it gets put to good use.

Types of Undergrad Projects

I saw a discussion on twitter recently, about PhD programs in the US. Apparently universities are putting more and more weight whether prospective students published a paper during their Bachelor’s degree. For some, it’s even an informal requirement. Some of those in the discussion were skeptical that the students were really contributing to these papers much, and thought that most of the work must have been done by the papers’ other authors. If so, this would mean universities are relying more and more on a metric that depends on whether students can charm their professors enough to be “included” in this way, rather than their own abilities.

I won’t say all that much about the admissions situation in the US. (Except to say that if you find yourself making up new criteria to carefully sift out a few from a group of already qualified-enough candidates, maybe you should consider not doing that.) What I did want to say a bit about is what undergraduates can typically actually do, when it comes to research in my field.

First, I should clarify that I’m talking about students in the US system here. Undergraduate degrees in Europe follow a different path. Students typically take three years to get a Bachelor’s degree, often with a project at the end, followed by a two-year Master’s degree capped with a Master’s thesis. A European Master’s thesis doesn’t have to result in a paper, but is often at least on that level, while a European Bachelor project typically isn’t. US Bachelor’s degrees are four years, so one might expect a Bachelor’s thesis to be in between a European Bachelor’s project and Master’s thesis. In practice, it’s a bit different: courses for Master’s students in Europe will generally cover material taught to PhD students in the US, so a typical US Bachelor’s student won’t have had some courses that have a big role in research in my field, like Quantum Field Theory. On the other hand, the US system is generally much more flexible, with students choosing more of their courses and having more opportunities to advance ahead of the default path. So while US Bachelor’s students don’t typically take Quantum Field Theory, the more advanced students can and do.

Because of that, how advanced a given US Bachelor’s student is varies. A small number are almost already PhD students, and do research to match. Most aren’t, though. Despite that, it’s still possible for such a student to complete a real research project in theoretical physics, one that results in a real paper. What does that look like?

Sometimes, it’s because the student is working with a toy model. The problems we care about in theoretical physics can be big and messy, involving a lot of details that only an experienced researcher will know. If we’re lucky, we can make a simpler version of the problem, one that’s easier to work with. Toy models like this are often self-contained, the kind of thing a student can learn without all of the background we expect. The models may be simpler than the real world, but they can still be interesting, suggesting new behavior that hadn’t been considered before. As such, with a good choice of toy model an undergraduate can write something that’s worthy of a real physics paper.

Other times, the student is doing something concrete in a bigger collaboration. This isn’t quite the same as the “real scientists” doing all the work, because the student has a real task to do, just one that is limited in scope. Maybe there is particular computer code they need to get working, or a particular numerical calculation they need to do. The calculation may be comparatively straightforward, but in combination with other results it can still merit a paper. My first project as a PhD student was a little like that, tackling one part of a larger calculation. Once again, the task can be quite self-contained, the kind of thing you can teach a student over a summer project.

Undergraduate projects in the US won’t always result in a paper, and I don’t think anyone should expect, or demand, that they do. But a nontrivial number do, and not because the student is “cheating”. With luck, a good toy model or a well-defined sub-problem can lead a Bachelor’s student to make a real contribution to physics, and get a paper in the bargain.

At Mikefest

I’m at a conference this week of a very particular type: a birthday conference. When folks in my field turn 60, their students and friends organize a special conference for them, celebrating their research legacy. With COVID restrictions just loosening, my advisor Michael Douglas is getting a last-minute conference. And as one of the last couple students he graduated at Stony Brook, I naturally showed up.

The conference, Mikefest, is at the Institut des Hautes Études Scientifiques, just outside of Paris. Mike was a big supporter of the IHES, putting in a lot of fundraising work for them. Another big supporter, James Simons, was Mike’s employer for a little while after his time at Stony Brook. The conference center we’re meeting in is named for him.

You might have to zoom in to see that, though.

I wasn’t involved in organizing the conference, so it was interesting seeing differences between this and other birthday conferences. Other conferences focus on the birthday prof’s “family tree”: their advisor, their students, and some of their postdocs. We’ve had several talks from Mike’s postdocs, and one from his advisor, but only one from a student. Including him and me, three of Mike’s students are here: another two have had their work mentioned but aren’t speaking or attending.

Most of the speakers have collaborated with Mike, but only for a few papers each. All of them emphasized a broader debt though, for discussions and inspiration outside of direct collaboration. The message, again and again, is that Mike’s work has been broad enough to touch a wide range of people. He’s worked on branes and the landscape of different string theory universes, pure mathematics and computation, neuroscience and recently even machine learning. The talks generally begin with a few anecdotes about Mike, before pivoting into research talks on the speakers’ recent work. The recent-ness of the work is perhaps another difference from some birthday conferences: as one speaker said, this wasn’t just a celebration of Mike’s past, but a “welcome back” after his return from the finance world.

One thing I don’t know is how much this conference might have been limited by coming together on short notice. For other birthday conferences impacted by COVID (and I’m thinking of one in particular), it might be nice to have enough time to have most of the birthday prof’s friends and “academic family” there in person. As-is, though, Mike seems to be having fun regardless.

Happy Birthday Mike!

The Irons in the Fire Metric

I remember, a while back, visiting a friend in his office. He had just became a professor, and was still setting things up. I noticed a list on the chalkboard, taking up almost one whole side. Taking a closer look, I realized that list was a list of projects. To my young postdoc eyes, the list was amazing: how could one person be working on so many things?

There’s an idiom in English, “too many irons in the fire”. You can imagine a blacksmith forging many things at once, each piece of iron taking focus from the others. Too many, and a piece might break, or otherwise fail.

Perhaps the irons in the fire are fire irons

In theoretical physics, a typical PhD publishes three papers before they graduate. That usually means one project at a time, maybe two. For someone used to one or two irons in the fire, so many at a time seems an impossible feat.

Scientists grow over their careers, though, and in more than one way. What seems impossible can eventually be business as usual.

First, as your skill grows, you become more efficient. A lot of scientific work is a kind of debugging: making mistakes, and figuring out how to fix them. The more experience you have, the more you know what kinds of mistakes you might make, and the better you will be at avoiding them. (Never perfect, of course: scientists always have to debug something.)

Second, your collaborations grow. The more people you work with, the more you can share these projects, each person contributing their own piece. With time, you start supervising as well: Masters students, PhD students, postdocs. Each one adds to the number of irons you can manage in your fire. While for bad supervisors this just means having their name on lots of projects, the good supervisors will be genuinely contributing to each one. That’s yet another kind of growth: as you get further along, you get a better idea of what works and what doesn’t, so even in a quick meeting you can solve meaningful problems.

Third, you grow your system. The ideas you explore early on blossom into full-fledged methods, tricks which you can pull out again and again when you need them. The tricks combine, forming new, bigger tricks, and eventually a long list of projects becomes second nature, a natural thing your system is able to do.

As you grow as a scientist, you become more than just one researcher, one debugger at a laptop or pipetter at a lab bench. You become a research program, one that manifests across many people and laptops and labs. As your expertise grows, you become a kind of living exchange of ideas, concepts flowing through you when needed, building your own scientific world.

Serial Killers and Grad School Horror Stories

It’s time for my yearly Halloween post. My regular readers know what to expect: a horror trope and a physics topic, linked by a tortured analogy. And this year, the pun is definitely intended.

Horror movies have a fascination with serial killers. Over the years, they’ve explored every possible concept: from gritty realism to the supernatural, crude weapons to sophisticated traps, motivations straightforward to mysterious, and even killers who are puppets.

Yes I know Billy is not actually the killer in the Saw films

One common theme of all fictional serial killers is power. Serial killers are scary because they have almost all the power in a situation, turned to alien and unpredictable goals. The protagonists of a horror film are the underdogs, never knowing whether the killer will pull out some new ability or plan that makes everything they try irrelevant. Even if they get the opportunity to negotiate, the power imbalance means that they can’t count on getting what they need: anything the killer agrees will be twisted to serve their own ends.

Academics tell their own kind of horror stories. Earlier this month, the historian Brett Deveraux had a blog post about graduate school, describing what students go through to get a PhD. As he admits, parts of his story only apply to the humanities. STEM departments have more money, and pay their students a bit better. It’s not a lot better (I was making around $20,000 a year at Stony Brook), but it’s enough that I’ve never heard of a student taking out a loan to make ends meet. (At most, people took on tutoring jobs for a bit of extra cash.) We don’t need to learn new languages, and our degrees take a bit less time: six or seven years for an experimental physicist, and often five for a theoretical physicist. Finally, the work can be a lot less lonely, especially for those who work in a lab.

Still, there is a core in common, and that core once again is power. Universities have power, of course: and when you’re not a paying customer but an employee with your career on the line, that power can be quite scary. But the person with the most power over a PhD student is their advisor. Deveraux talks compellingly about the difference that power can make: how an advisor who is cruel, or indifferent, or just clueless, can make or break not just your career but your psychological well-being. The lucky students, like Deveraux and me, find supportive mentors who help us survive and move forward. The unlucky students leave with scars, even if those scars aren’t jigsaw-shaped.

Neither Deveraux or I have experience with PhD programs in Europe, which are quite different in structure from those in the US. But the power imbalance is still there, and still deadly, and so despite the different structure, I’ve seen students here break down, scarred in the same way.

Deveraux frames his post as advice for those who want to go to grad school, and his first piece of advice is “Have you tried wanting something else?” I try to echo that when I advise students. I don’t always succeed: there’s something exciting about a young person interested in the same topics we’re interested in, willing to try to make a life of it. But it is important to know what you’re getting into, and to know there’s a big world out there of other options. If, after all that, you decide to stick through it, just remember: power matters. If you give someone power over you, try to be as sure as you can that it won’t turn into a horror story.