Tag Archives: particle physics

At Bohr-100: Current Themes in Theoretical Physics

During the pandemic, some conferences went online. Others went dormant.

Every summer before the pandemic, the Niels Bohr International Academy hosted a conference called Current Themes in High Energy Physics and Cosmology. Current Themes is a small, cozy conference, a gathering of close friends some of whom happen to have Nobel prizes. Holding it online would be almost missing the point.

Instead, we waited. Now, at least in Denmark, the pandemic is quiet enough to hold this kind of gathering. And it’s a special year: the 100th anniversary of Niels Bohr’s Nobel, the 101st of the Niels Bohr Institute. So it seemed like the time for a particularly special Current Themes.

For one, it lets us use remarkably simple signs

A particularly special Current Themes means some unusually special guests. Our guests are usually pretty special already (Gerard t’Hooft and David Gross are regulars, to just name the Nobelists), but this year we also had Alexander Polyakov. Polyakov’s talk had a magical air to it. In a quiet voice, broken by an impish grin when he surprised us with a joke, Polyakov began to lay out five unsolved problems he considered interesting. In the end, he only had time to present one, related to turbulence: when Gross asked him to name the remaining four, the second included a term most of us didn’t recognize (striction, known in a magnetic context and which he wanted to explore gravitationally), so the discussion hung while he defined that and we never did learn what the other three problems were.

At the big 100th anniversary celebration earlier in the spring, the Institute awarded a few years worth of its Niels Bohr Institute Medal of Honor. One of the recipients, Paul Steinhardt, couldn’t make it then, so he got his medal now. After the obligatory publicity photos were taken, Steinhardt entertained us all with a colloquium about his work on quasicrystals, including the many adventures involved in finding the first example “in the wild”. I can’t do the story justice in a short blog post, but if you won’t have the opportunity to watch him speak about it then I hear his book is good.

An anniversary conference should have some historical elements as well. For this one, these were ably provided by David Broadhurst, who gave an after-dinner speech cataloguing things he liked about Bohr. Some was based on public information, but the real draw were the anecdotes: his own reminiscences, and those of people he knew who knew Bohr well.

The other talks covered interesting ground: from deep approaches to quantum field theory, to new tools to understand black holes, to the implications of causality itself. One out of the ordinary talk was by Sabrina Pasterski, who advocated a new model of physics funding. I liked some elements (endowed organizations to further a subfield) and am more skeptical of others (mostly involving NFTs). Regardless it, and the rest of the conference more broadly, spurred a lot of good debate.

The Folks With the Best Pictures

Sometimes I envy astronomers. Particle physicists can write books full of words and pages of colorful graphs and charts, and the public won’t retain any of it. Astronomers can mesmerize the world with a single picture.

NASA just released the first images from its James Webb Space Telescope. They’re impressive, and not merely visually: in twelve hours, they probe deeper than the Hubble Space Telescope managed in weeks on the same patch of sky, as well as gathering data that can show what kinds of molecules are present in the galaxies.

(If you’re curious how the James Webb images compare to Hubble ones, here’s a nice site comparing them.)

Images like this enter the popular imagination. The Hubble telescope’s deep field has appeared on essentially every artistic product one could imagine. As of writing this, searching for “Hubble” on Etsy gives almost 5,000 results. “JWST”, the acronym for the James Webb Space Telescope, already gives over 1,000, including several on the front page that already contain just-released images. Despite the Large Hadron Collider having operated for over a decade, searching “LHC” also leads to just around 1,000 results…and a few on the front page are actually pictures of the JWST!

It would be great as particle physicists to have that kind of impact…but I think we shouldn’t stress ourselves too much about it. Ultimately astronomers will always have this core advantage. Space is amazing, visually stunning and mind-bogglingly vast. It has always had a special place for human cultures, and I’m happy for astronomers to inherit that place.

Carving Out the Possible

If you imagine a particle physicist, you probably picture someone spending their whole day dreaming up new particles. They figure out how to test those particles in some big particle collider, and for a lucky few their particle gets discovered and they get a Nobel prize.

Occasionally, a wiseguy asks if we can’t just cut out the middleman. Instead of dreaming up particles to test, why don’t we just write down every possible particle and test for all of them? It would save the Nobel committee a lot of money at least!

It turns out, you can sort of do this, through something called Effective Field Theory. An Effective Field Theory is a type of particle physics theory that isn’t quite true: instead, it’s “effectively” true, meaning true as long as you don’t push it too far. If you test it at low energies and don’t “zoom in” too much then it’s fine. Crank up your collider energy high enough, though, and you expect the theory to “break down”, revealing new particles. An Effective Field Theory lets you “hide” unknown particles inside new interactions between the particles we already know.

To help you picture how this works, imagine that the pink and blue lines here represent familiar particles like electrons and quarks, while the dotted line is a new particle somebody dreamed up. (The picture is called a Feynman diagram, if you don’t know what that is check out this post.)

In an Effective Field Theory, we “zoom out”, until the diagram looks like this:

Now we’ve “hidden” the new particle. Instead, we have a new type of interaction between the particles we already know.

So instead of writing down every possible new particle we can imagine, we only have to write down every possible interaction between the particles we already know.

That’s not as hard as it sounds. In part, that’s because not every interaction actually makes sense. Some of the things you could write down break some important rules. They might screw up cause and effect, letting something happen before its cause instead of after. They might screw up probability, giving you a formula for the chance something happens that gives a number greater than 100%.

Using these rules you can play a kind of game. You start out with a space representing all of the interactions you can imagine. You begin chipping at it, carving away parts that don’t obey the rules, and you see what shape is left over. You end up with plots that look a bit like carving a ham.

People in my subfield are getting good at this kind of game. It isn’t quite our standard fare: usually, we come up with tricks to make calculations with specific theories easier. Instead, many groups are starting to look at these general, effective theories. We’ve made friends with groups in related fields, building new collaborations. There still isn’t one clear best way to do this carving, so each group manages to find a way to chip a little farther. Out of the block of every theory we could imagine, we’re carving out a space of theories that make sense, theories that could conceivably be right. Theories that are worth testing.

The Most Anthropic of All Possible Worlds

Today, we’d call Leibniz a mathematician, a physicist, and a philosopher. As a mathematician, Leibniz turned calculus into something his contemporaries could actually use. As a physicist, he championed a doomed theory of gravity. In philosophy, he seems to be most remembered for extremely cheaty arguments.

Free will and determinism? Can’t it just be a coincidence?

I don’t blame him for this. Faced with a tricky philosophical problem, it’s enormously tempting to just blaze through with an answer that makes every subtlety irrelevant. It’s a temptation I’ve succumbed to time and time again. Faced with a genie, I would always wish for more wishes. On my high school debate team, I once forced everyone at a tournament to switch sides with some sneaky definitions. It’s all good fun, but people usually end up pretty annoyed with you afterwards.

People were annoyed with Leibniz too, especially with his solution to the problem of evil. If you believe in a benevolent, all-powerful god, as Leibniz did, why is the world full of suffering and misery? Leibniz’s answer was that even an all-powerful god is constrained by logic, so if the world contains evil, it must be logically impossible to make the world any better: indeed, we live in the best of all possible worlds. Voltaire famously made fun of this argument in Candide, dragging a Leibniz-esque Professor Pangloss through some of the most creative miseries the eighteenth century had to offer. It’s possibly the most famous satire of a philosopher, easily beating out Aristophanes’ The Clouds (which is also great).

Physicists can also get accused of cheaty arguments, and probably the most mocked is the idea of a multiverse. While it hasn’t had its own Candide, the multiverse has been criticized by everyone from bloggers to Nobel prizewinners. Leibniz wanted to explain the existence of evil, physicists want to explain “unnaturalness”: the fact that the kinds of theories we use to explain the world can’t seem to explain the mass of the Higgs boson. To explain it, these physicists suggest that there are really many different universes, separated widely in space or built in to the interpretation of quantum mechanics. Each universe has a different Higgs mass, and ours just happens to be the one we can live in. This kind of argument is called “anthropic” reasoning. Rather than the best of all possible worlds, it says we live in the world best-suited to life like ours.

I called Leibniz’s argument “cheaty”, and you might presume I think the same of the multiverse. But “cheaty” doesn’t mean “wrong”. It all depends what you’re trying to do.

Leibniz’s argument and the multiverse both work by dodging a problem. For Leibniz, the problem of evil becomes pointless: any evil might be necessary to secure a greater good. With a multiverse, naturalness becomes pointless: with many different laws of physics in different places, the existence of one like ours needs no explanation.

In both cases, though, the dodge isn’t perfect. To really explain any given evil, Leibniz would have to show why it is secretly necessary in the face of a greater good (and Pangloss spends Candide trying to do exactly that). To explain any given law of physics, the multiverse needs to use anthropic reasoning: it needs to show that that law needs to be the way it is to support human-like life.

This sounds like a strict requirement, but in both cases it’s not actually so useful. Leibniz could (and Pangloss does) come up with an explanation for pretty much anything. The problem is that no-one actually knows which aspects of the universe are essential and which aren’t. Without a reliable way to describe the best of all possible worlds, we can’t actually test whether our world is one.

The same problem holds for anthropic reasoning. We don’t actually know what conditions are required to give rise to people like us. “People like us” is very vague, and dramatically different universes might still contain something that can perceive and observe. While it might seem that there are clear requirements, so far there hasn’t been enough for people to do very much with this type of reasoning.

However, for both Leibniz and most of the physicists who believe anthropic arguments, none of this really matters. That’s because the “best of all possible worlds” and “most anthropic of all possible worlds” aren’t really meant to be predictive theories. They’re meant to say that, once you are convinced of certain things, certain problems don’t matter anymore.

Leibniz, in particular, wasn’t trying to argue for the existence of his god. He began the argument convinced that a particular sort of god existed: one that was all-powerful and benevolent, and set in motion a deterministic universe bound by logic. His argument is meant to show that, if you believe in such a god, then the problem of evil can be ignored: no matter how bad the universe seems, it may still be the best possible world.

Similarly, the physicists convinced of the multiverse aren’t really getting there through naturalness. Rather, they’ve become convinced of a few key claims: that the universe is rapidly expanding, leading to a proliferating multiverse, and that the laws of physics in such a multiverse can vary from place to place, due to the huge landscape of possible laws of physics in string theory. If you already believe those things, then the naturalness problem can be ignored: we live in some randomly chosen part of the landscape hospitable to life, which can be anywhere it needs to be.

So despite their cheaty feel, both arguments are fine…provided you agree with their assumptions. Personally, I don’t agree with Leibniz. For the multiverse, I’m less sure. I’m not confident the universe expands fast enough to create a multiverse, I’m not even confident it’s speeding up its expansion now. I know there’s a lot of controversy about the math behind the string theory landscape, about whether the vast set of possible laws of physics are as consistent as they’re supposed to be…and of course, as anyone must admit, we don’t know whether string theory itself is true! I don’t think it’s impossible that the right argument comes around and convinces me of one or both claims, though. These kinds of arguments, “if assumptions, then conclusion” are the kind of thing that seems useless for a while…until someone convinces you of the conclusion, and they matter once again.

So in the end, despite the similarity, I’m not sure the multiverse deserves its own Candide. I’m not even sure Leibniz deserved Candide. But hopefully by understanding one, you can understand the other just a bit better.

Trapped in the (S) Matrix

I’ve tried to convince you that you are a particle detector. You choose your experiment, what actions you take, and then observe the outcome. If you focus on that view of yourself, data out and data in, you start to wonder if the world outside really has any meaning. Maybe you’re just trapped in the Matrix.

From a physics perspective, you actually are trapped in a sort of a Matrix. We call it the S Matrix.

“S” stands for scattering. The S Matrix is a formula we use, a mathematical tool that tells us what happens when fundamental particles scatter: when they fly towards each other, colliding or bouncing off. For each action we could take, the S Matrix gives the probability of each outcome: for each pair of particles we collide, the chance we detect different particles at the end. You can imagine putting every possible action in a giant vector, and every possible observation in another giant vector. Arrange the probabilities for each action-observation pair in a big square grid, and that’s a matrix.

Actually, I lied a little bit. This is particle physics, and particle physics uses quantum mechanics. Because of that, the entries of the S Matrix aren’t probabilities: they’re complex numbers called probability amplitudes. You have to multiply them by their complex conjugate to get probability out.

Ok, that probably seemed like a lot of detail. Why am I telling you all this?

What happens when you multiply the whole S Matrix by its complex conjugate? (Using matrix multiplication, naturally.) You can still pick your action, but now you’re adding up every possible outcome. You’re asking “suppose I take an action. What’s the chance that anything happens at all?”

The answer to that question is 1. There is a 100% chance that something happens, no matter what you do. That’s just how probability works.

We call this property unitarity, the property of giving “unity”, or one. And while it may seem obvious, it isn’t always so easy. That’s because we don’t actually know the S Matrix formula most of the time. We have to approximate it, a partial formula that only works for some situations. And unitarity can tell us how much we can trust that formula.

Imagine doing an experiment trying to detect neutrinos, like the IceCube Neutrino Observatory. For you to detect the neutrinos, they must scatter off of electrons, kicking them off of their atoms or transforming them into another charged particle. You can then notice what happens as the energy of the neutrinos increases. If you do that, you’ll notice the probability also start to increase: it gets more and more likely that the neutrino can scatter an electron. You might propose a formula for this, one that grows with energy. [EDIT: Example changed after a commenter pointed out an issue with it.]

If you keep increasing the energy, though, you run into a problem. Those probabilities you predict are going to keep increasing. Eventually, you’ll predict a probability greater than one.

That tells you that your theory might have been fine before, but doesn’t work for every situation. There’s something you don’t know about, which will change your formula when the energy gets high. You’ve violated unitarity, and you need to fix your theory.

In this case, the fix is already known. Neutrinos and electrons interact due to another particle, called the W boson. If you include that particle, then you fix the problem: your probabilities stop going up and up, instead, they start slowing down, and stay below one.

For other theories, we don’t yet know the fix. Try to write down an S Matrix for colliding gravitational waves (or really, gravitons), and you meet the same kind of problem, a probability that just keeps growing. Currently, we don’t know how that problem should be solved: string theory is one answer, but may not be the only one.

So even if you’re trapped in an S Matrix, sending data out and data in, you can still use logic. You can still demand that probability makes sense, that your matrix never gives a chance greater than 100%. And you can learn something about physics when you do!

At New Ideas in Cosmology

The Niels Bohr Institute is hosting a conference this week on New Ideas in Cosmology. I’m no cosmologist, but it’s a pretty cool field, so as a local I’ve been sitting in on some of the talks. So far they’ve had a selection of really interesting speakers with quite a variety of interests, including a talk by Roger Penrose with his trademark hand-stippled drawings.

Including this old classic

One thing that has impressed me has been the “interdisciplinary” feel of the conference. By all rights this should be one “discipline”, cosmology. But in practice, each speaker came at the subject from a different direction. They all had a shared core of knowledge, common models of the universe they all compare to. But the knowledge they brought to the subject varied: some had deep knowledge of the mathematics of gravity, others worked with string theory, or particle physics, or numerical simulations. Each talk, aware of the varied audience, was a bit “colloquium-style“, introducing a framework before diving in to the latest research. Each speaker knew enough to talk to the others, but not so much that they couldn’t learn from them. It’s been unexpectedly refreshing, a real interdisciplinary conference done right.

You Are a Particle Detector

I mean that literally. True, you aren’t a 7,000 ton assembly of wires and silicon, like the ATLAS experiment inside the Large Hadron Collider. You aren’t managed by thousands of scientists and engineers, trying to sift through data from a billion pairs of protons smashing into each other every second. Nonetheless, you are a particle detector. Your senses detect particles.

Like you, and not like you

Your ears take vibrations in the air and magnify them, vibrating the fluid of your inner ear. Tiny hairs communicate that vibration to your nerves, which signal your brain. Particle detectors, too, magnify signals: photomultipliers take a single particle of light (called a photon) and set off a cascade, multiplying the signal one hundred million times so it can be registered by a computer.

Your nose and tongue are sensitive to specific chemicals, recognizing particular shapes and ignoring others. A particle detector must also be picky. A detector like ATLAS measures far more particle collisions than it could ever record. Instead, it learns to recognize particular “shapes”, collisions that might hold evidence of something interesting. Only those collisions are recorded, passed along to computer centers around the world.

Your sense of touch tells you something about the energy of a collision: specifically, the energy things have when they collide with you. Particle detectors do this with calorimeters, that generate signals based on a particle’s energy. Different parts of your body are more sensitive than others: your mouth and hands are much more sensitive than your back and shoulders. Different parts of a particle detector have different calorimeters: an electromagnetic calorimeter for particles like electrons, and a less sensitive hadronic calorimeter that can catch particles like protons.

You are most like a particle detector, though, in your eyes. The cells of your eyes, rods and cones, detect light, and thus detect photons. Your eyes are more sensitive than you think: you are likely able to detect even a single photon. In an experiment, three people sat in darkness for forty minutes, then heard two sounds, one of which might come accompanied by a single photon of light flashed into their eye. The three didn’t notice the photons every time, that’s not possible for such a small sensation: but they did much better than a random guess.

(You can be even more literal than that. An older professor here told me stories of the early days of particle physics. To check that a machine was on, sometimes physicists would come close, and watch for flashes in the corner of their vision: a sign of electrons flying through their eyeballs!)

You are a particle detector, but you aren’t just a particle detector. A particle detector can’t move, its thousands of tons are fixed in place. That gives it blind spots: for example, the tube that the particles travel through is clear, with no detectors in it, so the particle can get through. Physicists have to account for this, correcting for the missing space in their calculations. In contrast, if you have a blind spot, you can act: move, and see the world from a new point of view. You observe not merely a series of particles, but the results of your actions: what happens when you turn one way or another, when you make one choice or another.

So while you are a particle detector, what’s more, you’re a particle experiment. You can learn a lot more than those big heaps of wires and silicon could on their own. You’re like the whole scientific effort: colliders and detectors, data centers and scientists around the world. May you learn as much in your life as the experiments do in theirs.

W is for Why???

Have you heard the news about the W boson?

The W boson is a fundamental particle, part of the Standard Model of particle physics. It is what we call a “force-carrying boson”, a particle related to the weak nuclear force in the same way photons are related to electromagnetism. Unlike photons, W bosons are “heavy”: they have a mass. We can’t usually predict masses of particles, but the W boson is a bit different, because its mass comes from the Higgs boson in a special way, one that ties it to the masses of other particles like the Z boson. The upshot is that if you know the mass of a few other particles, you can predict the mass of the W.

And according to a recent publication, that prediction is wrong. A team analyzed results from an old experiment called the Tevatron, the biggest predecessor of today’s Large Hadron Collider. They treated the data with groundbreaking care, mindbogglingly even taking into account the shape of the machine’s wires. And after all that analysis, they found that the W bosons detected by the Tevatron had a different mass than the mass predicted by the Standard Model.

How different? Here’s where precision comes in. In physics, we decide whether to trust a measurement with a statistical tool. We calculate how likely the measurement would be, if it was an accident. In this case: how likely it would be that, if the Standard Model was correct, the measurement would still come out this way? To discover a new particle, we require this chance to be about one in 3.5 million, or in our jargon, five sigma. That was the requirement for discovering the Higgs boson. This super-precise measurement of the W boson doesn’t have five sigma…it has seven sigma. That means, if we trust the analysis team, then a measurement like this could come accidentally out of the Standard Model only about one in a trillion times.

Ok, should we trust the analysis team?

If you want to know that, I’m the wrong physicist to ask. The right physicists are experimental particle physicists. They do analyses like that one, and they know what can go wrong. Everyone I’ve heard from in that field emphasized that this was a very careful group, who did a lot of things impressively right…but there is still room for mistakes. One pointed out that the new measurement isn’t just inconsistent with the Standard Model, but with many previous measurements too. Those measurements are less precise, but still precise enough that we should be a bit skeptical. Another went into more detail about specific clues as to what might have gone wrong.

If you can’t find an particle experimentalist, the next best choice is a particle phenomenologist. These are the people who try to make predictions for new experiments, who use theoretical physics to propose new models that future experiments can test. Here’s one giving a first impression, and discussing some ways to edit the Standard Model to agree with the new measurement. Here’s another discussing what to me is an even more interesting question: if we take these measurements seriously, both the new one and the old ones, then what do we believe?

I’m not an experimentalist or a phenomenologist. I’m an “amplitudeologist”. I work not on the data, or the predictions, but the calculational tools used to make those predictions, called “scattering amplitudes”. And that gives me a different view on the situation.

See in my field, precision is one of our biggest selling-points. If you want theoretical predictions to match precise experiments, you need our tricks to compute them. We believe (and argue to grant agencies) that this precision will be important: if a precise experiment and a precise prediction disagree, it could be the first clue to something truly new. New solid evidence of something beyond the Standard Model would revitalize all of particle physics, giving us a concrete goal and killing fruitless speculation.

This result shakes my faith in that a little. Probably, the analysis team got something wrong. Possibly, all previous analyses got something wrong. Either way, a lot of very careful smart people tried to estimate their precision, got very confident…and got it wrong.

(There’s one more alternative: maybe million-to-one chances really do crop up nine times out of ten.)

If some future analysis digs down deep in precision, and finds another deviation from the Standard Model, should we trust it? What if it’s measuring something new, and we don’t have the prior experiments to compare to?

(This would happen if we build a new even higher-energy collider. There are things the collider could measure, like the chance one Higgs boson splits into two, that we could not measure with any earlier machine. If we measured that, we couldn’t compare it to the Tevatron or the LHC, we’d have only the new collider to go on.)

Statistics are supposed to tell us whether to trust a result. Here, they’re not doing their job. And that creates the scary possibility that some anomaly shows up, some real deviation deep in the sigmas that hints at a whole new path for the field…and we just end up bickering about who screwed it up. Or the equally scary possibility that we find a seven-sigma signal of some amazing new physics, build decades of new theories on it…and it isn’t actually real.

We don’t just trust statistics. We also trust the things normal people trust. Do other teams find the same result? (I hope that they’re trying to get to this same precision here, and see what went wrong!) Does the result match other experiments? Does it make predictions, which then get tested in future experiments?

All of those are heuristics of course. Nothing can guarantee that we measure the truth. Each trick just corrects for some of our biases, some of the ways we make mistakes. We have to hope that’s good enough, that if there’s something to see we’ll see it, and if there’s nothing to see we won’t. Precision, my field’s raison d’être, can’t be enough to convince us by itself. But it can help.

Of Snowmass and SAGEX

arXiv-watchers might have noticed an avalanche of papers with the word Snowmass in the title. (I contributed to one of them.)

Snowmass is a place, an area in Colorado known for its skiing. It’s also an event in that place, the Snowmass Community Planning Exercise for the American Physical Society’s Division of Particles and Fields. In plain terms, it’s what happens when particle physicists from across the US get together in a ski resort to plan their future.

Usually someone like me wouldn’t be involved in that. (And not because it’s a ski resort.) In the past, these meetings focused on plans for new colliders and detectors. They got contributions from experimentalists, and a few theorists heavily focused on their work, but not the more “formal” theorists beyond.

This Snowmass is different. It’s different because of Corona, which changed it from a big meeting in a resort to a spread-out series of meetings and online activities. It’s also different because they invited theorists to contribute, and not just those interested in particle colliders. The theorists involved study everything from black holes and quantum gravity to supersymmetry and the mathematics of quantum field theory. Groups focused on each topic submit “white papers” summarizing the state of their area. These white papers in turn get organized and summarized into a few subfields, which in turn contribute to the planning exercise. No-one I’ve talked to is entirely clear on how this works, how much the white papers will actually be taken into account or by whom. But it seems like a good chance to influence US funding agencies, like the Department of Energy, and see if we can get them to prioritize our type of research.

Europe has something similar to Snowmass, called the European Strategy for Particle Physics. It also has smaller-scale groups, with their own purposes, goals, and funding sources. One such group is called SAGEX: Scattering Amplitudes: from Geometry to EXperiment. SAGEX is an Innovative Training Network, an organization funded by the EU to train young researchers, in this case in scattering amplitudes. Its fifteen students are finishing their PhDs and ready to take the field by storm. Along the way, they spent a little time in industry internships (mostly at Maple and Mathematica), and quite a bit of time working on outreach.

They have now summed up that outreach work in an online exhibition. I’ve had fun exploring it over the last couple days. They’ve got a lot of good content there, from basic explanations of relativity and quantum mechanics, to detailed games involving Feynman diagrams and associahedra, to a section that uses solitons as a gentle introduction to integrability. If you’re in the target audience, you should check it out!

Geometry and Geometry

Last week, I gave the opening lectures for a course on scattering amplitudes, the things we compute to find probabilities in particle physics. After the first class, one of the students asked me if two different descriptions of these amplitudes, one called CHY and the other called the amplituhedron, were related. There does happen to be a connection, but it’s a bit subtle and indirect, not the sort of thing the student would have been thinking of. Why then, did he think they might be related? Well, he explained, both descriptions are geometric.

If you’ve been following this blog for a while, you’ve seen me talk about misunderstandings. There are a lot of subtle ways a smart student can misunderstand something, ways that can be hard for a teacher to recognize. The right question, or the right explanation, can reveal what’s going on. Here, I think the problem was that there are multiple meanings of geometry.

One of the descriptions the student asked about, CHY, is related to string theory. It describes scattering particles in terms of the path of a length of string through space and time. That path draws out a surface called a world-sheet, showing all the places the string touches on its journey. And that picture, of a wiggly surface drawn in space and time, looks like what most people think of as geometry: a “shape” in a pretty normal sense, which here describes the physics of scattering particles.

The other description, the amplituhedron, also uses geometric objects to describe scattering particles. But the “geometric objects” here are much more abstract. A few of them are familiar: straight lines, the area between them forming shapes on a plane. Most of them, though are generalizations of this: instead of lines on a plane, they have higher dimensional planes in higher dimensional spaces. These too get described as geometry, even though they aren’t the “everyday” geometry you might be familiar with. Instead, they’re a “natural generalization”, something that, once you know the math, is close enough to that “everyday” geometry that it deserves the same name.

This week, two papers presented a totally different kind of geometric description of particle physics. In those papers, “geometric” has to do with differential geometry, the mathematics behind Einstein’s theory of general relativity. The descriptions are geometric because they use the same kinds of building-blocks of that theory, a metric that bends space and time. Once again, this kind of geometry is a natural generalization of the everyday notion, but now in once again a different way.

All of these notions of geometry do have some things in common, of course. Maybe you could even write down a definition of “geometry” that includes all of them. But they’re different enough that if I tell you that two descriptions are “geometric”, it doesn’t tell you all that much. It definitely doesn’t tell you the two descriptions are related.

It’s a reasonable misunderstanding, though. It comes from a place where, used to “everyday” geometry, you expect two “geometric descriptions” of something to be similar: shapes moving in everyday space, things you can directly compare. Instead, a geometric description can be many sorts of shape, in many sorts of spaces, emphasizing many sorts of properties. “Geometry” is just a really broad term.