Tag Archives: particle physics

Electromagnetism Is the Weirdest Force

For a long time, physicists only knew about two fundamental forces: electromagnetism, and gravity. Physics students follow the same path, studying Newtonian gravity, then E&M, and only later learning about the other fundamental forces. If you’ve just recently heard about the weak nuclear force and the strong nuclear force, it can be tempting to think of them as just slight tweaks on electromagnetism. But while that can be a helpful way to start, in a way it’s precisely backwards. Electromagnetism is simpler than the other forces, that’s true. But because of that simplicity, it’s actually pretty weird as a force.

The weirdness of electromagnetism boils down to one key reason: the electromagnetic field has no charge.

Maybe that sounds weird to you: if you’ve done anything with electromagnetism, you’ve certainly seen charges. But while you’ve calculated the field produced by a charge, the field itself has no charge. You can specify the positions of some electrons and not have to worry that the electric field will introduce new charges you didn’t plan. Mathematically, this means your equations are linear in the field, and thus not all that hard to solve.

The other forces are different. The strong nuclear force has three types of charge, dubbed red, green, and blue. Not just quarks, but the field itself has charges under this system, making the equations that describe it non-linear.

A depiction of a singlet state

Those properties mean that you can’t just think of the strong force as a push or pull between charges, like you could with electromagnetism. The strong force doesn’t just move quarks around, it can change their color, exchanging charge between the quark and the field. That’s one reason why when we’re more careful we refer to it as not the strong force, but the strong interaction.

The weak force also makes more sense when thought of as an interaction. It can change even more properties of particles, turning different flavors of quarks and leptons into each other, resulting in among other phenomena nuclear beta decay. It would be even more like the strong force, but the Higgs field screws that up, stirring together two more fundamental forces and spitting out the weak force and electromagnetism. The result ties them together in weird ways: for example, it means that the weak field can actually have an electric charge.

Interactions like the strong and weak forces are much more “normal” for particle physicists: if you ask us to picture a random fundamental force, chances are it will look like them. It won’t typically look like electromagnetism, the weird “degenerate” case with a field that doesn’t even have a charge. So despite how familiar electromagnetism may be to you, don’t take it as your model of what a fundamental force should look like: of all the forces, it’s the simplest and weirdest.

Doing Difficult Things Is Its Own Reward

Does antimatter fall up, or down?

Technically, we don’t know yet. The ALPHA-g experiment would have been the first to check this, making anti-hydrogen by trapping anti-protons and positrons in a long tube and seeing which way it falls. While they got most of their setup working, the LHC complex shut down before they could finish. It starts up again next month, so we should have our answer soon.

That said, for most theorists’ purposes, we absolutely do know: antimatter falls down. Antimatter is one of the cleanest examples of a prediction from pure theory that was confirmed by experiment. When Paul Dirac first tried to write down an equation that described electrons, he found the math forced him to add another particle with the opposite charge. With no such particle in sight, he speculated it could be the proton (this doesn’t work, they need the same mass), before Carl D. Anderson discovered the positron in 1932.

The same math that forced Dirac to add antimatter also tells us which way it falls. There’s a bit more involved, in the form of general relativity, but the recipe is pretty simple: we know how to take an equation like Dirac’s and add gravity to it, and we have enough practice doing it in different situations that we’re pretty sure it’s the right way to go. Pretty sure doesn’t mean 100% sure: talk to the right theorists, and you’ll probably find a proposal or two in which antimatter falls up instead of down. But they tend to be pretty weird proposals, from pretty weird theorists.

Ok, but if those theorists are that “weird”, that outside the mainstream, why does an experiment like ALPHA-g exist? Why does it happen at CERN, one of the flagship facilities for all of mainstream particle physics?

This gets at a misconception I occasionally hear from critics of the physics mainstream. They worry about groupthink among mainstream theorists, the physics community dismissing good ideas just because they’re not trendy (you may think I did that just now, for antigravity antimatter!) They expect this to result in a self-fulfilling prophecy where nobody tests ideas outside the mainstream, so they find no evidence for them, so they keep dismissing them.

The mistake of these critics is in assuming that what gets tested has anything to do with what theorists think is reasonable.

Theorists talk to experimentalists, sure. We motivate them, give them ideas and justification. But ultimately, people do experiments because they can do experiments. I watched a talk about the ALPHA experiment recently, and one thing that struck me was how so many different techniques play into it. They make antiprotons using a proton beam from the accelerator, slow them down with magnetic fields, and cool them with lasers. They trap their antihydrogen in an extremely precise vacuum, and confirm it’s there with particle detectors. The whole setup is a blend of cutting-edge accelerator physics and cutting-edge tricks for manipulating atoms. At its heart, ALPHA-g feels like its primary goal is to stress-test all of those tricks: to push the state of the art in a dozen experimental techniques in order to accomplish something remarkable.

And so even if the mainstream theorists don’t care, ALPHA will keep going. It will keep getting funding, it will keep getting visited by celebrities and inspiring pop fiction. Because enough people recognize that doing something difficult can be its own reward.

In my experience, this motivation applies to theorists too. Plenty of us will dismiss this or that proposal as unlikely or impossible. But give us a concrete calculation, something that lets us use one of our flashy theoretical techniques, and the tune changes. If we’re getting the chance to develop our tools, and get a paper out of it in the process, then sure, we’ll check your wacky claim. Why not?

I suspect critics of the mainstream would have a lot more success with this kind of pitch-based approach. If you can find a theorist who already has the right method, who’s developing and extending it and looking for interesting applications, then make your pitch: tell them how they can answer your question just by doing what they do best. They’ll think of it as a chance to disprove you, and you should let them, that’s the right attitude to take as a scientist anyway. It’ll work a lot better than accusing them of hogging the grant money.

Theoretical Uncertainty and Uncertain Theory

Yesterday, Fermilab’s Muon g-2 experiment announced a new measurement of the magnetic moment of the muon, a number which describes how muons interact with magnetic fields. For what might seem like a small technical detail, physicists have been very excited about this measurement because it’s a small technical detail that the Standard Model seems to get wrong, making it a potential hint of new undiscovered particles. Quanta magazine has a great piece on the announcement, which explains more than I will here, but the upshot is that there are two different calculations on the market that attempt to predict the magnetic moment of the muon. One of them, using older methods, disagrees with the experiment. The other, with a new approach, agrees. The question then becomes, which calculation was wrong? And why?

What does it mean for a prediction to match an experimental result? The simple, wrong, answer is that the numbers must be equal: if you predict “3”, the experiment has to measure “3”. The reason why this is wrong is that in practice, every experiment and every prediction has some uncertainty. If you’ve taken a college physics class, you’ve run into this kind of uncertainty in one of its simplest forms, measurement uncertainty. Measure with a ruler, and you can only confidently measure down to the smallest divisions on the ruler. If you measure 3cm, but your ruler has ticks only down to a millimeter, then what you’re measuring might be as large as 3.1cm or as small as 2.9 cm. You just don’t know.

This uncertainty doesn’t mean you throw up your hands and give up. Instead, you estimate the effect it can have. You report, not a measurement of 3cm, but of 3cm plus or minus 1mm. If the prediction was 2.9cm, then you’re fine: it falls within your measurement uncertainty.

Measurements aren’t the only thing that can be uncertain. Predictions have uncertainty too, theoretical uncertainty. Sometimes, this comes from uncertainty on a previous measurement: if you make a prediction based on that experiment that measured 3cm plus or minus 1mm, you have to take that plus or minus into account and estimate its effect (we call this propagation of errors). Sometimes, the uncertainty comes instead from an approximation you’re making. In particle physics, we sometimes approximate interactions between different particles with diagrams, beginning with the simplest diagrams and adding on more complicated ones as we go. To estimate the uncertainty there, we estimate the size of the diagrams we left out, the more complicated ones we haven’t calculated yet. Other times, that approximation doesn’t work, and we need to use a different approximation, treating space and time as a finite grid where we can do computer simulations. In that case, you can estimate your uncertainty based on how small you made your grid. The new approach to predicting the muon magnetic moment uses that kind of approximation.

There’s a common thread in all of these uncertainty estimates: you don’t expect to be too far off on average. Your measurements won’t be perfect, but they won’t all be screwed up in the same way either: chances are, they will randomly be a little below or a little above the truth. Your calculations are similar: whether you’re ignoring complicated particle physics diagrams or the spacing in a simulated grid, you can treat the difference as something small and random. That randomness means you can use statistics to talk about your errors: you have statistical uncertainty. When you have statistical uncertainty, you can estimate, not just how far off you might get, but how likely it is you ended up that far off. In particle physics, we have very strict standards for this kind of thing: to call something new a discovery, we demand that it is so unlikely that it would only show up randomly under the old theory roughly one in a million times. The muon magnetic moment isn’t quite up to our standards for a discovery yet, but the new measurement brought it closer.

The two dueling predictions for the muon’s magnetic moment both estimate some amount of statistical uncertainty. It’s possible that the two calculations just disagree due to chance, and that better measurements or a tighter simulation grid would make them agree. Given their estimates, though, that’s unlikely. That takes us from the realm of theoretical uncertainty, and into uncertainty about the theoretical. The two calculations use very different approaches. The new calculation tries to compute things from first principles, using the Standard Model directly. The risk is that such a calculation needs to make assumptions, ignoring some effects that are too difficult to calculate, and one of those assumptions may be wrong. The older calculation is based more on experimental results, using different experiments to estimate effects that are hard to calculate but that should be similar between different situations. The risk is that the situations may be less similar than expected, their assumptions breaking down in a way that the bottom-up calculation could catch.

None of these risks are easy to estimate. They’re “unknown unknowns”, or rather, “uncertain uncertainties”. And until some of them are resolved, it won’t be clear whether Fermilab’s new measurement is a sign of undiscovered particles, or just a (challenging!) confirmation of the Standard Model.

Redefining Fields for Fun and Profit

When we study subatomic particles, particle physicists use a theory called Quantum Field Theory. But what is a quantum field?

Some people will describe a field in vague terms, and say it’s like a fluid that fills all of space, or a vibrating rubber sheet. These are all metaphors, and while they can be helpful, they can also be confusing. So let me avoid metaphors, and say something that may be just as confusing: a field is the answer to a question.

Suppose you’re interested in a particle, like an electron. There is an electron field that tells you, at each point, your chance of detecting one of those particles spinning in a particular way. Suppose you’re trying to measure a force, say electricity or magnetism. There is an electromagnetic field that tells you, at each point, what force you will measure.

Sometimes the question you’re asking has a very simple answer: just a single number, for each point and each time. An example of a question like that is the temperature: pick a city, pick a date, and the temperature there and then is just a number. In particle physics, the Higgs field answers a question like that: at each point, and each time, how “Higgs-y” is it there and then? You might have heard that the Higgs field gives other particles their mass: what this means is that the more “Higgs-y” it is somewhere, the higher these particles’ mass will be. The Higgs field is almost constant, because it’s very difficult to get it to change. That’s in some sense what the Large Hadron Collider did when they discovered the Higgs boson: pushed hard enough to cause a tiny, short-lived ripple in the Higgs field, a small area that was briefly more “Higgs-y” than average.

We like to think of some fields as fundamental, and others as composite. A proton is composite: it’s made up of quarks and gluons. Quarks and gluons, as far as we know, are fundamental: they’re not made up of anything else. More generally, since we’re thinking about fields as answers to questions, we can just as well ask more complicated, “composite” questions. For example, instead of “what is the temperature?”, we can ask “what is the temperature squared?” or “what is the temperature times the Higgs-y-ness?”.

But this raises a troubling point. When we single out a specific field, like the Higgs field, why are we sure that that field is the fundamental one? Why didn’t we start with “Higgs squared” instead? Or “Higgs plus Higgs squared”? Or something even weirder?

The inventor of the Higgs-squared field, Peter Higgs-squared

That kind of swap, from Higgs to Higgs squared, is called a field redefinition. In the math of quantum field theory, it’s something you’re perfectly allowed to do. Sometimes, it’s even a good idea. Other times, it can make your life quite complicated.

The reason why is that some fields are much simpler than others. Some are what we call free fields. Free fields don’t interact with anything else. They just move, rippling along in easy-to-calculate waves.

Redefine a free field, swapping it for some more complicated function, and you can easily screw up, and make it into an interacting field. An interacting field might interact with another field, like how electromagnetic fields move (and are moved by) electrons. It might also just interact with itself, a kind of feedback effect that makes any calculation we’d like to do much more difficult.

If we persevere with this perverse choice, and do the calculation anyway, we find a surprise. The final results we calculate, the real measurements people can do, are the same in both theories. The field redefinition changed how the theory appeared, quite dramatically…but it didn’t change the physics.

You might think the moral of the story is that you must always choose the right fundamental field. You might want to, but you can’t: not every field is secretly free. Some will be interacting fields, whatever you do. In that case, you can make one choice or another to simplify your life…but you can also just refuse to make a choice.

That’s something quite a few physicists do. Instead of looking at a theory and calling some fields fundamental and others composite, they treat every one of these fields, every different question they could ask, on the same footing. They then ask, for these fields, what one can measure about them. They can ask which fields travel at the speed of light, and which ones go slower, or which fields interact with which other fields, and how much. Field redefinitions will shuffle the fields around, but the patterns in the measurements will remain. So those, and not the fields, can be used to specify the theory. Instead of describing the world in terms of a few fundamental fields, they think about the world as a kind of field soup, characterized by how it shifts when you stir it with a spoon.

It’s not a perspective everyone takes. If you overhear physicists, sometimes they will talk about a theory with only a few fields, sometimes they will talk about many, and you might be hard-pressed to tell what they’re talking about. But if you keep in mind these two perspectives: either a few fundamental fields, or a “field soup”, you’ll understand them a little better.

Reality as an Algebra of Observables

Listen to a physicist talk about quantum mechanics, and you’ll hear the word “observable”. Observables are, intuitively enough, things that can be observed. They’re properties that, in principle, one could measure in an experiment, like the position of a particle or its momentum. They’re the kinds of things linked by uncertainty principles, where the better you know one, the worse you know the other.

Some physicists get frustrated by this focus on measurements alone. They think we ought to treat quantum mechanics, not like a black box that produces results, but as information about some underlying reality. Instead of just observables, they want us to look for “beables“: not just things that can be observed, but things that something can be. From their perspective, the way other physicists focus on observables feels like giving up, like those physicists are abandoning their sacred duty to understand the world. Others, like the Quantum Bayesians or QBists, disagree, arguing that quantum mechanics really is, and ought to be, a theory of how individuals get evidence about the world.

I’m not really going to weigh in on that debate, I still don’t feel like I know enough to even write a decent summary. But I do think that one of the instincts on the “beables” side is wrong. If we focus on observables in quantum mechanics, I don’t think we’re doing anything all that unusual. Even in other parts of physics, we can think about reality purely in terms of observations. Doing so isn’t a dereliction of duty: often, it’s the most useful way to understand the world.

When we try to comprehend the world, we always start alone. From our time in the womb, we have only our senses and emotions to go on. With a combination of instinct and inference we start assembling a consistent picture of reality. Philosophers called phenomenologists (not to be confused with the physicists called phenomenologists) study this process in detail, trying to characterize how different things present themselves to an individual consciousness.

For my point here, these details don’t matter so much. That’s because in practice, we aren’t alone in understanding the world. Based on what others say about the world, we conclude they perceive much like we do, and we learn by their observations just as we learn by our own. We can make things abstract: instead of the specifics of how individuals perceive, we think about groups of scientists making measurements. At the end of this train lie observables: things that we as a community could in principle learn, and share with each other, ignoring the details of how exactly we measure them.

If each of these observables was unrelated, just scattered points of data, then we couldn’t learn much. Luckily, they are related. In quantum mechanics, some of these relationships are the uncertainty principles I mentioned earlier. Others relate measurements at different places, or at different times. The fancy way to refer to all these relationships is as an algebra: loosely, it’s something you can “do algebra with”, like you did with numbers and variables in high school. When physicists and mathematicians want to do quantum mechanics or quantum field theory seriously, they often talk about an “algebra of observables”, a formal way of thinking about all of these relationships.

Focusing on those two things, observables and how they are related, isn’t just useful in the quantum world. It’s an important way to think in other areas of physics too. If you’ve heard people talk about relativity, the focus on measurement screams out, in thought experiments full of abstract clocks and abstract yardsticks. Without this discipline, you find paradoxes, only to resolve them when you carefully track what each person can observe. More recently, physicists in my field have had success computing the chance particles collide by focusing on the end result, the actual measurements people can make, ignoring what might happen in between to cause that measurement. We can then break measurements down into simpler measurements, or use the structure of simpler measurements to guess more complicated ones. While we typically have done this in quantum theories, that’s not really a limitation: the same techniques make sense for problems in classical physics, like computing the gravitational waves emitted by colliding black holes.

With this in mind, we really can think of reality in those terms: not as a set of beable objects, but as a set of observable facts, linked together in an algebra of observables. Paring things down to what we can know in this way is more honest, and it’s also more powerful and useful. Far from a betrayal of physics, it’s the best advantage we physicists have in our quest to understand the world.

Inevitably Arbitrary

Physics is universal…or at least, it aspires to be. Drop an apple anywhere on Earth, at any point in history, and it will accelerate at roughly the same rate. When we call something a law of physics, we expect it to hold everywhere in the universe. It shouldn’t depend on anything arbitrary.

Sometimes, though, something arbitrary manages to sneak in. Even if the laws of physics are universal, the questions we want to answer are not: they depend on our situation, on what we want to know.

The simplest example is when we have to use units. The mass of an electron is the same here as it is on Alpha Centauri, the same now as it was when the first galaxies formed. But what is that mass? We could write it as 9.1093837015×10−31 kilograms, if we wanted to, but kilograms aren’t exactly universal. Their modern definition is at least based on physical constants, but with some pretty arbitrary numbers. It defines the Planck constant as 6.62607015×10−34 Joule-seconds. Chase that number back, and you’ll find references to the Earth’s circumference and the time it takes to turn round on its axis. The mass of the electron may be the same on Alpha Centauri, but they’d never write it as 9.1093837015×10−31 kilograms.

Units aren’t the only time physics includes something arbitrary. Sometimes, like with units, we make a choice of how we measure or calculate something. We choose coordinates for a plot, a reference frame for relativity, a zero for potential energy, a gauge for gauge theories and regularization and subtraction schemes for quantum field theory. Sometimes, the choice we make is instead what we measure. To do thermodynamics we must choose what we mean by a state, to call two substances water even if their atoms are in different places. Some argue a perspective like this is the best way to think about quantum mechanics. In a different context, I’d argue it’s why we say coupling constants vary with energy.

So what do we do, when something arbitrary sneaks in? We have a few options. I’ll illustrate each with the mass of the electron:

  • Make an arbitrary choice, and stick with it: There’s nothing wrong with measuring an electron in kilograms, if you’re consistent about it. You could even use ounces. You just have to make sure that everyone else you compare with is using the same units, or be careful to convert.
  • Make a “natural” choice: Why not set the speed of light and Planck’s constant to one? They come up a lot in particle physics, and all they do is convert between length and time, or time and energy. That way you can use the same units for all of them, and use something convenient, like electron-Volts. They even have electron in the name! Of course they also have “Volt” in the name, and Volts are as arbitrary as any other metric unit. A “natural” choice might make your life easier, but you should always remember it’s still arbitrary.
  • Make an efficient choice: This isn’t always the same as the “natural” choice. The units you choose have an effect on how difficult your calculation is. Sometimes, the best choice for the mass of an electron is “one electron-mass”, because it lets you calculate something else more easily. This is easier to illustrate with other choices: for example, if you have to pick a reference frame for a collision, picking one in which one of the objects is at rest, or where they move symmetrically, might make your job easier.
  • Stick to questions that aren’t arbitrary: No matter what units we use, the electron’s mass will be arbitrary. Its ratios to other masses won’t be though. No matter where we measure, dimensionless ratios like the mass of the muon divided by the mass of the electron, or the mass of the electron divided by the value of the Higgs field, will be the same. If we can make sure to ask only this kind of question, we can avoid arbitrariness. Note that we can think of even a mass in “kilograms” as this kind of question: what’s the ratio of the mass of the electron to “this arbitrary thing we’ve chosen”? In practice though, you want to compare things in the same theory, without the historical baggage of metric.

This problem may seem silly, and if we just cared about units it might be. But at the cutting-edge of physics there are still areas where the arbitrary shows up. Our choices of how to handle it, or how to avoid it, can be crucial to further progress.

Discovering the Rules, Discovering the Consequences

Two big physics experiments consistently make the news. The Large Hadron Collider, or LHC, and the Laser Interferometer Gravitational-Wave Observatory, or LIGO. One collides protons, the other watches colliding black holes and neutron stars. But while this may make the experiments sound quite similar, their goals couldn’t be more different.

The goal of the LHC, put simply, is to discover the rules that govern reality. Should the LHC find a new fundamental particle, it will tell us something we didn’t know about the laws of physics, a newly discovered fact that holds true everywhere in the universe. So far, it has discovered the Higgs boson, and while that particular rule was expected we didn’t know the details until they were tested. Now physicists hope to find something more, a deviation from the Standard Model that hints at a new law of nature altogether.

LIGO, in contrast, isn’t really for discovering the rules of the universe. Instead, it discovers the consequences of those rules, on a grand scale. Even if we knew the laws of physics completely, we can’t calculate everything from those first principles. We can simulate some things, and approximate others, but we need experiments to tweak those simulations and test those approximations. LIGO fills that role. We can try to estimate how common black holes are, and how large, but LIGO’s results were still a surprise, suggesting medium-sized black holes are more common than researchers expected. In the future, gravitational wave telescopes might discover more of these kinds of consequences, from the shape of neutron stars to the aftermath of cosmic inflation.

There are a few exceptions for both experiments. The LHC can also discover the consequences of the laws of physics, especially when those consequences are very difficult to calculate, finding complicated arrangements of known particles, like pentaquarks and glueballs. And it’s possible, though perhaps not likely, that LIGO could discover something about quantum gravity. Quantum gravity’s effects are expected to be so small that these experiments won’t see them, but some have speculated that an unusually large effect could be detected by a gravitational wave telescope.

As scientists, we want to know everything we can about everything we find. We want to know the basic laws that govern the universe, but we also want to know the consequences of those laws, the story of how our particular universe came to be the way it is today. And luckily, we have experiments for both.

Halloween Post: Superstimuli for Physicists

For Halloween, this blog has a tradition of covering “the spooky side” of physics. This year, I’m bringing in a concept from biology to ask a spooky physics “what if?”

In the 1950’s, biologists discovered that birds were susceptible to a worryingly effective trick. By giving them artificial eggs larger and brighter than their actual babies, they found that the birds focused on the new eggs to the exclusion of their own. They couldn’t help trying to hatch the fake eggs, even if they were so large that they would fall off when they tried to sit on them. The effect, since observed in other species, became known as a supernormal stimulus, or superstimulus.

Can this happen to humans? Some think so. They worry about junk food we crave more than actual nutrients, or social media that eclipses our real relationships. Naturally, this idea inspires horror writers, who write about haunting music you can’t stop listening to, or holes in a wall that “fit” so well you’re compelled to climb in.

(And yes, it shows up in porn as well.)

But this is a physics blog, not a biology blog. What kind of superstimulus would work on physicists?

Abstruse goose knows what’s up

Well for one, this sounds a lot like some criticisms of string theory. Instead of a theory that just unifies some forces, why not unify all the forces? Instead of just learning some advanced mathematics, why not learn more, and more? And if you can’t be falsified by any experiment, well, all that would do is spoil the fun, right?

But it’s not just string theory you could apply this logic to. Astrophysicists study not just one world but many. Cosmologists study the birth and death of the entire universe. Particle physicists study the fundamental pieces that make up the fundamental pieces. We all partake in the euphoria of problem-solving, a perpetual rush where each solution leads to yet another question.

Do I actually think that string theory is a superstimulus, that astrophysics or particle physics is a superstimulus? In a word, no. Much as it might look that way from the news coverage, most physicists don’t work on these big, flashy questions. Far from being lured in by irresistible super-scale problems, most physicists work with tabletop experiments and useful materials. For those of us who do look up at the sky or down at the roots of the world, we do it not just because it’s compelling but because it has a good track record: physics wouldn’t exist if Newton hadn’t cared about the orbits of the planets. We study extremes because they advance our understanding of everything else, because they give us steam engines and transistors and change everyone’s lives for the better.

Then again, if I had fallen victim to a superstimulus, I’d say that anyway, right?

*cue spooky music*

Which Things Exist in Quantum Field Theory

If you ever think metaphysics is easy, learn a little quantum field theory.

Someone asked me recently about virtual particles. When talking to the public, physicists sometimes explain the behavior of quantum fields with what they call “virtual particles”. They’ll describe forces coming from virtual particles going back and forth, or a bubbling sea of virtual particles and anti-particles popping out of empty space.

The thing is, this is a metaphor. What’s more, it’s a metaphor for an approximation. As physicists, when we draw diagrams with more and more virtual particles, we’re trying to use something we know how to calculate with (particles) to understand something tougher to handle (interacting quantum fields). Virtual particles, at least as you’re probably picturing them, don’t really exist.

I don’t really blame physicists for talking like that, though. Virtual particles are a metaphor, sure, a way to talk about a particular calculation. But so is basically anything we can say about quantum field theory. In quantum field theory, it’s pretty tough to say which things “really exist”.

I’ll start with an example, neutrino oscillation.

You might have heard that there are three types of neutrinos, corresponding to the three “generations” of the Standard Model: electron-neutrinos, muon-neutrinos, and tau-neutrinos. Each is produced in particular kinds of reactions: electron-neutrinos, for example, get produced by beta-plus decay, when a proton turns into a neutron, an anti-electron, and an electron-neutrino.

Leave these neutrinos alone though, and something strange happens. Detect what you expect to be an electron-neutrino, and it might have changed into a muon-neutrino or a tau-neutrino. The neutrino oscillated.

Why does this happen?

One way to explain it is to say that electron-neutrinos, muon-neutrinos, and tau-neutrinos don’t “really exist”. Instead, what really exists are neutrinos with specific masses. These don’t have catchy names, so let’s just call them neutrino-one, neutrino-two, and neutrino-three. What we think of as electron-neutrinos, muon-neutrinos, and tau-neutrinos are each some mix (a quantum superposition) of these “really existing” neutrinos, specifically the mixes that interact nicely with electrons, muons, and tau leptons respectively. When you let them travel, it’s these neutrinos that do the traveling, and due to quantum effects that I’m not explaining here you end up with a different mix than you started with.

This probably seems like a perfectly reasonable explanation. But it shouldn’t. Because if you take one of these mass-neutrinos, and interact with an electron, or a muon, or a tau, then suddenly it behaves like a mix of the old electron-neutrinos, muon-neutrinos, and tau-neutrinos.

That’s because both explanations are trying to chop the world up in a way that can’t be done consistently. There aren’t electron-neutrinos, muon-neutrinos, and tau-neutrinos, and there aren’t neutrino-ones, neutrino-twos, and neutrino-threes. There’s a mathematical object (a vector space) that can look like either.

Whether you’re comfortable with that depends on whether you think of mathematical objects as “things that exist”. If you aren’t, you’re going to have trouble thinking about the quantum world. Maybe you want to take a step back, and say that at least “fields” should exist. But that still won’t do: we can redefine fields, add them together or even use more complicated functions, and still get the same physics. The kinds of things that exist can’t be like this. Instead you end up invoking another kind of mathematical object, equivalence classes.

If you want to be totally rigorous, you have to go a step further. You end up thinking of physics in a very bare-bones way, as the set of all observations you could perform. Instead of describing the world in terms of “these things” or “those things”, the world is a black box, and all you’re doing is finding patterns in that black box.

Is there a way around this? Maybe. But it requires thought, and serious philosophy. It’s not intuitive, it’s not easy, and it doesn’t lend itself well to 3d animations in documentaries. So in practice, whenever anyone tells you about something in physics, you can be pretty sure it’s a metaphor. Nice describable, non-mathematical things typically don’t exist.

Zero-Point Energy, Zero-Point Diagrams

Listen to a certain flavor of crackpot, or a certain kind of science fiction, and you’ll hear about zero-point energy. Limitless free energy drawn from quantum space-time itself, zero-point energy probably sounds like bullshit. Often it is. But lurking behind the pseudoscience and the fiction is a real physics concept, albeit one that doesn’t really work like those people imagine.

In quantum mechanics, the zero-point energy is the lowest energy a particular system can have. That number doesn’t actually have to be zero, even for empty space. People sometimes describe this in terms of so-called virtual particles, popping up from nothing in particle-antiparticle pairs only to annihilate each other again, contributing energy in the absence of any “real particles”. There’s a real force, the Casimir effect, that gets attributed to this, a force that pulls two metal plates together even with no charge or extra electromagnetic field. The same bubbling of pairs of virtual particles also gets used to explain the Hawking radiation of black holes.

I’d like to try explaining all of these things in a different way, one that might clear up some common misconceptions. To start, let’s talk about, not zero-point energy, but zero-point diagrams.

Feynman diagrams are a tool we use to study particle physics. We start with a question: if some specific particles come together and interact, what’s the chance that some (perhaps different) particles emerge? We start by drawing lines representing the particles going in and out, then connect them in every way allowed by our theory. Finally we translate the diagrams to numbers, to get an estimate for the probability. In particle physics slang, the number of “points” is the total number of particles: particles in, plus particles out. For example, let’s say we want to know the chance that two electrons go in and two electrons come out. That gives us a “four-point” diagram: two in, plus two out. A zero-point diagram, then, means zero particles in, zero particles out.

A four-point diagram and a zero-point diagram

(Note that this isn’t why zero-point energy is called zero-point energy, as far as I can tell. Zero-point energy is an older term from before Feynman diagrams.)

Remember, each Feynman diagram answers a specific question, about the chance of particles behaving in a certain way. You might wonder, what question does a zero-point diagram answer? The chance that nothing goes to nothing? Why would you want to know that?

To answer, I’d like to bring up some friends of mine, who do something that might sound equally strange: they calculate one-point diagrams, one particle goes to none. This isn’t strange for them because they study theories with defects.

For some reason, they didn’t like my suggestion to use this stamp on their papers

Normally in particle physics, we think about our particles in an empty, featureless space. We don’t have to, though. One thing we can do is introduce features in this space, like walls and mirrors, and try to see what effect they have. We call these features “defects”.

If there’s a defect like that, then it makes sense to calculate a one-point diagram, because your one particle can interact with something that’s not a particle: it can interact with the defect.

A one-point diagram with a wall, or “defect”

You might see where this is going: let’s say you think there’s a force between two walls, that comes from quantum mechanics, and you want to calculate it. You could imagine it involves a diagram like this:

A “zero-point diagram” between two walls

Roughly speaking, this is the kind of thing you could use to calculate the Casimir effect, that mysterious quantum force between metal plates. And indeed, it involves a zero-point diagram.

Here’s the thing, though: metal plates aren’t just “defects”. They’re real physical objects, made of real physical particles. So while you can think of the Casimir effect with a “zero-point diagram” like that, you can also think of it with a normal diagram, more like the four-point diagram I showed you earlier: one that computes, not a force between defects, but a force between the actual electrons and protons that make up the two plates.

A lot of the time when physicists talk about pairs of virtual particles popping up out of the vacuum, they have in mind a picture like this. And often, you can do the same trick, and think about it instead as interactions between physical particles. There’s a story of roughly this kind for Hawking radiation: you can think of a black hole event horizon as “cutting in half” a zero-point diagram, and see pairs of particles going out from the black hole…but you can also do a calculation that looks more like particles interacting with a gravitational field.

This also might help you understand why, contra the crackpots and science fiction writers, zero-point energy isn’t a source of unlimited free energy. Yes, a force like the Casimir effect comes “from the vacuum” in some sense. But really, it’s a force between two particles. And just like the gravitational force between two particles, this doesn’t give you unlimited free power. You have to do the work to move the particles back over and over again, using the same amount of power you gained from the force to begin with. And unlike the forces you’re used to, these are typically very small effects, as usual for something that depends on quantum mechanics. So it’s even less useful than more everyday forces for this.

Why do so many crackpots and authors expect zero-point energy to be a massive source of power? In part, this is due to mistakes physicists made early on.

Sometimes, when calculating a zero-point diagram (or any other diagram), we don’t get a sensible number. Instead, we get infinity. Physicists used to be baffled by this. Later, they understood the situation a bit better, and realized that those infinities were probably just due to our ignorance. We don’t know the ultimate high-energy theory, so it’s possible something happens at high energies to cancel those pesky infinities. Without knowing exactly what happened, physicists would estimate by using a “cutoff” energy where they expected things to change.

That kind of calculation led to an estimate you might have heard of, that the zero-point energy inside single light bulb could boil all the world’s oceans. That estimate gives a pretty impressive mental image…but it’s also wrong.

This kind of estimate led to “the worst theoretical prediction in the history of physics”, that the cosmological constant, the force that speeds up the expansion of the universe, is 120 orders of magnitude higher than its actual value (if it isn’t just zero). If there really were energy enough inside each light bulb to boil the world’s oceans, the expansion of the universe would be quite different than what we observe.

At this point, it’s pretty clear there is something wrong with these kinds of “cutoff” estimates. The only unclear part is whether that’s due to something subtle or something obvious. But either way, this particular estimate is just wrong, and you shouldn’t take it seriously. Zero-point energy exists, but it isn’t the magical untapped free energy you hear about in stories. It’s tiny quantum corrections to the forces between particles.