Tag Archives: DoingScience

What Do Theorists Do at Work?

Picture a scientist at work. You’re probably picturing an experiment, test tubes and beakers bubbling away. But not all scientists do experiments. Theoretical physicists work on the mathematical side of the field, making predictions and trying to understand how to make them better. So what does it look like when a theoretical physicist is working?

A theoretical physicist, at work in the equation mines

The first thing you might imagine is that we just sit and think. While that happens sometimes, we don’t actually do that very often. It’s better, and easier, to think by doing something.

Sometimes, this means working with pen and paper. This should be at least a little familiar to anyone who has done math homework. We’ll do short calculations and draw quick diagrams to test ideas, and do a more detailed, organized, “show your work” calculation if we’re trying to figure out something more complicated. Sometimes very short calculations are done on a blackboard instead, it can help us visualize what we’re doing.

Sometimes, we use computers instead. There are computer algebra packages, like Mathematica, Maple, or Sage, that let us do roughly what we would do on pen and paper, but with the speed and efficiency of a computer. Others program in more normal programming languages: C++, Python, even Fortran, making programs that can calculate whatever they are interested in.

Sometimes we read. With most of our field’s papers available for free on arXiv.org, we spend time reading up on what our colleagues have done, trying to understand their work and use it to improve ours.

Sometimes we talk. A paper can only communicate so much, and sometimes it’s better to just walk down the hall and ask a question. Conversations are also a good way to quickly rule out bad ideas, and narrow down to the promising ones. Some people find it easier to think clearly about something if they talk to a colleague about it, even (sometimes especially) if the colleague isn’t understanding much.

And sometimes, of course, we do all the other stuff. We write up our papers, making the diagrams nice and the formulas clean. We teach students. We go to meetings. We write grant applications.

It’s been said that a theoretical physicist can work anywhere. That’s kind of true. Some places are more comfortable, and everyone has different preferences: a busy office, a quiet room, a cafe. But with pen and paper, a computer, and people to talk to, we can do quite a lot.

The Road to Reality

I build tools, mathematical tools to be specific, and I want those tools to be useful. I want them to be used to study the real world. But when I build those tools, most of the time, I don’t test them on the real world. I use toy models, simpler cases, theories that don’t describe reality and weren’t intended to.

I do this, in part, because it lets me stay one step ahead. I can do more with those toy models, answer more complicated questions with greater precision, than I can for the real world. I can do more ambitious calculations, and still get an answer. And by doing those calculations, I can start to anticipate problems that will crop up for the real world too. Even if we can’t do a calculation yet for the real world, if it requires too much precision or too many particles, we can still study it in a toy model. Then when we’re ready to do those calculations in the real world, we know better what to expect. The toy model will have shown us some of the key challenges, and how to tackle them.

There’s a risk, working with simpler toy models. The risk is that their simplicity misleads you. When you solve a problem in a toy model, could you solve it only because the toy model is easy? Or would a similar solution work in the real world? What features of the toy model did you need, and which are extra?

The only way around this risk is to be careful. You have to keep track of how your toy model differs from the real world. You must keep in mind difficulties that come up on the road to reality: the twists and turns and potholes that real-world theories will give you. You can’t plan around all of them, that’s why you’re working with a toy model in the first place. But for a few key, important ones, you should keep your eye on the horizon. You should keep in mind that, eventually, the simplifications of the toy model will go away. And you should have ideas, perhaps not full plans but at least ideas, for how to handle some of those difficulties. If you put the work in, you stand a good chance of building something that’s useful, not just for toy models, but for explaining the real world.

Science, the Gift That Keeps on Giving

Merry Newtonmas, everyone!

You’ll find many scientists working over the holidays this year. Partly that’s because of the competitiveness of academia, with many scientists competing for a few positions, where even those who are “safe” have students who aren’t. But to put a more positive spin on it, it’s also because science is a gift that keeps on giving.

Scientists are driven by curiosity. We want to know more about the world, to find out everything we can. And the great thing about science is that, every time we answer a question, we have another one to ask.

Discover a new particle? You need to measure its properties, understand how it fits into your models and look for alternative explanations. Do a calculation, and in addition to checking it, you can see if the same method works on other cases, or if you can use the result to derive something else.

Down the line, the science that survives leads to further gifts. Good science spreads, with new fields emerging to investigate new phenomena. Eventually, science leads to technology, and our lives are enriched by the gifts of new knowledge.

Science is the gift that keeps on giving. It takes new forms, builds new ideas, it fills our lives and nourishes our minds. It’s a neverending puzzle.

So this Newtonmas, I hope you receive the greatest gift of all: the gift of science.

Calculating the Hard Way, for Science!

I had a new paper out last week, with Jacob Bourjaily and Matthias Volk. We’re calculating the probability that particles bounce off each other in our favorite toy model, N=4 super Yang-Mills. And this time, we’re doing it the hard way.

The “easy way” we didn’t take is one I have a lot of experience with. Almost as long as I’ve been writing this blog, I’ve been calculating these particle probabilities by “guesswork”: starting with a plausible answer, then honing it down until I can be confident it’s right. This might sound reckless, but it works remarkably well, letting us calculate things we could never have hoped for with other methods. The catch is that “guessing” is much easier when we know what we’re looking for: in particular, it works much better in toy models than in the real world.

Over the last few years, though, I’ve been using a much more “normal” method, one that so far has a better track record in the real world. This method, too, works better than you would expect, and we’ve managed some quite complicated calculations.

So we have an “easy way”, and a “hard way”. Which one is better? Is the hard way actually harder?

To test that, you need to do the same calculation both ways, and see which is easier. You want it to be a fair test: if “guessing” only works in the toy model, then you should do the “hard” version in the toy model as well. And you don’t want to give “guessing” any unfair advantages. In particular, the “guess” method works best when we know a lot about the result we’re looking for: what it’s made of, what symmetries it has. In order to do a fair test, we must use that knowledge to its fullest to improve the “hard way” as well.

We picked an example in the middle: not too easy, and not too hard, a calculation that was done a few years back “the easy way” but not yet done “the hard way”. We plugged in all the modern tricks we could, trying to use as much of what we knew as possible. We trained a grad student: Matthias Volk, who did the lion’s share of the calculation and learned a lot in the process. We worked through the calculation, and did it properly the hard way.

Which method won?

In the end, the hard way was indeed harder…but not by that much! Most of the calculation went quite smoothly, with only a few difficulties at the end. Just five years ago, when the calculation was done “the easy way”, I doubt anyone would have expected the hard way to be viable. But with modern tricks it wasn’t actually that hard.

This is encouraging. It tells us that the “hard way” has potential, that it’s almost good enough to compete at this kind of calculation. It tells us that the “easy way” is still quite powerful. And it reminds us that the more we know, and the more we apply our knowledge, the more we can do.

Life Cycle of an Academic Scientist

So you want to do science for a living. Some scientists work for companies, developing new products. Some work for governments. But if you want to do “pure science”, science just to learn about the world, then you’ll likely work at a university, as part of what we call academia.

The first step towards academia is graduate school. In the US, this means getting a PhD.

(Master’s degrees, at least in the US, have a different purpose. Most are “terminal Master’s”, designed to be your last degree. With a terminal Master’s, you can be a technician in a lab, but you won’t get farther down this path. In the US you don’t need a Master’s before you apply for a PhD program, and having one is usually a waste of time: PhD programs will make you re-take most of the same classes.)

Once you have a PhD, it’s time to get a job! Often, your first job after graduate school is a postdoc. Postdocs are short-term jobs, usually one to three years long. Some people are lucky enough to go to the next stage quickly, others have more postdoc jobs first. These jobs will take you all over the world, everywhere people with your specialty work. Sometimes these jobs involve teaching, but more often you just do scientific research.

In the US system, If everything goes well, eventually you get a tenure-track job. These jobs involve both teaching and research. You get to train PhD students, hire postdocs, and in general start acting like a proper professor. This stage lasts around seven years, while the university evaluates you. If they decide you’re not worth it then typically you’ll have to leave to apply for another job in another university. If they like you though, you get tenure.

Tenure is the first time as an academic scientist that you aren’t on a short-term contract. Your job is more permanent than most, you have extra protection from being fired that most people don’t. While you can’t just let everything slide, you have freedom to make more of your own decisions.

A tenured job can last until retirement, when you become an emeritus professor. Emeritus professors are retired but still do some of the work they did as professors. They’re paid out of their pension instead of a university salary, but they still sometimes teach or do research, and they usually still have an office. The university can hire someone new, and the cycle continues.

This isn’t the only path scientists take. Some work in a national lab instead. These don’t usually involve teaching duties, and the path to a permanent job is a bit different. Some get teaching jobs instead of research professorships. These teaching jobs are usually not permanent, instead universities are hiring more and more adjunct faculty who have to string together temporary contracts to make a precarious living.

I’ve mostly focused on the US system here. Europe is a bit different: Master’s degrees are a real part of the system, tenure-track doesn’t really exist, and adjunct faculty don’t always either. Some particular countries, like Germany, have their own quite complicated systems, other countries fall in between.

Rooting out the Answer

I have a new paper out today, with Jacob Bourjaily, Andrew McLeod, Matthias Wilhelm, Cristian Vergu and Matthias Volk.

There’s a story I’ve told before on this blog, about a kind of “alphabet” for particle physics predictions. When we try to make a prediction in particle physics, we need to do complicated integrals. Sometimes, these integrals simplify dramatically, in unexpected ways. It turns out we can understand these simplifications by writing the integrals in a sort of “alphabet”, breaking complicated mathematical “periods” into familiar logarithms. If we want to simplify an integral, we can use relations between logarithms like these:

\log(a b)=\log(a)+\log(b),\quad \log(a^n)=n\log(a)

to factor our “alphabet” into pieces as simple as possible.

The simpler the alphabet, the more progress you can make. And in the nice toy model theory we’re working with, the alphabets so far have been simple in one key way. Expressed in the right variables, they’re rational. For example, they contain no square roots.

Would that keep going? Would we keep finding rational alphabets? Or might the alphabets, instead, have square roots?

After some searching, we found a clean test case. There was a calculation we could do with just two Feynman diagrams. All we had to do was subtract one from the other. If they still had square roots in their alphabet, we’d have proven that the nice, rational alphabets eventually had to stop.

Easy-peasy

So we calculated these diagrams, doing the complicated integrals. And we found they did indeed have square roots in their alphabet, in fact many more than expected. They even had square roots of square roots!

You’d think that would be the end of the story. But square roots are trickier than you’d expect.

Remember that to simplify these integrals, we break them up into an alphabet, and factor the alphabet. What happens when we try to do that with an alphabet that has square roots?

Suppose we have letters in our alphabet with \sqrt{-5}. Suppose another letter is the number 9. You might want to factor it like this:

9=3\times 3

Simple, right? But what if instead you did this:

9=(2+ \sqrt{-5} )\times(2- \sqrt{-5} )

Once you allow \sqrt{-5} in the game, you can factor 9 in two different ways. The central assumption, that you can always just factor your alphabet, breaks down. In mathematical terms, you no longer have a unique factorization domain.

Instead, we had to get a lot more mathematically sophisticated, factoring into something called prime ideals. We got that working and started crunching through the square roots in our alphabet. Things simplified beautifully: we started with a result that was ten million terms long, and reduced it to just five thousand. And at the end of the day, after subtracting one integral from the other…

We found no square roots!

After all of our simplifications, all the letters we found were rational. Our nice test case turned out much, much simpler than we expected.

It’s been a long road on this calculation, with a lot of false starts. We were kind of hoping to be the first to find square root letters in these alphabets; instead it looks like another group will beat us to the punch. But we developed a lot of interesting tricks along the way, and we thought it would be good to publish our “null result”. As always in our field, sometimes surprising simplifications are just around the corner.

When to Trust the Contrarians

One of my colleagues at the NBI had an unusual experience: one of his papers took a full year to get through peer review. This happens often in math, where reviewers will diligently check proofs for errors, but it’s quite rare in physics: usually the path from writing to publication is much shorter. Then again, the delays shouldn’t have been too surprising for him, given what he was arguing.

My colleague Mohamed Rameez, along with Jacques Colin, Roya Mohayaee, and Subir Sarkar, wants to argue against one of the most famous astronomical discoveries of the last few decades: that the expansion of our universe is accelerating, and thus that an unknown “dark energy” fills the universe. They argue that one of the key pieces of evidence used to prove acceleration is mistaken: that a large region of the universe around us is in fact “flowing” in one direction, and that tricked astronomers into thinking its expansion was accelerating. You might remember a paper making a related argument back in 2016. I didn’t like the media reaction to that paper, and my post triggered a response by the authors, one of whom (Sarkar) is on this paper as well.

I’m not an astronomer or an astrophysicist. I’m not qualified to comment on their argument, and I won’t. I’d still like to know whether they’re right, though. And that means figuring out which experts to trust.

Pick anything we know in physics, and you’ll find at least one person who disagrees. I don’t mean a crackpot, though they exist too. I mean an actual expert who is convinced the rest of the field is wrong. A contrarian, if you will.

I used to be very unsympathetic to these people. I was convinced that the big results of a field are rarely wrong, because of how much is built off of them. I thought that even if a field was using dodgy methods or sloppy reasoning, the big results are used in so many different situations that if they were wrong they would have to be noticed. I’d argue that if you want to overturn one of these big claims you have to disprove not just the result itself, but every other success the field has ever made.

I still believe that, somewhat. But there are a lot of contrarians here at the Niels Bohr Institute. And I’ve started to appreciate what drives them.

The thing is, no scientific result is ever as clean as it ought to be. Everything we do is jury-rigged. We’re almost never experts in everything we’re trying to do, so we often don’t know the best method. Instead, we approximate and guess, we find rough shortcuts and don’t check if they make sense. This can take us far sometimes, sure…but it can also backfire spectacularly.

The contrarians I’ve known got their inspiration from one of those backfires. They saw a result, a respected mainstream result, and they found a glaring screw-up. Maybe it was an approximation that didn’t make any sense, or a statistical measure that was totally inappropriate. Whatever it was, it got them to dig deeper, and suddenly they saw screw-ups all over the place. When they pointed out these problems, at best the people they accused didn’t understand. At worst they got offended. Instead of cooperation, the contrarians are told they can’t possibly know what they’re talking about, and ignored. Eventually, they conclude the entire sub-field is broken.

Are they right?

Not always. They can’t be, for every claim you can find a contrarian, believing them all would be a contradiction.

But sometimes?

Often, they’re right about the screw-ups. They’re right that there’s a cleaner, more proper way to do that calculation, a statistical measure more suited to the problem. And often, doing things right raises subtleties, means that the big important result everyone believed looks a bit less impressive.

Still, that’s not the same as ruling out the result entirely. And despite all the screw-ups, the main result is still often correct. Often, it’s justified not by the original, screwed-up argument, but by newer evidence from a different direction. Often, the sub-field has grown to a point that the original screwed-up argument doesn’t really matter anymore.

Often, but again, not always.

I still don’t know whether to trust the contrarians. I still lean towards expecting fields to sort themselves out, to thinking that error alone can’t sustain long-term research. But I’m keeping a more open mind now. I’m waiting to see how far the contrarians go.

Knowing When to Hold/Fold ‘Em in Science

The things one learns from Wikipedia. For example, today I learned that the country song “The Gambler” was selected for preservation by the US Library of Congress as being “culturally, historically, or artistically significant.”

You’ve got to know when to hold ’em, know when to fold ’em,

Know when to walk away, know when to run.

Knowing when to “hold ’em” or “fold ’em” is important in life in general, but it’s particularly important in science.

And not just on poker night

As scientists, we’re often trying to do something no-one else has done before. That’s exciting, but it’s risky too: sometimes whatever we’re trying simply doesn’t work. In those situations, it’s important to recognize when we aren’t making progress, and change tactics. The trick is, we can’t give up too early either: science is genuinely hard, and sometimes when we feel stuck we’re actually close to the finish line. Knowing which is which, when to “hold” and when to “fold”, is an essential skill, and a hard one to learn.

Sometimes, we can figure this out mathematically. Computational complexity theory classifies calculations by how difficult they are, including how long they take. If you can estimate how much time you should take to do a calculation, you can decide whether you’ll finish it in a reasonable amount of time. If you just want a rough guess, you can do a simpler version of the calculation, and see how long that takes, then estimate how much longer the full one will. If you figure out you’re doomed, then it’s time to switch to a more efficient algorithm, or a different question entirely.

Sometimes, we don’t just have to consider time, but money as well. If you’re doing an experiment, you have to estimate how much the equipment will cost, and how much it will cost to run it. Experimenters get pretty good at estimating these things, but they still screw up sometimes and run over budget. Occasionally this is fine: LIGO didn’t detect anything in its first eight-year run, but they upgraded the machines and tried again, and won a Nobel prize. Other times it’s a disaster, and money keeps being funneled into a project that never works. Telling the difference is crucial, and it’s something we as a community are still not so good at.

Sometimes we just have to follow our instincts. This is dangerous, because we have a bias (the “sunk cost fallacy”) to stick with something if we’ve already spent a lot of time or money on it. To counteract that, it’s good to cultivate a bias in the opposite direction, which you might call “scientific impatience”. Getting frustrated with slow progress may not seem productive, but it keeps you motivated to search for a better way. Experienced scientists get used to how long certain types of project take. Too little progress, and they look for another option. This can fail, killing a project that was going to succeed, but it can also prevent over-investment in a failing idea. Only a mix of instincts keeps the field moving.

In the end, science is a gamble. Like the song, we have to know when to hold ’em and fold ’em, when to walk away, and when to run an idea as far as it will go. Sometimes it works, and sometimes it doesn’t. That’s science.

Calabi-Yaus in Feynman Diagrams: Harder and Easier Than Expected

I’ve got a new paper up, about the weird geometrical spaces we keep finding in Feynman diagrams.

With Jacob Bourjaily, Andrew McLeod, and Matthias Wilhelm, and most recently Cristian Vergu and Matthias Volk, I’ve been digging up odd mathematics in particle physics calculations. In several calculations, we’ve found that we need a type of space called a Calabi-Yau manifold. These spaces are often studied by string theorists, who hope they represent how “extra” dimensions of space are curled up. String theorists have found an absurdly large number of Calabi-Yau manifolds, so many that some are trying to sift through them with machine learning. We wanted to know if our situation was quite that ridiculous: how many Calabi-Yaus do we really need?

So we started asking around, trying to figure out how to classify our catch of Calabi-Yaus. And mostly, we just got confused.

It turns out there are a lot of different tools out there for understanding Calabi-Yaus, and most of them aren’t all that useful for what we’re doing. We went in circles for a while trying to understand how to desingularize toric varieties, and other things that will sound like gibberish to most of you. In the end, though, we noticed one small thing that made our lives a whole lot simpler.

It turns out that all of the Calabi-Yaus we’ve found are, in some sense, the same. While the details of the physics varies, the overall “space” is the same in each case. It’s a space we kept finding for our “Calabi-Yau bestiary”, but it turns out one of the “traintrack” diagrams we found earlier can be written in the same way. We found another example too, a “wheel” that seems to be the same type of Calabi-Yau.

And that actually has a sensible name

We also found many examples that we don’t understand. Add another rung to our “traintrack” and we suddenly can’t write it in the same space. (Personally, I’m quite confused about this one.) Add another spoke to our wheel and we confuse ourselves in a different way.

So while our calculation turned out simpler than expected, we don’t think this is the full story. Our Calabi-Yaus might live in “the same space”, but there are also physics-related differences between them, and these we still don’t understand.

At some point, our abstract included the phrase “this paper raises more questions than it answers”. It doesn’t say that now, but it’s still true. We wrote this paper because, after getting very confused, we ended up able to say a few new things that hadn’t been said before. But the questions we raise are if anything more important. We want to inspire new interest in this field, toss out new examples, and get people thinking harder about the geometry of Feynman integrals.

In Defense of the Streetlight

If you read physics blogs, you’ve probably heard this joke before:

A policeman sees a drunk man searching for something under a streetlight and asks what the drunk has lost. He says he lost his keys and they both look under the streetlight together. After a few minutes the policeman asks if he is sure he lost them here, and the drunk replies, no, and that he lost them in the park. The policeman asks why he is searching here, and the drunk replies, “this is where the light is”.

The drunk’s line of thinking has a name, the streetlight effect, and while it may seem ridiculous it’s a common error, even among experts. When it gets too tough to research something, scientists will often be tempted by an easier problem even if it has little to do with the original question. After all, it’s “where the light is”.

Physicists get accused of this all the time. Dark matter could be completely undetectable on Earth, but physicists still build experiments to search for it. Our universe appears to be curved one way, but string theory makes it much easier to study universes curved the other way, so physicists write a lot of nice proofs about a universe we don’t actually inhabit. In my own field, we spend most of our time studying a very nice theory that we know can’t describe the real world.

I’m not going to defend this behavior in general. There are real cases where scientists trick themselves into thinking they can solve an easy problem when they need to solve a hard one. But there is a crucial difference between scientists and drunkards looking for their keys, one that makes this behavior a lot more reasonable: scientists build technology.

As scientists, we can’t just grope around in the dark for our keys. The spaces we’re searching, from the space of all theories of gravity to actual outer space, are much too vast to search randomly. We need new ideas, new mathematics or new equipment, to do the search properly. If we were the drunkard of the story, we’d need to invent night-vision goggles.

Is the light better here, or is it just me?

Suppose you wanted to design new night-vision goggles, to search for your keys in the park. You could try to build them in the dark, but you wouldn’t be able to see what you were doing: you’d lose pieces, miss screws, and break lenses. Much better to build the goggles under that convenient streetlight.

Of course, if you build and test your prototype goggles under the streetlight, you risk that they aren’t good enough for the dark. You’ll have calibrated them in an unrealistic case. In all likelihood, you’ll have to go back and fix your goggles, tweaking them as you go, and you’ll run into the same problem: you can’t see what you’re doing in the dark.

At that point, though, you have an advantage: you now know how to build night-vision goggles. You’ve practiced building goggles in the light, and now even if the goggles aren’t good enough, you remember how you put them together. You can tweak the process, modify your goggles, and make something good enough to find your keys. You’re good enough at making goggles that you can modify them now, even in the dark.

Sometimes scientists really are like the drunk, searching under the most convenient streetlight. Sometimes, though, scientists are working where the light is for a reason. Instead of wasting their time lost in the dark, they’re building new technology and practicing new methods, getting better and better at searching until, when they’re ready, they can go back and find their keys. Sometimes, the streetlight is worth it.