Tag Archives: particle physics

At Amplitudes 2023 at CERN

I’m at the big yearly conference of my sub-field this week, called Amplitudes. This year, surprisingly for the first time, it’s at the very appropriate location of CERN.

Somewhat overshadowed by the very picturesque Alps

Amplitudes keeps on growing. In 2019, we had 175 participants. We were on Zoom in 2020 and 2021, with many more participants, but that probably shouldn’t count. In Prague last year we had 222. This year, I’ve been told we have even more, something like 250 participants (the list online is bigger, but includes people joining on Zoom). We’ve grown due to new students, but also new collaborations: people from adjacent fields who find the work interesting enough to join along. This year we have mathematicians talking about D-modules, bootstrappers finding new ways to get at amplitudes in string theory, beyond-the-standard-model theorists talking about effective field theories, and cosmologists talking about the large-scale structure of the universe.

The talks have been great, from clear discussions of earlier results to fresh-off-the-presses developments, plenty of work in progress, and even one talk where the speaker’s opinion changed during the coffee break. As we’re at CERN, there’s also a through-line about the future of particle physics, with a chat between Nima Arkani-Hamed and the experimentalist Beate Heinemann on Tuesday and a talk by Michelangelo Mangano about the meaning of “new physics” on Thursday.

I haven’t had a ton of time to write, I keep getting distracted by good discussions! As such, I’ll do my usual thing, and say a bit more about specific talks in next week’s post.

It’s Only a Model

Last week, I said that the current best estimate for the age of the universe, 13.8 billion years old, is based on a mathematical model. In order to get that number, astronomers had to assume the universe evolved in a particular way, according to a model where the universe is composed of ordinary matter, dark matter, and dark energy. In other words, the age of the universe is a model-dependent statement.

Reading that, you might ask whether we can do better. What about a model-independent measurement of the age of the universe?

As intuitive as it might seem, we can’t actually do that. In fact, if we’re really strict about it, we can’t get a model-independent measurement of anything at all. Everything is based on a model.

Imagine stepping on your bathroom scale, getting a mass in kilograms. The number it gives you seems as objective as anything. But to get that number, you have to trust that a number of models are true. You have to model gravity, to assume that the scale’s measurement of your weight gives you the right mass based on the Earth’s surface gravity being approximately constant. You have to model the circuits and sensors in the scale, and be confident that you understand how they’re supposed to work. You have to model people: to assume that the company that made the scale tested it accurately, and that the people who sold it to you didn’t lie about where it came from. And finally, you have to model error: you know that the scale can’t possibly give you your exact weight, so you need a rough idea of just how far off it can reasonably be.

Everything we know is like this. Every measurement in science builds on past science, on our understanding of our measuring equipment and our trust in others. Everything in our daily lives comes through a network of assumptions about the world around us. Everything we perceive is filtered through instincts, our understanding of our own senses and knowledge of when they do and don’t trick us.

Ok, but when I say that the age of the universe is model-dependent, I don’t really mean it like that, right?

Everything we know is model-dependent, but only some model-dependence is worth worrying about. Your knowledge of your bathroom scale comes from centuries-old physics of gravity, widely-applied principles of electronics, and a trust in the function of basic products that serves you well in every other aspect of your life. The models that knowledge depends on aren’t really in question, especially not when you just want to measure your weight.

Some measurements we make in physics are like this too. When the experimental collaborations at the LHC measured the Higgs mass, they were doing something far from routine. But the models they based that measurement on, models of particle physics and particle detector electronics and their own computer code, are still so well-tested that it mostly doesn’t make sense to think of this as a model-dependent measurement. If we’re questioning the Higgs mass, it’s only because we’re questioning something much bigger.

The age of the universe, though, is trickier. Our most precise measurements are based on a specific model: we estimate what the universe is made of and how fast it’s expanding, plug it into our model of how the universe changes over time, and get an estimate for the age. You might suggest that we should just look out into the universe and find the oldest star, but that’s model-dependent too. Stars don’t have rings like trees. Instead, to estimate the age of a star we have to have some model for what kind of light it emits, and for how that light has changed over the history of the universe before it reached us.

These models are not quite as well-established as the models behind particle physics, let alone those behind your bathroom scale. Our models of stars are pretty good, applied to many types of stars in many different galaxies, but they do involve big, complicated systems involving many types of extreme and difficult to estimate physics. Star models get revised all the time, usually in minor ways but occasionally in more dramatic ones. Meanwhile, our model of the whole universe is powerful, but by its very nature much less-tested. We can test it on observations of the whole universe today, or on observations of the whole universe in the past (like the cosmic microwave background). And it works well for these, better than any other model. But it’s not inconceivable, not unrealistic, and above all not out of context, that another model could take its place. And if it did, many of the model-dependent measurements we’ve based on it will have to change.

So that’s why, while everything we know is model-dependent, some are model-dependent in a more important way. Some things, even if we feel they have solid backing, may well turn out to be wrong, in a way that we have reason to take seriously. The age of the universe is pretty well-established as these things go, but it still is one of those types of things, where there is enough doubt in our model that we can’t just take the measurement at face value.

Not Made of Photons Either

If you know a bit about quantum physics, you might have heard that everything is made out of particles. Mass comes from Higgs particles, gravity from graviton particles, and light and electricity and magnetism from photon particles. The particles are the “quanta”, the smallest possible units of stuff.

This is not really how quantum physics works.

You might have heard (instead, or in addition), that light is both particle and wave. Maybe you’ve heard it said that it is both at the same time, or that it is one or the other, depending on how you look at it.

This is also not really how quantum physics works.

If you think that light is both a particle and a wave, you might get the impression there are only two options. This is better than thinking there is only one option, but still not really the truth. The truth is there are many options. It all depends on what you measure.

Suppose you have a particle collider, like the Large Hadron Collider at CERN. Sometimes, the particles you collide release photons. You surround the collision with particle detectors. When a photon hits them, these particle detectors amplify it, turning it into an electrical signal in a computer.

If you want to predict what those particle detectors see, you might put together a theory of photons. You’ll try to calculate the chance that you see some specific photon with some specific energy to some reasonable approximation…and you’ll get infinity.

You might think you’ve heard this story before. Maybe you’ve heard people talk about calculations in quantum field theory that give infinity, with buzzwords like divergences and renormalization. You may remember them saying that this is a sign that our theories are incomplete, that there are parameters we can’t predict or that the theory is just a low-energy approximation to a deeper theory.

This is not that story. That story is about “ultraviolet divergences”, infinities that come from high-energy particles. This story is about “infrared divergences” from low-energy particles. Infrared divergences don’t mean our theory is incomplete. Our theory is fine. We’re just using it wrong.

The problem is that I lied to you a little bit, earlier. I told you that your particle detectors can detect photons, so you might have imagined they can detect any photon you like. But that is impossible. A photon’s energy is determined by its wavelength: X-rays have more energy than UV light, which has more energy than IR light, which has more energy than microwaves. No matter how you build your particle detector, there will be some energy low enough that it cannot detect, a wavelength of photons that gives no response at all.

When you think you’re detecting just one photon, then, you’re not actually detecting just one photon. You’re detecting one photon, plus some huge number of undetectable photons that are too low-energy to see. We call these soft photons. You don’t know how many soft photons you generate, because you can’t detect them. Thus, as always in quantum mechanics, you have to add up every possibility.

That adding up is crucial, because it makes the infinite results go away. The different infinities pair up, negative and positive, at each order of approximation. Those pesky infrared divergences aren’t really a problem, provided you’re honest about what you’re actually detecting.

But while infrared divergences aren’t really a problem, they do say something about your model. You were modeling particles as single photons, and that made your calculations complicated, with a lot of un-physical infinite results. But you could, instead, have made another model. You could have modeled particles as dressed photons: one photon, plus a cloud of soft photons.

For a particle physicists, these dressed photons have advantages and disadvantages. They aren’t always the best tool, and can be complicated to use. But one thing they definitely do is avoid infinite results. You can interpret them a little more easily.

That ease, though, raises a question. You started out with a model in which each particle you detect was a photon. You could have imagined it as a model of reality, one in which every electromagnetic field was made up of photons.

But then you found another model, one which sometimes makes more sense. And in that model, instead, you model your particles as dressed photons. You could then once again imagine a model of reality, now with every electromagnetic field made up of dressed photons, not the ordinary ones.

So now it looks like you have three options. Are electromagnetic fields made out of waves, or particles…or dressed particles?

That’s a trick question. It was always a trick question, and will always be a trick question.

Ancient Greek philosophers argued about whether everything was made of water, or fire, or innumerable other things. Now, we teach children that science has found the answer: a world made of atoms, or protons, or quarks.

But scientists are actually answering a different, and much more important, question. “What is everything really made of?” is still a question for philosophers. We scientists want to know what we will observe. We want a model that makes predictions, that tells us what actions we can do and what results we should expect, that lets us develop technology and improve our lives.

And if we want to make those predictions, then our models can make different choices. We can arrange things in different ways, grouping the fluid possibilities of reality into different concrete “stuff”. We can choose what to measure, and how best to describe it. We don’t end up with one “what everything is made of”, but more than one, different stories for different contexts. As long as those models make the right predictions, we’ve done the only job we ever needed to do.

Cabinet of Curiosities: The Deluxe Train Set

I’ve got a new paper out this week with Andrew McLeod. I’m thinking of it as another entry in this year’s “cabinet of curiosities”, interesting Feynman diagrams with unusual properties. Although this one might be hard to fit into a cabinet.

Over the past few years, I’ve been finding Feynman diagrams with interesting connections to Calabi-Yau manifolds, the spaces originally studied by string theorists to roll up their extra dimensions. With Andrew and other collaborators, I found an interesting family of these diagrams called traintracks, which involve higher-and-higher dimensional manifolds as they get longer and longer.

This time, we started hooking up our traintracks together.

We call diagrams like these traintrack network diagrams, or traintrack networks for short. The original traintracks just went “one way”: one family, going higher in Calabi-Yau dimension the longer they got. These networks branch out, one traintrack leading to another and another.

In principle, these are much more complicated diagrams. But we find we can work with them in almost the same way. We can find the same “starting point” we had for the original traintracks, the set of integrals used to find the Calabi-Yau manifold. We’ve even got more reliable tricks, a method recently honed by some friends of ours that consistently find a Calabi-Yau manifold inside the original traintracks.

Surprisingly, though, this isn’t enough.

It works for one type of traintrack network, a so-called “cross diagram” like this:

But for other diagrams, if the network branches any more, the trick stops working. We still get an answer, but that answer is some more general space, not just a Calabi-Yau manifold.

That doesn’t mean that these general traintrack networks don’t involve Calabi-Yaus at all, mind you: it just means this method doesn’t tell us one way or the other. It’s also possible that simpler versions of these diagrams, involving fewer particles, will once again involve Calabi-Yaus. This is the case for some similar diagrams in two dimensions. But it’s starting to raise a question: how special are the Calabi-Yau related diagrams? How general do we expect them to be?

Another fun thing we noticed has to do with differential equations. There are equations that relate one diagram to another simpler one. We’ve used them in the past to build up “ladders” of diagrams, relating each picture to one with one of its boxes “deleted”. We noticed, playing with these traintrack networks, that these equations do a bit more than we thought. “Deleting” a box can make a traintrack short, but it can also chop a traintrack in half, leaving two “dangling” pieces, one on either side.

This reminded me of an important point, one we occasionally lose track of. The best-studied diagrams related to Calabi-Yaus are called “sunrise” diagrams. If you squish together a loop in one of those diagrams, the whole diagram squishes together, becoming much simpler. Because of that, we’re used to thinking of these as diagrams with a single “geometry”, one that shows up when you don’t “squish” anything.

Traintracks, and traintrack networks, are different. “Squishing” the diagram, or “deleting” a box, gives you a simpler diagram, but not much simpler. In particular, the new diagram will still contain traintracks, and traintrack networks. That means that we really should think of each traintrack network not just as one “top geometry”, but of a collection of geometries, different Calabi-Yaus that break into different combinations of Calabi-Yaus in different ways. It’s something we probably should have anticipated, but the form these networks take is a good reminder, one that points out that we still have a lot to do if we want to understand these diagrams.

What’s a Cosmic String?

Nowadays, we have telescopes that detect not just light, but gravitational waves. We’ve already learned quite a bit about astrophysics from these telescopes. They observe ripples coming from colliding black holes, giving us a better idea of what kinds of black holes exist in the universe. But the coolest thing a gravitational wave telescope could discover is something that hasn’t been seen yet: a cosmic string.

This art is from an article in Symmetry magazine which is, as far as I can tell, not actually about cosmic strings.

You might have heard of cosmic strings, but unless you’re a physicist you probably don’t know much about them. They’re a prediction, coming from cosmology, of giant string-like objects floating out in space.

That might sound like it has something to do with string theory, but it doesn’t actually have to, you can have these things without any string theory at all. Instead, you might have heard that cosmic strings are some kind of “cracks” or “wrinkles” in space-time. Some articles describe this as like what happens when ice freezes, cracks forming as water settles into a crystal.

That description, in terms of ice forming cracks between crystals, is great…if you’re a physicist who already knows how ice forms cracks between crystals. If you’re not, I’m guessing reading those kinds of explanations isn’t helpful. I’m guessing you’re still wondering why there ought to be any giant strings floating in space.

The real explanation has to do with a type of mathematical gadget physicists use, called a scalar field. You can think of a scalar field as described by a number, like a temperature, that can vary in space and time. The field carries potential energy, and that energy depends on what the scalar field’s “number” is. Left alone, the field settles into a situation with as little potential energy as it can, like a ball rolling down a hill. That situation is one of the field’s default values, something we call a “vacuum” value. Changing the field away from its vacuum value can take a lot of energy. The Higgs boson is one example of a scalar field. Its vacuum value is the value it has in day to day life. In order to make a detectable Higgs boson at the Large Hadron Collider, they needed to change the field away from its vacuum value, and that took a lot of energy.

In the very early universe, almost back at the Big Bang, the world was famously in a hot dense state. That hot dense state meant that there was a lot of energy to go around, so scalar fields could vary far from their vacuum values, pretty much randomly. As the universe expanded and cooled, there was less and less energy available for these fields, and they started to settle down.

Now, the thing about these default, “vacuum” values of a scalar field is that there doesn’t have to be just one of them. Depending on what kind of mathematical function the field’s potential energy is, there could be several different possibilities each with equal energy.

Let’s imagine a simple example, of a field with two vacuum values: +1 and -1. As the universe cooled down, some parts of the universe would end up with that scalar field number equal to +1, and some to -1. But what happens in between?

The scalar field can’t just jump from -1 to +1, that’s not allowed in physics. It has to pass through 0 in between. But, unlike -1 and +1, 0 is not a vacuum value. When the scalar field number is equal to 0, the field has more energy than it does when it’s equal to -1 or +1. Usually, a lot more energy.

That means the region of scalar field number 0 can’t spread very far: the further it spreads, the more energy it takes to keep it that way. On the other hand, the region can’t vanish altogether: something needs to happen to transition between the numbers -1 and +1.

The thing that happens is called a domain wall. A domain wall is a thin sheet, as thin as it can physically be, where the scalar field doesn’t take its vacuum value. You can roughly think of it as made up of the scalar field, a churning zone of the kind of bosons the LHC was trying to detect.

This sheet still has a lot of energy, bound up in the unusual value of the scalar field, like an LHC collision in every proton-sized chunk. As such, like any object with a lot of energy, it has a gravitational field. For a domain wall, the effect of this gravity would be very very dramatic: so dramatic, that we’re pretty sure they’re incredibly rare. If they were at all common, we would have seen evidence of them long before now!

Ok, I’ve shown you a wall, that’s weird, sure. What does that have to do with cosmic strings?

The number representing a scalar field doesn’t have to be a real number: it can be imaginary instead, or even complex. Now I’d like you to imagine a field with vacuum values on the unit circle, in the complex plane. That means that +1 and -1 are still vacuum values, but so are e^{i \pi/2}, and e^{3 i \pi/2}, and everything else you can write as e^{i\theta}. However, 0 is still not a vacuum value. Neither is, for example, 2 e^{i\pi/3}.

With vacuum values like this, you can’t form domain walls. You can make a path between -1 and +1 that only goes through the unit circle, through e^{i \pi/2} for example. The field will be at its vacuum value throughout, taking no extra energy.

However, imagine the different regions form a circle. In the picture above, suppose that the blue area at the bottom is at vacuum value -1 and red is at +1. You might have e^{i \pi/2} in the green region, and e^{3 i \pi/2} in the purple region, covering the whole circle smoothly as you go around.

Now, think about what happens in the middle of the circle. On one side of the circle, you have -1. On the other, +1. (Or, on one side e^{i \pi/2}, on the other, e^{3 i \pi/2}). No matter what, different sides of the circle are not allowed to be next to each other, you can’t just jump between them. So in the very middle of the circle, something else has to happen.

Once again, that something else is a field that goes away from its vacuum value, that passes through 0. Once again, that takes a lot of energy, so it occupies as little space as possible. But now, that space isn’t a giant wall. Instead, it’s a squiggly line: a cosmic string.

Cosmic strings don’t have as dramatic a gravitational effect as domain walls. That means they might not be super-rare. There might be some we haven’t seen yet. And if we do see them, it could be because they wiggle space and time, making gravitational waves.

Cosmic strings don’t require string theory, they come from a much more basic gadget, scalar fields. We know there is one quite important scalar field, the Higgs field. The Higgs vacuum values aren’t like +1 and -1, or like the unit circle, though, so the Higgs by itself won’t make domain walls or cosmic strings. But there are a lot of proposals for scalar fields, things we haven’t discovered but that physicists think might answer lingering questions in particle physics, and some of those could have the right kind of vacuum values to give us cosmic strings. Thus, if we manage to detect cosmic strings, we could learn something about one of those lingering questions.

Visiting CERN

So, would you believe I’ve never visited CERN before?

I was at CERN for a few days this week, visiting friends and collaborators and giving an impromptu talk. Surprisingly, this is the first time I’ve been, a bit of an embarrassing admission for someone who’s ostensibly a particle physicist.

Despite that, CERN felt oddly familiar. The maze of industrial buildings and winding roads, the security gates and cards (and work-arounds for when you arrive outside of card-issuing hours, assisted by friendly security guards), the constant construction and remodeling, all of it reminded me of the times I visited SLAC during my PhD. This makes a lot of sense, of course: one accelerator is at least somewhat like another. But besides a visit to Fermilab for a conference several years ago, I haven’t been in many other places like that since then.

(One thing that might have also been true of SLAC and Fermilab but I never noticed: CERN buildings not only have evacuation instructions for the building in case of a fire, but also evacuation instructions for the whole site.)

CERN is a bit less “pretty” than SLAC on average, without the nice grassy area in the middle or the California sun that goes with it. It makes up for it with what seems like more in terms of outreach resources, including a big wooden dome of a mini-museum sponsored by Rolex, and a larger visitor center still under construction.

The outside, including a sculpture depicting the history of science with the Higgs boson discovery on the “cutting edge”
The inside. Bubbles on the ground contain either touchscreens or small objects (detectors, papers, a blackboard with the string theory genus expansion for some reason). Bubbles in the air were too high for me to check.

CERN hosts a variety of theoretical physicists doing various different types of work. I was hosted by the “QCD group”, but the string theorists just down the hall include a few people I know as well. The lounge had a few cardboard signs hidden under the table, leftovers of CERN’s famous yearly Christmas play directed by John Ellis.

It’s been a fun, if brief, visit. I’ll likely get to see a bit more this summer, when they host Amplitudes 2023. Until then, it was fun reconnecting with that “accelerator feel”.

Valentine’s Day Physics Poem 2023

Since Valentine’s Day was this week, it’s time for the next installment of my traditional Valentine’s Day Physics Poems. New readers, don’t let this drive you off, I only do it once a year! And if you actually like it, you can take a look at poems from previous years here.

Married to a Model

If you ever face a physics class distracted,
Rappers and footballers twinkling on their phones,
Then like an awkward youth pastor, interject,
“You know who else is married to a Model?”

Her name is Standard, you see,
Wife of fifty years to Old Man Physics,
Known for her beauty, charm, and strangeness too.
But Old Man Physics has a wandering eye,
and dreams of Models Beyond.

Let the old man bend your ear,
you’ll hear
a litany of Problems.

He’ll never understand her, so he starts.
Some matters she holds weighty, some feather-light
with nary rhyme or reason
(which he is owed, he’s sure).

She’s unnatural, he says,
(echoing Higgins et al.),
a set of rules he can’t predict.
(But with those rules, all else is possible.)

Some regularities she holds to fast, despite room for exception,
others breaks, like an ill-lucked bathroom mirror.

And then, he says, she’ll just blow up
(when taken to extremes),
while singing nonsense in the face of Gravity.

He’s been keeping a careful eye
and noticing anomalies
(and each time, confronting them,
finds an innocent explanation,
but no matter).

And he imagines others
with yet wilder curves
and more sensitive reactions
(and nonsense, of course,
that he’s lived fifty years without).

Old man physics talks,
that’s certain.
But beyond the talk,
beyond the phases and phrases,
(conscious uncoupling, non-empirical science),
he stays by her side.

He knows Truth, 
in this world,
is worth fighting for.

Why Dark Matter Feels Like Cheating (And Why It Isn’t)

I’ve never met someone who believed the Earth was flat. I’ve met a few who believed it was six thousand years old, but not many. Occasionally, I run into crackpots who rail against relativity or quantum mechanics, or more recent discoveries like quarks or the Higgs. But for one conclusion of modern physics, the doubters are common. For this one idea, the average person may not insist that the physicists are wrong, but they’ll usually roll their eyes a little bit, ask the occasional “really?”

That idea is dark matter.

For the average person, dark matter doesn’t sound like normal, responsible science. It sounds like cheating. Scientists try to explain the universe, using stars and planets and gravity, and eventually they notice the equations don’t work, so they just introduce some new matter nobody can detect. It’s as if a budget didn’t add up, so the accountant just introduced some “dark expenses” to hide the problem.

Part of what’s going on here is that fundamental physics, unlike other fields, doesn’t have to reduce to something else. An accountant has to explain the world in terms of transfers of money, a chemist in terms of atoms and molecules. A physicist has to explain the world in terms of math, with no more restrictions than that. Whatever the “base level” of another field is, physics can, and must, go deeper.

But that doesn’t explain everything. Physics may have to explain things in terms of math, but we shouldn’t just invent new math whenever we feel like it. Surely, we should prefer explanations in terms of things we know to explanations in terms of things we don’t know. The question then becomes, what justifies the preference? And when do we get to break it?

Imagine you’re camping in your backyard. You’ve brought a pack of jumbo marshmallows. You wake up to find a hole torn in the bag, a few marshmallows strewn on a trail into the bushes, the rest gone. You’re tempted to imagine a new species of ant, with enormous jaws capable of ripping open plastic and hauling the marshmallows away. Then you remember your brother likes marshmallows, and it’s probably his fault.

Now imagine instead you’re camping in the Amazon rainforest. Suddenly, the ant explanation makes sense. You may not have a particular species of ants in mind, but you know the rainforest is full of new species no-one has yet discovered. And you’re pretty sure your brother couldn’t have flown to your campsite in the middle of the night and stolen your marshmallows.

We do have a preference against introducing new types of “stuff”, like new species of ants or new particles. We have that preference because these new types of stuff are unlikely, based on our current knowledge. We don’t expect new species of ants in our backyards, because we think we have a pretty good idea of what kinds of ants exist, and we think a marshmallow-stealing brother is more likely. That preference gets dropped, however, based on the strength of the evidence. If it’s very unlikely our brother stole the marshmallows, and if we’re somewhere our knowledge of ants is weak, then the marshmallow-stealing ants are more likely.

Dark matter is a massive leap. It’s not a massive leap because we can’t see it, but simply because it involves new particles, particles not in our Standard Model of particle physics. (Or, for the MOND-ish fans, new fields not present in Einstein’s theory of general relativity.) It’s hard to justify physics beyond the Standard Model, and our standards for justifying it are in general very high: we need very precise experiments to conclude that the Standard Model is well and truly broken.

For dark matter, we keep those standards. The evidence for some kind of dark matter, that there is something that can’t be explained by just the Standard Model and Einstein’s gravity, is at this point very strong. Far from a vague force that appears everywhere, we can map dark matter’s location, systematically describe its effect on the motion of galaxies to clusters of galaxies to the early history of the universe. We’ve checked if there’s something we’ve left out, if black holes or unseen planets might cover it, and they can’t. It’s still possible we’ve missed something, just like it’s possible your brother flew to the Amazon to steal your marshmallows, but it’s less likely than the alternatives.

Also, much like ants in the rainforest, we don’t know every type of particle. We know there are things we’re missing: new types of neutrinos, or new particles to explain quantum gravity. These don’t have to have anything to do with dark matter, they might be totally unrelated. But they do show that we should expect, sometimes, to run into particles we don’t already know about. We shouldn’t expect that we already know all the particles.

If physicists did what the cartoons suggest, it really would be cheating. If we proposed dark matter because our equations didn’t match up, and stopped checking, we’d be no better than an accountant adding “dark money” to a budget. But we didn’t do that. When we argue that dark matter exists, it’s because we’ve actually tried to put together the evidence, because we’ve weighed it against the preference to stick with the Standard Model and found the evidence tips the scales. The instinct to call it cheating is a good instinct, one you should cultivate. But here, it’s an instinct physicists have already taken into account.

LHC Black Holes for the Terminally Un-Reassured

Could the LHC have killed us all?

No, no it could not.

But…

I’ve had this conversation a few times over the years. Usually, the people I’m talking to are worried about black holes. They’ve heard that the Large Hadron Collider speeds up particles to amazingly high energies before colliding them together. They worry that these colliding particles could form a black hole, which would fall into the center of the Earth and busily gobble up the whole planet.

This pretty clearly hasn’t happened. But also, physicists were pretty confident that it couldn’t happen. That isn’t to say they thought it was impossible to make a black hole with the LHC. Some physicists actually hoped to make a black hole: it would have been evidence for extra dimensions, curled-up dimensions much larger than the tiny ones required by string theory. They figured out the kind of evidence they’d see if the LHC did indeed create a black hole, and we haven’t seen that evidence. But even before running the machine, they were confident that such a black hole wouldn’t gobble up the planet. Why?

The best argument is also the most unsatisfying. The LHC speeds up particles to high energies, but not unprecedentedly high energies. High-energy particles called cosmic rays enter the atmosphere every day, some of which are at energies comparable to the LHC. The LHC just puts the high-energy particles in front of a bunch of sophisticated equipment so we can measure everything about them. If the LHC could destroy the world, cosmic rays would have already done so.

That’s a very solid argument, but it doesn’t really explain why. Also, it may not be true for future colliders: we could build a collider with enough energy that cosmic rays don’t commonly meet it. So I should give another argument.

The next argument is Hawking radiation. In Stephen Hawking’s most famous accomplishment, he argued that because of quantum mechanics black holes are not truly black. Instead, they give off a constant radiation of every type of particle mixed together, shrinking as it does so. The radiation is faintest for large black holes, but gets more and more intense the smaller the black hole is, until the smallest black holes explode into a shower of particles and disappear. This argument means that a black hole small enough that the LHC could produce it would radiate away to nothing in almost an instant: not long enough to leave the machine, let alone fall to the center of the Earth.

This is a good argument, but maybe you aren’t as sure as I am about Hawking radiation. As it turns out, we’ve never measured Hawking radiation, it’s just a theoretical expectation. Remember that the radiation gets fainter the larger the black hole is: for a black hole in space with the mass of a star, the radiation is so tiny it would be almost impossible to detect even right next to the black hole. From here, in our telescopes, we have no chance of seeing it.

So suppose tiny black holes didn’t radiate, and suppose the LHC could indeed produce them. Wouldn’t that have been dangerous?

Here, we can do a calculation. I want you to appreciate how tiny these black holes would be.

From science fiction and cartoons, you might think of a black hole as a kind of vacuum cleaner, sucking up everything nearby. That’s not how black holes work, though. The “sucking” black holes do is due to gravity, no stronger than the gravity of any other object with the same mass at the same distance. The only difference comes when you get close to the event horizon, an invisible sphere close-in around the black hole. Pass that line, and the gravity is strong enough that you will never escape.

We know how to calculate the position of the event horizon of a black hole. It’s the Schwarzchild radius, and we can write it in terms of Newton’s constant G, the mass of the black hole M, and the speed of light c, as follows:

\frac{2GM}{c^2}

The Large Hadron Collider’s two beams each have an energy around seven tera-electron-volts, or TeV, so there are 14 TeV of energy in total in each collision. Imagine all of that energy being converted into mass, and that mass forming a black hole. That isn’t how it would actually happen: some of the energy would create other particles, and some would give the black hole a “kick”, some momentum in one direction or another. But we’re going to imagine a “worst-case” scenario, so let’s assume all the energy goes to form the black hole. Electron-volts are a weird physicist unit, but if we divide them by the speed of light squared (as we should if we’re using E=mc^2 to create a mass), then Wikipedia tells us that each electron-volt will give us 1.78\times 10^{-36} kilograms. “Tera” is the SI prefix for 10^{12}. Thus our tiny black hole starts with a mass of

14\times 10^{12}\times 1.78\times 10^{-36} = 2.49\times 10^{-23} \textrm{kg}

Plugging in Newton’s constant (6.67\times 10^{-11} meters cubed per kilogram per second squared), and the speed of light (3\times 10^8 meters per second), and we get a radius of,

\frac{2\times 6.67\times 10^{-11}\times 14\times 10^{12}\times 1.78\times 10^{-36}}{\left(3\times 10^8\right)^2} = 3.7\times 10^{-50} \textrm{m}

That, by the way, is amazingly tiny. The size of an atom is about 10^{-10} meters. If every atom was a tiny person, and each of that person’s atoms was itself a person, and so on for five levels down, then the atoms of the smallest person would be the same size as this event horizon.

Now, we let this little tiny black hole fall. Let’s imagine it falls directly towards the center of the Earth. The only force affecting it would be gravity (if it had an electrical charge, it would quickly attract a few electrons and become neutral). That means you can think of it as if it were falling through a tiny hole, with no friction, gobbling up anything unfortunate enough to fall within its event horizon.

For our first estimate, we’ll treat the black hole as if it stays the same size through its journey. Imagine the black hole travels through the entire earth, absorbing a cylinder of matter. Using the Earth’s average density of 5515 kilograms per cubic meter, and the Earth’s maximum radius of 6378 kilometers, our cylinder adds a mass of,

\pi \times \left(3.7\times 10^{-50}\right)^2 \times 2 \times 6378\times 10^3\times 5515 = 3\times 10^{-88} \textrm{kg}

That’s absurdly tiny. That’s much, much, much tinier than the mass we started out with. Absorbing an entire cylinder through the Earth makes barely any difference.

You might object, though, that the black hole is gaining mass as it goes. So really we ought to use a differential equation. If the black hole travels a distance r, absorbing mass as it goes at average Earth density \rho, then we find,

\frac{dM}{dr}=\pi\rho\left(\frac{2GM(r)}{c^2}\right)^2

Solving this, we get

M(r)=\frac{M_0}{1- M_0 \pi\rho\left(\frac{2G}{c^2}\right)^2 r }

Where M_0 is the mass we start out with.

Plug in the distance through the Earth for r, and we find…still about 3\times 10^{-88} \textrm{kg}! It didn’t change very much, which makes sense, it’s a very very small difference!

But you might still object. A black hole falling through the Earth wouldn’t just go straight through. It would pass through, then fall back in. In fact, it would oscillate, from one side to the other, like a pendulum. This is actually a common problem to give physics students: drop an object through a hole in the Earth, neglect air resistance, and what does it do? It turns out that the time the object takes to travel through the Earth is independent of its mass, and equal to roughly 84.5 minutes.

So let’s ask a question: how long would it take for a black hole, oscillating like this, to double its mass?

We want to solve,

2=\frac{1}{1- M_0 \pi\rho\left(\frac{2G}{c^2}\right)^2 r }

so we need the black hole to travel a total distance of

r=\frac{1}{2M_0 \pi\rho\left(\frac{2G}{c^2}\right)^2} = 5.3\times 10^{71} \textrm{m}

That’s a huge distance! The Earth’s radius, remember, is 6378 kilometers. So traveling that far would take

5.3\times 10^{71} \times 84.5/60/24/365 = 8\times 10^{67} \textrm{y}

Ten to the sixty-seven years. Our universe is only about ten to the ten years old. In another five times ten to the nine years, the Sun will enter its red giant phase, and swallow the Earth. There simply isn’t enough time for this tiny tiny black hole to gobble up the world, before everything is already gobbled up by something else. Even in the most pessimistic way to walk through the calculation, it’s just not dangerous.

I hope that, if you were worried about black holes at the LHC, you’re not worried any more. But more than that, I hope you’ve learned three lessons. First, that even the highest-energy particle physics involves tiny energies compared to day-to-day experience. Second, that gravitational effects are tiny in the context of particle physics. And third, that with Wikipedia access, you too can answer questions like this. If you’re worried, you can make an estimate, and check!

What Might Lie Beyond, and Why

As the new year approaches, people think about the future. Me, I’m thinking about the future of fundamental physics, about what might lie beyond the Standard Model. Physicists search for many different things, with many different motivations. Some are clear missing pieces, places where the Standard Model fails and we know we’ll need to modify it. Others are based on experience, with no guarantees but an expectation that, whatever we find, it will be surprising. Finally, some are cool possibilities, ideas that would explain something or fill in a missing piece but aren’t strictly necessary.

The Almost-Sure Things

Science isn’t math, so nothing here is really a sure thing. We might yet discover a flaw in important principles like quantum mechanics and special relativity, and it might be that an experimental result we trust turns out to be flawed. But if we chose to trust those principles, and our best experiments, then these are places we know the Standard Model is incomplete:

  • Neutrino Masses: The original Standard Model’s neutrinos were massless. Eventually, physicists discovered this was wrong: neutrinos oscillate, switching between different types in a way they only could if they had different masses. This result is familiar enough that some think of it as already part of the Standard Model, not really beyond. But the masses of neutrinos involve unsolved mysteries: we don’t know what those masses are, but more, there are different ways neutrinos could have mass, and we don’t yet know which is present in nature. Neutrino masses also imply the existence of an undiscovered “sterile” neutrino, a particle that doesn’t interact with the strong, weak, or electromagnetic forces.
  • Dark Matter Phenomena (and possibly Dark Energy Phenomena): Astronomers first suggested dark matter when they observed galaxies moving at speeds inconsistent with the mass of their stars. Now, they have observed evidence for it in a wide variety of situations, evidence which seems decisively incompatible with ordinary gravity and ordinary matter. Some solve this by introducing dark matter, others by modifying gravity, but this is more of a technical difference than it sounds: in order to modify gravity, one must introduce new quantum fields, much the same way one does when introducing dark matter. The only debate is how “matter-like” those fields need to be, but either approach goes beyond the Standard Model.
  • Quantum Gravity: It isn’t as hard to unite quantum mechanics and gravity as you might think. Physicists have known for decades how to write down a naive theory of quantum gravity, one that follows the same steps one might use to derive the quantum theory of electricity and magnetism. The problem is, this theory is incomplete. It works at low energies, but as the energy increases it loses the ability to make predictions, eventually giving nonsensical answers like probabilities greater than one. We have candidate solutions to this problem, like string theory, but we might not know for a long time which solution is right.
  • Landau Poles: Here’s a more obscure one. In particle physics we can zoom in and out in our theories, using similar theories at different scales. What changes are the coupling constants, numbers that determine the strength of the different forces. You can think of this in a loosely reductionist way, with the theories at smaller scales determining the constants for theories at larger scales. This gives workable theories most of the time, but it fails for at least one part of the Standard Model. In electricity and magnetism, the coupling constant increases as you zoom in. Eventually, it becomes infinite, and what’s more, does so at a finite energy scale. It’s still not clear how we should think about this, but luckily we won’t have to very soon: this energy scale is vastly vastly higher than even the scale of quantum gravity.
  • Some Surprises Guarantee Others: The Standard Model is special in a way that gravity isn’t. Even if you dial up the energy, a Standard Model calculation will always “make sense”: you never get probabilities greater than one. This isn’t true for potential deviations from the Standard Model. If the Higgs boson turns out to interact differently than we expect, it wouldn’t just be a violation of the Standard Model on its own: it would guarantee mathematically that, at some higher energy, we’d have to find something new. That was precisely the kind of argument the LHC used to find the Higgs boson: without the Higgs, something new was guaranteed to happen within the energy range of the LHC to prevent impossible probability numbers.

The Argument from (Theoretical) Experience

Everything in this middle category rests on a particular sort of argument. It’s short of a guarantee, but stronger than a dream or a hunch. While the previous category was based on calculations in theories we already know how to write down, this category relies on our guesses about theories we don’t yet know how to write.

Suppose we had a deeper theory, one that could use fewer parameters to explain the many parameters of the Standard Model. For example, it might explain the Higgs mass, letting us predict it rather than just measuring it like we do now. We don’t have a theory like that yet, but what we do have are many toy model theories, theories that don’t describe the real world but do, in this case, have fewer parameters. We can observe how these theories work, and what kinds of discoveries scientists living in worlds described by them would make. By looking at this process, we can get a rough idea of what to expect, which things in our own world would be “explained” in other ways in these theories.

  • The Hierarchy Problem: This is also called the naturalness problem. Suppose we had a theory that explained the mass of the Higgs, one where it wasn’t just a free parameter. We don’t have such a theory for the real Higgs, but we do have many toy models with similar behavior, ones with a boson with its mass determined by something else. In these models, though, the mass of the boson is always close to the energy scale of other new particles, particles which have a role in determining its mass, or at least in postponing that determination. This was the core reason why people expected the LHC to find something besides the Higgs. Without such new particles, the large hierarchy between the mass of the Higgs and the mass of new particles becomes a mystery, one where it gets harder and harder to find a toy model with similar behavior that still predicts something like the Higgs mass.
  • The Strong CP Problem: The weak nuclear force does what must seem like a very weird thing, by violating parity symmetry: the laws that govern it are not the same when you flip the world in a mirror. This is also true when you flip all the charges as well, a combination called CP (charge plus parity). But while it may seem strange that the weak force violates this symmetry, physicists find it stranger that the strong force seems to obey it. Much like in the hierarchy problem, it is very hard to construct a toy model that both predicts a strong force that maintains CP (or almost maintains it) and doesn’t have new particles. The new particle in question, called the axion, is something some people also think may explain dark matter.
  • Matter-Antimatter Asymmetry: We don’t know the theory of quantum gravity. Even if we did, the candidate theories we have struggle to describe conditions close to the Big Bang. But while we can’t prove it, many physicists expect the quantum gravity conditions near the Big Bang to produce roughly equal amounts of matter and antimatter. Instead, matter dominates: we live in a world made almost entirely of matter, with no evidence of large antimatter areas even far out in space. This lingering mystery could be explained if some new physics was biased towards matter instead of antimatter.
  • Various Problems in Cosmology: Many open questions in cosmology fall in this category. The small value of the cosmological constant is mysterious for the same reasons the small value of the Higgs mass is, but at a much larger and harder to fix scale. The early universe surprises many cosmologists by its flatness and uniformity, which has led them to propose new physics. This surprise is not because such flatness and uniformity is mathematically impossible, but because it is not the behavior they would expect out of a theory of quantum gravity.

The Cool Possibilities

Some ideas for physics beyond the standard model aren’t required, either from experience or cold hard mathematics. Instead, they’re cool, and would be convenient. These ideas would explain things that look strange, or make for a simpler deeper theory, but they aren’t the only way to do so.

  • Grand Unified Theories: Not the same as a “theory of everything”, Grand Unified Theories unite the three “particle physics forces”: the strong nuclear force, the weak nuclear force, and electromagnetism. Under such a theory, the different parameters that determine the strengths of those forces could be predicted from one shared parameter, with the forces only seeming different at low energies. These theories often unite the different matter particles too, but they also introduce new particles and new forces. These forces would, among other things, make protons unstable, and so giant experiments have been constructed to try to detect a proton decaying into other particles. So far none has been seen.
  • Low-Energy Supersymmetry: String theory requires supersymmetry, a relationship where matter and force particles share many properties. That supersymmetry has to be “broken”, which means that while the matter and force particles have the same charges, they can have wildly different masses, so that the partner particles are all still undiscovered. Those masses may be extremely high, all the way up at the scale of quantum gravity, but they could also be low enough to test at the LHC. Physicists hoped to detect such particles, as they could have been a good solution to the hierarchy problem. Now that the LHC hasn’t found these supersymmetric particles, it is much harder to solve the problem this way, though some people are still working on it.
  • Large Extra Dimensions: String theory also involves extra dimensions, beyond our usual three space and one time. Those dimensions are by default very small, but some proposals have them substantially bigger, big enough that we could have seen evidence for them at the LHC. These proposals could explain why gravity is so much weaker than the other forces. Much like the previous members of this category though, no evidence for this has yet been found.

I think these categories are helpful, but experts may quibble about some of my choices. I also haven’t mentioned every possible thing that could be found beyond the Standard Model. If you’ve heard of something and want to know which category I’d put it in, let me know in the comments!