Breakthrough Prize for Supergravity

This week, $3 Million was awarded by the Breakthrough Prize to Sergio Ferrara, Daniel Z. Freedman and Peter van Nieuwenhuizen, the discoverers of the theory of supergravity, part of a special award separate from their yearly Fundamental Physics Prize. There’s a nice interview with Peter van Nieuwenhuizen on the Stony Brook University website, about his reaction to the award.

The Breakthrough Prize was designed to complement the Nobel Prize, rewarding deserving researchers who wouldn’t otherwise get the Nobel. The Nobel Prize is only awarded to theoretical physicists when they predict something that is later observed in an experiment. Many theorists are instead renowned for their mathematical inventions, concepts that other theorists build on and use but that do not by themselves make testable predictions. The Breakthrough Prize celebrates these theorists, and while it has also been awarded to others who the Nobel committee could not or did not recognize (various large experimental collaborations, Jocelyn Bell Burnell), this has always been the physics prize’s primary focus.

The Breakthrough Prize website describes supergravity as a theory that combines gravity with particle physics. That’s a bit misleading: while the theory does treat gravity in a “particle physics” way, unlike string theory it doesn’t solve the famous problems with combining quantum mechanics and gravity. (At least, as far as we know.)

It’s better to say that supergravity is a theory that links gravity to other parts of particle physics, via supersymmetry. Supersymmetry is a relationship between two types of particles: bosons, like photons, gravitons, or the Higgs, and fermions, like electrons or quarks. In supersymmetry, each type of boson has a fermion “partner”, and vice versa. In supergravity, gravity itself gets a partner, called the gravitino. Supersymmetry links the properties of particles and their partners together: both must have the same mass and the same charge. In a sense, it can unify different types of particles, explaining both under the same set of rules.

In the real world, we don’t see bosons and fermions with the same mass and charge. If gravitinos exist, then supersymmetry would have to be “broken”, giving them a high mass that makes them hard to find. Some hoped that the Large Hadron Collider could find these particles, but now it looks like it won’t, so there is no evidence for supergravity at the moment.

Instead, supergravity’s success has been as a tool to understand other theories of gravity. When the theory was proposed in the 1970’s, it was thought of as a rival to string theory. Instead, over the years it consistently managed to point out aspects of string theory that the string theorists themselves had missed, for example noticing that the theory needed not just strings but higher-dimensional objects called “branes”. Now, supergravity is understood as one part of a broader string theory picture.

In my corner of physics, we try to find shortcuts for complicated calculations. We benefit a lot from toy models: simpler, unrealistic theories that let us test our ideas before applying them to the real world. Supergravity is one of the best toy models we’ve got, a theory that makes gravity simple enough that we can start to make progress. Right now, colleagues of mine are developing new techniques for calculations at LIGO, the gravitational wave telescope. If they hadn’t worked with supergravity first, they would never have discovered these techniques.

The discovery of supergravity by Ferrara, Freedman, and van Nieuwenhuizen is exactly the kind of work the Breakthrough Prize was created to reward. Supergravity is a theory with deep mathematics, rich structure, and wide applicability. There is of course no guarantee that such a theory describes the real world. What is guaranteed, though, is that someone will find it useful.

Communicating the Continuum Hypothesis

I have a friend who is shall we say, pessimistic, about science communication. He thinks it’s too much risk for too little gain, too many misunderstandings while the most important stuff is so abstract the public will never understand it anyway. When I asked him for an example, he started telling me about a professor who works on the continuum hypothesis.

The continuum hypothesis is about different types of infinity. You might have thought there was only one type of infinity, but in the nineteenth century the mathematician Georg Cantor showed there were more, the most familiar of which are countable and uncountable. If you have a countably infinite number of things, then you can “count” them, “one, two, three…”, assigning a number to each one (even if, since they’re still infinite, you never actually finish). To imagine something uncountably infinite, think of a continuum, like distance on a meter stick, where you can always look at smaller and smaller distances. Cantor proved, using various ingenious arguments, that these two types of infinity are different: the continuum is “bigger” than a mere countable infinity.

Cantor wondered if there could be something in between, a type of infinity bigger than countable and smaller than uncountable. His hypothesis (now called the continuum hypothesis) was that there wasn’t: he thought there was no type of infinite between countable and uncountable.

(If you think you have an easy counterexample, you’re wrong. In particular, fractions are countable.)

Kurt Gödel didn’t prove the continuum hypothesis, but in 1940 he showed that at least it couldn’t be disproved, which you’d think would be good enough. In 1964, though, another mathematician named Paul Cohen showed that the continuum hypothesis also can’t be proved, at least with mathematicians’ usual axioms.

In science, if something can’t be proved or disproved, then we shrug our shoulders and say we don’t know. Math is different. In math, we choose the axioms. All we have to do is make sure they’re consistent.

What Cohen and Gödel really showed is that mathematics is consistent either way: if the continuum hypothesis is true or false, the rest of mathematics still works just as well. You can add it as an extra axiom, and add-on that gives you different types of infinity but doesn’t change everyday arithmetic.

You might think that this, finally, would be the end of the story. Instead, it was the beginning of a lively debate that continues to this day. It’s a debate that touches on what mathematics is for, whether infinity is merely a concept or something out there in the world, whether some axioms are right or wrong and what happens when you change them. It involves attempts to codify intuition, arguments about which rules “make sense” that blur the boundary between philosophy and mathematics. It also involves the professor my friend mentioned, W. H. Woodin.

Now, can I explain Woodin’s research to you?

No. I don’t understand it myself, it’s far more abstract and weird than any mathematics I’ve ever touched.

Despite that, I can tell you something about it. I can tell you about the quest he’s on, its history and its relevance, what is and is not at stake. I can get you excited, for the same reasons that I’m excited, I can show you it’s important for the same reasons I think it’s important. I can give you the “flavor” of the topic, and broaden your view of the world you live in, one containing a hundred-year conversation about the nature of infinity.

My friend is right that the public will never understand everything. I’ll never understand everything either. But what we can do, what I strive to do, is to appreciate this wide weird world in all its glory. That, more than anything, is why I communicate science.

The Real E=mc^2

It’s the most famous equation in all of physics, written on thousands of chalkboard stock photos. Part of its charm is its simplicity: E for energy, m for mass, c for the speed of light, just a few simple symbols in a one-line equation. Despite its simplicity, E=mc^2 is deep and important enough that there are books dedicated to explaining it.

What does E=mc^2 mean?

Some will tell you it means mass can be converted to energy, enabling nuclear power and the atomic bomb. This is a useful picture for chemists, who like to think about balancing ingredients: this much mass on one side, this much energy on the other. It’s not the best picture for physicists, though. It makes it sound like energy is some form of “stuff” you can pour into your chemistry set flask, and energy really isn’t like that.

There’s another story you might have heard, in older books. In that story, E=mc^2 tells you that in relativity mass, like distance and time, is relative. The more energy you have, the more mass you have. Those books will tell you that this is why you can’t go faster than light: the faster you go, the greater your mass, and the harder it is to speed up.

Modern physicists don’t talk about it that way. In fact, we don’t even write E=mc^2 that way. We’re more likely to write:

E=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}

“v” here stands for the velocity, how fast the mass is moving. The faster the mass moves, the more energy it has. Take v to zero, and you get back the familiar E=mc^2.

The older books weren’t lying to you, but they were thinking about a different notion of mass: “relativistic mass” m_r instead of “rest mass” $m_0$, related like this:

m_r=\frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}}

which explains the difference in how we write E=mc^2.

Why the change? In part, it’s because of particle physics. In particle physics, we care about the rest mass of particles. Different particles have different rest mass: each electron has one rest mass, each top quark has another, regardless of how fast they’re going. They still get more energy, and harder to speed up, the faster they go, but we don’t describe it as a change in mass. Our equations match the old books, we just talk about them differently.

Of course, you can dig deeper, and things get stranger. You might hear that mass does change with energy, but in a very different way. You might hear that mass is energy, that they’re just two perspectives on the same thing. But those are stories for another day.

I titled this post “The Real E=mc^2”, but to clarify, none of these explanations are more “real” than the others. They’re words, useful in different situations and for different people. “The Real E=mc^2” isn’t the E=mc^2 of nuclear chemists, or old books, or modern physicists. It’s the theory itself, the mathematical rules and principles that all the rest are just trying to describe.

Reader Background Poll Reflections

A few weeks back I posted a poll, asking you guys what sort of physics background you have. The idea was to follow up on a poll I did back in 2015, to see how this blog’s audience has changed.

One thing that immediately leaped out of the data was how many of you are physicists. As of writing this, 66% of readers say they either have a PhD in physics or a related field, or are currently in grad school. This includes 7% specifically from my sub-field, “amplitudeology” (though this number may be higher than usual since we just had our yearly conference, and more amplitudeologists were reminded my blog exists).

I didn’t use the same categories in 2015, so the numbers can’t be easily compared. In 2015 only 2.5% of readers described themselves as amplitudeologists. Adding these up with the physics PhDs and grad students gives 59%, which goes up to 64.5% if I include the mathematicians (who this year might have put either “PhD in a related field” or “Other Academic”). So overall the percentages are pretty similar, though now it looks like more of my readers are grad students.

Despite the small difference, I am a bit worried: it looks like I’m losing non-physicist readers. I could flatter myself and think that I inspired those non-physicists to go to grad school, but more realistically I should admit that fewer of my posts have been interesting to a non-physics audience. In 2015 I worked at the Perimeter Institute, and helped out with their public lectures. Now I’m at the Niels Bohr Institute, and I get fewer opportunities to hear questions from non-physicists. I get fewer ideas for interesting questions to answer.

I want to keep this blog’s language accessible and its audience general. I appreciate that physicists like this blog and view it as a resource, but I don’t want it to turn into a blog for physicists only. I’d like to encourage the non-physicists in the audience: ask questions! Don’t worry if it sounds naive, or if the question seems easy: if you’re confused, likely others are too.

Amplitudes 2019 Retrospective

I’m back from Amplitudes 2019, and since I have more time I figured I’d write down a few more impressions.

Amplitudes runs all the way from practical LHC calculations to almost pure mathematics, and this conference had plenty of both as well as everything in between. On the more practical side a standard “pipeline” has developed: get a large number of integrals from generalized unitarity, reduce them to a more manageable number with integration-by-parts, and then compute them with differential equations. Vladimir Smirnov and Johannes Henn presented the state of the art in this pipeline, challenging QCD calculations that required powerful methods. Others aimed to replace various parts of the pipeline. Integration-by-parts could be avoided in the numerical unitarity approach discussed by Ben Page, or alternatively with the intersection theory techniques showcased by Pierpaolo Mastrolia. More radical departures included Stefan Weinzierl’s refinement of loop-tree duality, and Jacob Bourjaily’s advocacy of prescriptive unitarity. Robert Schabinger even brought up direct integration, though I mostly viewed his talk as an independent confirmation of the usefulness of Erik Panzer’s thesis. It also showcased an interesting integral that had previously been represented by Lorenzo Tancredi and collaborators as elliptic, but turned out to be writable in terms of more familiar functions. It’s going to be interesting to see whether other such integrals arise, and whether they can be spotted in advance.

On the other end of the scale, Francis Brown was the only speaker deep enough in the culture of mathematics to insist on doing a blackboard talk. Since the conference hall didn’t actually have a blackboard, this was accomplished by projecting video of a piece of paper that he wrote on as the talk progressed. Despite the awkward setup, the talk was impressively clear, though there were enough questions that he ran out of time at the end and had to “cheat” by just projecting his notes instead. He presented a few theorems about the sort of integrals that show up in string theory. Federico Zerbini and Eduardo Casali’s talks covered similar topics, with the latter also involving intersection theory. Intersection theory also appeared in a poster from grad student Andrzej Pokraka, which overall is a pretty impressively broad showing for a part of mathematics that Sebastian Mizera first introduced to the amplitudes community less than two years ago.

Nima Arkani-Hamed’s talk on Wednesday fell somewhere in between. A series of airline mishaps brought him there only a few hours before his talk, and his own busy schedule sent him back to the airport right after the last question. The talk itself covered several topics, tied together a bit better than usual by a nice account in the beginning of what might motivate a “polytope picture” of quantum field theory. One particularly interesting aspect was a suggestion of a space, smaller than the amplituhedron, that might more accuractly the describe the “alphabet” that appears in N=4 super Yang-Mills amplitudes. If his proposal works, it may be that the infinite alphabet we were worried about for eight-particle amplitudes is actually finite. Ömer Gürdoğan’s talk mentioned this, and drew out some implications. Overall, I’m still unclear as to what this story says about whether the alphabet contains square roots, but that’s a topic for another day. My talk was right after Nima’s, and while he went over-time as always I compensated by accidentally going under-time. Overall, I think folks had fun regardless.

Though I don’t know how many people recognized this guy

Amplitudes 2019

It’s that time of year again, and I’m at Amplitudes, my field’s big yearly conference. This year we’re in Dublin, hosted by Trinity.

Which also hosts the Book of Kells, and the occasional conference reception just down the hall from the Book of Kells

Increasingly, the organizers of Amplitudes have been setting aside a few slots for talks from people in other fields. This year the “closest” such speaker was Kirill Melnikov, who pointed out some of the hurdles that make it difficult to have useful calculations to compare to the LHC. Many of these hurdles aren’t things that amplitudes-people have traditionally worked on, but are still things that might benefit from our particular expertise. Another such speaker, Maxwell Hansen, is from a field called Lattice QCD. While amplitudeologists typically compute with approximations, order by order in more and more complicated diagrams, Lattice QCD instead simulates particle physics on supercomputers, chopping up their calculations on a grid. This allows them to study much stronger forces, including the messy interactions of quarks inside protons, but they have a harder time with the situations we’re best at, where two particles collide from far away. Apparently, though, they are making progress on that kind of calculation, with some clever tricks to connect it to calculations they know how to do. While I was a bit worried that this would let them fire all the amplitudeologists and replace us with supercomputers, they’re not quite there yet, nonetheless they are doing better than I would have expected. Other speakers from other fields included Leron Borsten, who has been applying the amplitudes concept of the “double copy” to M theory and Andrew Tolley, who uses the kind of “positivity” properties that amplitudeologists find interesting to restrict the kinds of theories used in cosmology.

The biggest set of “non-traditional-amplitudes” talks focused on using amplitudes techniques to calculate the behavior not of particles but of black holes, to predict the gravitational wave patterns detected by LIGO. This year featured a record six talks on the topic, a sixth of the conference. Last year I commented that the research ideas from amplitudeologists on gravitational waves had gotten more robust, with clearer proposals for how to move forward. This year things have developed even further, with several initial results. Even more encouragingly, while there are several groups doing different things they appear to be genuinely listening to each other: there were plenty of references in the talks both to other amplitudes groups and to work by more traditional gravitational physicists. There’s definitely still plenty of lingering confusion that needs to be cleared up, but it looks like the community is robust enough to work through it.

I’m still busy with the conference, but I’ll say more when I’m back next week. Stay tuned for square roots, clusters, and Nima’s travel schedule. And if you’re a regular reader, please fill out last week’s poll if you haven’t already!

Reader Background Poll 2.0

Back in 2015, I did a poll asking how much physics background you guys had. Now four years and many new readers later, I’d like to revisit the question. I’ll explain the categories below the poll:

Amplitudeologist: You have published a paper about scattering amplitudes in quantum field theories, or expect to publish one within the next year or so.

Physics (or related field) PhD: You have a PhD in physics, or in a field with related background such as astronomy or some parts of mathematics.

Physics (or related field) Grad Student: You are a graduate student in physics or a related field. Specifically, you are either a PhD student, or a Master’s student in a research-focused program.

Undergrad or Lower: You are currently an undergraduate student (studying for a Bachelor’s degree) or are in an earlier stage of education (for example a high school student).

Physics Autodidact: Included by popular demand from the last poll: while you don’t have a physics PhD, you have taught yourself about the subject extensively beyond your formal schooling.

Other Academic: You work in Academia, but not in physics or a closely related field.

Other Technical Profession: You work in a technical profession, such as engineering, medicine, or STEM teaching.

None of the Above: Something else.

If you fit more than one category, pick the first that matches you: for example, if you are an undergrad with a published paper in Amplitudes, list yourself as an Amplitudeologist (also, well done!)

Hexagon Functions VI: The Power Cosmic

I have a new paper out this week. It’s the long-awaited companion to a paper I blogged about a few months back, itself the latest step in a program that has made up a major chunk of my research.

The title is a bit of a mouthful, but I’ll walk you through it:

The Cosmic Galois Group and Extended Steinmann Relations for Planar N = 4 SYM Amplitudes

I calculate scattering amplitudes (roughly, probabilities that elementary particles bounce off each other) in a (not realistic, and not meant to be) theory called planar N=4 super-Yang-Mills (SYM for short). I can’t summarize everything we’ve been doing here, but if you read the blog posts I linked above and some of the Handy Handbooks linked at the top of the page you’ll hopefully get a clearer picture.

We started using the Steinmann Relations a few years ago. Discovered in the 60’s, the Steinmann relations restrict the kind of equations we can use to describe particle physics. Essentially, they mean that particles can’t travel two ways at once. In this paper, we extend the Steinmann relations beyond Steinmann’s original idea. We don’t yet know if we can prove this extension works, but it seems to be true for the amplitudes we’re calculating. While we’ve presented this in talks before, this is the first time we’ve published it, and it’s one of the big results of this paper.

The other, more exotic-sounding result, has to do with something called the Cosmic Galois Group.

Évariste Galois, the famously duel-prone mathematician, figured out relations between algebraic numbers (that is, numbers you can get out of algebraic equations) in terms of a mathematical structure called a group. Today, mathematicians are interested not just in algebraic numbers, but in relations between transcendental numbers as well, specifically a kind of transcendental number called a period. These numbers show up a lot in physics, so mathematicians have been thinking about a Galois group for transcendental numbers that show up in physics, a so-called Cosmic Galois Group.

(Cosmic here doesn’t mean it has to do with cosmology. As far as I can tell, mathematicians just thought it sounded cool and physics-y. They also started out with rather ambitious ideas about it, if you want a laugh check out the last few paragraphs of this talk by Cartier.)

For us, Cosmic Galois Theory lets us study the unusual numbers that show up in our calculations. Doing this, we’ve noticed that certain numbers simply don’t show up. For example, the Riemann zeta function shows up often in our results, evaluated at many different numbers…but never evaluated at the number three. Nor does any number related to that one through the Cosmic Galois Group show up. It’s as if the theory only likes some numbers, and not others.

This weird behavior has been observed before. Mathematicians can prove it happens for some simple theories, but it even applies to the theories that describe the real world, for example to calculations of the way an electron’s path is bent by a magnetic field. Each theory seems to have its own preferred family of numbers.

For us, this has been enormously useful. We calculate our amplitudes by guesswork, starting with the right “alphabet” and then filling in different combinations, as if we’re trying all possible answers to a word jumble. Cosmic Galois Theory and Extended Steinmann have enabled us to narrow down our guess dramatically, making it much easier and faster to get to the right answer.

More generally though, we hope to contribute to mathematicians’ investigations of Cosmic Galois Theory. Our examples are more complicated than the simple theories where they currently prove things, and contain more data than the more limited results from electrons. Hopefully together we can figure out why certain numbers show up and others don’t, and find interesting mathematical principles behind the theories that govern fundamental physics.

For now, I’ll leave you with a preview of a talk I’m giving in a couple weeks’ time:

The font, of course, is Cosmic Sans

When to Read Someone Else’s Thesis

There’s a cynical truism we use to reassure grad students. A thesis is a big, daunting project, but it shouldn’t be too stressful: in the end, nobody else is going to read it.

This is mostly true. In many fields your thesis is a mix of papers you’ve already published, stitched together into your overall story. Anyone who’s interested will have read the papers the thesis is based on, they don’t need to read the thesis too.

Like every good truism, though, there is an exception. Some rare times, you will actually want to read someone else’s thesis. This isn’t usually because the material is new: rather it’s because it’s well explained.

When we academics publish, we’re often in a hurry, and there isn’t time to write well. When we publish more slowly, often we have more collaborators, so the paper is a set of compromises written by committee. Either way, we rarely make a concept totally crystal-clear.

A thesis isn’t always crystal-clear either, but it can be. It’s written by just one person, and that person is learning. A grad student who just learned a topic can be in the best position to teach it: they know exactly what confused them when they start out. Thesis-writing is also a slower process, one that gives more time to hammer at a text until it’s right. Finally, a thesis is written for a committee, and that committee usually contains people from different fields. A thesis needs to be an accessible introduction, in a way that a published paper doesn’t.

There are topics that I never really understood until I looked up the thesis of the grad student who helped discover it. There are tricks that never made it to published papers, that I’ve learned because they were tucked in to the thesis of someone who went on to do great things.

So if you’re finding a subject confusing, if you’ve read all the papers and none of them make any sense, look for the grad students. Sometimes the best explanation of a tricky topic isn’t in the published literature, it’s hidden away in someone’s thesis.

Academic Age

Growing up in the US there are a lot of age-based milestones. You can drive at 16, vote at 18, and drink at 21. Once you’re in academia though, your actual age becomes much less relevant. Instead, academics are judged based on academic age, the time since you got your PhD.

And no, we don’t get academic birthdays

Grants often have restrictions based on academic age. The European Research Council’s Starting Grant, for example, demands an academic age of 2-7. If you’re academically “older”, they expect more from you: you must instead apply for a Consolidator Grant, or an Advanced Grant.

More generally, when academics apply for jobs they are often weighed in terms of academic age. Compared to others, how long have you spent as a postdoc since your PhD? How many papers have you published since then, and how well cited were they? The longer you spend without finding a permanent position, the more likely employers are to wonder why, and the reasons they assume are rarely positive.

This creates some weird incentives. If you have a choice, it’s often better to graduate late than to graduate early. Employers don’t check how long you took to get your PhD, but they do pay attention to how many papers you published. If it’s an option, staying in school to finish one more project can actually be good for your career.

Biological age matters, but mostly for biological reasons: for example, if you plan to have children. Raising a family is harder if you have to move every few years, so those who find permanent positions by then have an easier time of it. That said, as academics have to take more temporary positions before settling down fewer people have this advantage.

Beyond that, biological age only matters again at the end of your career, especially if you work somewhere with a mandatory retirement age. Even then, retirement for academics doesn’t mean the same thing as for normal people: retired professors often have emeritus status, meaning that while technically retired they keep a role at the university, maintaining an office and often still doing some teaching or research.