It can be tempting to imagine the world in terms of lego-like building-blocks. Atoms stick together protons, neutrons, and electrons, and protons and neutrons are made of stuck-together quarks in turn. And while atoms, despite the name, aren’t indivisible, you might think that if you look small enough you’ll find indivisible, unchanging pieces, the smallest building-blocks of reality.
Part of that is true. We might, at some point, find the smallest pieces, the things everything else is made of. (In a sense, it’s quite likely we’ve already found them!) But those pieces don’t behave like lego blocks. They aren’t indivisible and unchanging.
Instead, particles, even the most fundamental particles, transform! The most familiar example is beta decay, a radioactive process where a neutron turns into a proton, emitting an electron and a neutrino. This process can be explained in terms of more fundamental particles: the neutron is made of three quarks, and one of those quarks transforms from a “down quark” to an “up quark”. But the explanation, as far as we can tell, doesn’t go any deeper. Quarks aren’t unchanging, they transform.
There’s a suggestion I keep hearing, both from curious amateurs and from dedicated crackpots: why doesn’t this mean that quarks have parts? If a down quark can turn into an up dark, an electron, and a neutrino, then why doesn’t that mean that a down quark contains an up quark, an electron, and a neutrino?
The simplest reason is that this isn’t the only way a quark transforms. You can also have beta-plus decay, where an up quark transforms into a down quark, emitting a neutrino and the positively charged anti-particle of the electron, called a positron.

So to make your idea work, you’d somehow need each down quark to contain an up quark plus some other particles, and each up quark to contain a down quark plus some other particles.
Can you figure out some complicated scheme that works like that? Maybe. But there’s a deeper reason why this is the wrong path.
Transforming particles are part of a broader phenomenon, called particle production. Reactions in particle physics can produce new particles that weren’t there before. This wasn’t part of the earliest theories of quantum mechanics that described one electron at a time. But if you want to consider the quantum properties of not just electrons, but the electric field as well, then you need a more complete theory, called a quantum field theory. And in those theories, you can produce new particles. It’s as simple as turning on the lights: from a wiggling electron, you make light, which in a fully quantum theory is made up of photons. Those photons weren’t “part of” the electron to start with, they are produced by its motion.
If you want to avoid transforming particles, to describe everything in terms of lego-like building-blocks, then you want to avoid particle production altogether. Can you do this in a quantum field theory?
Actually, yes! But your theory won’t describe the whole of the real world.
In physics, we have examples of theories that don’t have particle production. These example theories have a property called integrability. They are theories we can “solve”, doing calculations that aren’t possible in ordinary theories, named after the fact that the oldest such theories in classical mechanics were solved using integrals.
Normal particle physics theories have conserved charges. Beta decay conserves electric charge: you start out with a neutral particle, and end up with one particle with positive charge and another with negative charge. It also conserves other things, like “electron-number” (the electron has electron-number one, the neutrino that comes out with it has electron-number minus one), energy, and momentum.
Integrable theories have those charges too, but they have more. In fact, they have an infinite number of conserved charges. As a result, you can show that in these theories it is impossible to produce new particles. It’s as if each particle’s existence is its own kind of conserved charge, one that can never be created or destroyed, so that each collision just rearranges the particles, never makes new ones.
But while we can write down these theories, we know they can’t describe the whole of the real world. In an integrable theory, when you build things up from the fundamental building-blocks, their energy follows a pattern. Compare the energy of a bunch of different combinations, and you find a characteristic kind of statistical behavior called a Poisson distribution.
Look at the distribution of energies of nuclei of atoms, and you’ll find a very different kind of behavior. It’s called a Wigner-Dyson distribution, and it indicates the opposite of integrability: chaos. Chaos is behavior that can’t be “solved” like integrable theories, behavior that has to be approached by simulations and approximations.
So if you really want there to be un-changing building-blocks, if you think that’s really essential? Then you should probably start looking at integrable theories. But I wouldn’t hold my breath if I were you: the real world seems pretty clearly chaotic, not integrable. And probably, that means particle production is here to stay.



