I don’t usually do obituaries here, but sometimes I have something worth saying.
Chen Ning Yang, a towering figure in particle physics, died last week.
I never met him. By the time I started my PhD at Stony Brook, Yang was long-retired, and hadn’t visited the Yang Institute for Theoretical Physics in quite some time.
(Though there was still an office door, tucked behind the institute’s admin staff, that bore his name.)
The Nobel Prize doesn’t always honor the most important theoretical physicists. In order to get a Nobel Prize, you need to discover something that gets confirmed by experiment. Generally, it has to be a very crisp, clear statement about reality. New calculation methods and broader new understandings are on shakier ground, and theorists who propose them tend to be left out, or at best combined together into lists of partial prizes long after the fact.
Yang was lucky. With T. D. Lee, he had made that crisp, clear statement. He claimed that the laws of physics, counter to everyone’s expectations, are not the same when reflected in a mirror. In 1956, Wu confirmed the prediction, and Lee and Yang got the prize the year after.
That’s a huge, fundamental discovery about the natural world. But as a theorist, I don’t think that was Yang’s greatest accomplishment.
Yang contributed to other fields. Practicing theorists have seen his name strewn across concepts, formalisms, and theorems. I didn’t have space to talk about him in my article on integrability for Quanta Magazine, but only just barely: another paragraph or two, and he would have been there.
But his most influential contribution is something even more fundamental. And long-time readers of this blog should already know what it is.
Yang, along with Robert Mills, proposed Yang-Mills Theory.
There isn’t a Nobel prize for Yang-Mills theory. In 1953, when Yang and Mills proposed the theory, it was obviously wrong, a theory that couldn’t explain anything in the natural world, mercilessly mocked by famous bullshit opponent Wolfgang Pauli. Not even an ambitious idea that seemed outlandish (like plate tectonics), it was a theory with such an obvious missing piece that, for someone who prioritized experiment like the Nobel committee does, it seemed pointless to consider.
All it had going for it was that it was a clear generalization, an obvious next step. If there are forces like electromagnetism, with one type of charge going from plus to minus, why not a theory with multiple, interacting types of charge?
Nothing about Yang-Mills theory was impossible, or contradictory. Mathematically, it was fine. It obeyed all the rules of quantum mechanics. It simply didn’t appear to match anything in the real world.
But, as theorists learn, nature doesn’t let a good idea go to waste.
Of the four fundamental forces of nature, as it would happen, half are Yang-Mills theories. Gravity is different, electromagnetism is simpler, and could be understood without Yang and Mills’ insights. But the weak nuclear force, that’s a Yang-Mills theory. It wasn’t obvious in 1953 because it wasn’t clear how the massless, photon-like particles in Yang-Mills theory could have mass, and it wouldn’t become clear until the work of Peter Higgs over a decade later. And the strong nuclear force, that’s also a Yang-Mills theory, missed because of the ability of such a strong force to “confine” charges, hiding them away.
So Yang got a Nobel, not for understanding half of nature’s forces before anyone else had, but from a quirky question of symmetry.
In practice, Yang was known for all of this, and more. He was enormously influential. I’ve heard it claimed that he personally kept China from investing in a new particle collider, the strength of his reputation the most powerful force on that side of the debate, as he argued that a developing country like China should be investing in science with more short-term industrial impact, like condensed matter and atomic physics. I wonder if the debate will shift with his death, and what commitments the next Chinese five-year plan will make.
Ultimately, Yang is an example of what a theorist can be, a mix of solid work, counterintuitive realizations, and the thought-through generalizations that nature always seems to make use of in the end. If you’re not clear on what a theoretical physicist is, or what one can do, let Yang’s story be your guide.











