Author Archives: 4gravitons

Mandatory Dumb Acronyms

Sometimes, the world is silly for honest, happy reasons. And sometimes, it’s silly for reasons you never even considered.

Scientific projects often have acronyms, some of which are…clever, let’s say. Astronomers are famous for acronyms. Read this list, and you can find examples from 2D-FRUTTI and ABRACADABRA to WOMBAT and YORIC. Some of these aren’t even “really” acronyms, using letters other than the beginning of each word, multiple letters from a word, or both. (An egregious example from that list: VESTALE from “unVEil the darknesS of The gAlactic buLgE”.)

But here’s a pattern you’ve probably not noticed. I suggest that you should see more of these…clever…acronyms in projects in Europe, and they should show up in a wider range of fields, not just astronomy. And the reason why, is the European Research Council.

In the US, scientific grants are spread out among different government agencies. Typical grants are small, the kind of thing that lets a group share a postdoc every few years, with different types of grants covering projects of different scales.

The EU, instead, has the European Research Council, or ERC, with a flagship series of grants covering different career stages: Starting, Consolidator, and Advanced. Unlike most US grants, these are large (supporting multiple employees over several years), individual (awarded to a single principal investigator, not a collaboration) and general (the ERC uses the same framework across multiple fields, from physics to medicine to history).

That means there are a lot of medium-sized research projects in Europe that are funded by an ERC grant. And each of them are required to have an acronym.

Why? Who knows? “Acronym” is simply one of the un-skippable entries in the application forms, with a pre-set place of honor in their required grant proposal format. Nobody checks whether it’s a “real acronym”, so in practice it often isn’t, turning into some sort of catchy short name with “acronym vibes”. It, like everything else on these forms, is optimized to catch the attention of a committee of scientists who really would rather be doing something else, often discussed and refined by applicants’ mentors and sometimes even dedicated university staff.

So if you run into a scientist in Europe who proudly leads a group with a cutesy, vaguely acronym-adjacent name? And you keep running into these people?

It’s not a coincidence, and it’s not just scientists’ sense of humor. It’s the ERC.

Reminder to Physics Popularizers: “Discover” Is a Technical Term

When a word has both an everyday meaning and a technical meaning, it can cause no end of confusion.

I’ve written about this before using one of the most common examples, the word “model”, which means something quite different in the phrases “large language model”, “animal model for Alzheimer’s” and “model train”. And I’ve written about running into this kind of confusion at the beginning of my PhD, with the word “effective”.

But there is one example I see crop up again and again, even with otherwise skilled science communicators. It’s the word “discover”.

“Discover”, in physics, has a technical meaning. It’s a first-ever observation of something, with an associated standard of evidence. In this sense, the LHC discovered the Higgs boson in 2012, and LIGO discovered gravitational waves in 2015. And there are discoveries we can anticipate, like the cosmic neutrino background.

But of course, “discover” has a meaning in everyday English, too.

You probably think I’m going to say that “discover”, in everyday English, doesn’t have the same statistical standards it does in physics. That’s true of course, but it’s also pretty obvious, I don’t think it’s confusing anybody.

Rather, there is a much more important difference that physicists often forget: in everyday English, a discovery is a surprise.

“Discover”, a word arguably popularized by Columbus’s discovery of the Americas, is used pretty much exclusively to refer to learning about something you did not know about yet. It can be minor, like discovering a stick of gum you forgot, or dramatic, like discovering you’ve been transformed into a giant insect.

Now, as a scientist, you might say that everything that hasn’t yet been observed is unknown, ready for discovery. We didn’t know that the Higgs boson existed before the LHC, and we don’t know yet that there is a cosmic neutrino background.

But just because we don’t know something in a technical sense, doesn’t mean it’s surprising. And if something isn’t surprising at all, then in everyday, colloquial English, people don’t call it a discovery. You don’t “discover” that the store has milk today, even if they sometimes run out. You don’t “discover” that a movie is fun, if you went because you heard reviews claim it would be, even if the reviews might have been wrong. You don’t “discover” something you already expect.

At best, maybe you could “discover” something controversial. If you expect to find a lost city of gold, and everyone says you’re crazy, then fine, you can discover the lost city of gold. But if everyone agrees that there is probably a lost city of gold there? Then in everyday English, it would be very strange to say that you were the one who discovered it.

With this in mind, the way physicists use the word “discover” can cause a lot of confusion. It can make people think, as with gravitational waves, that a “discovery” is something totally new, that we weren’t pretty confident before LIGO that gravitational waves exist. And it can make people get jaded, and think physicists are overhyping, talking about “discovering” this or that particle physics fact because an experiment once again did exactly what it was expected to.

My recommendation? If you’re writing for the general public, use other words. The LHC “decisively detected” the Higgs boson. We expect to see “direct evidence” of the cosmic neutrino background. “Discover” has baggage, and should be used with care.

Explain/Teach/Advocate

Scientists have different goals when they communicate, leading to different styles, or registers, of communication. If you don’t notice what register a scientist is using, you might think they’re saying something they’re not. And if you notice someone using the wrong register for a situation, they may not actually be a scientist.

Sometimes, a scientist is trying to explain an idea to the general public. The point of these explanations is to give you appreciation and intuition for the science, not to understand it in detail. This register makes heavy use of metaphors, and sometimes also slogans. It should almost never be taken literally, and a contradiction between two different scientist explanations usually just means they are using incompatible metaphors for the same concept. Sometimes, scientists who do this a lot will comment on other metaphors you might have heard, referencing other slogans to help explain what those explanations miss. They do this knowing that they do, in the end, agree on the actual science: they’re just trying to give you another metaphor, with a deeper intuition for a neglected part of the story.

Other times, scientists are trying to teach a student to be able to do something. Teaching can use metaphors or slogans as introductions, but quickly moves past them, because it wants to show the students something they can use: an equation, a diagram, a classification. If a scientist shows you any of these equations/diagrams/classifications without explaining what they mean, then you’re not the student they had in mind: they had designed their lesson for someone who already knew those things. Teaching may convey the kinds of appreciation and intuition that explanations for the general public do, but that goal gets much less emphasis. The main goal is for students with the appropriate background to learn to do something new.

Finally, sometimes scientists are trying to advocate for a scientific point. In this register, and only in this register, are they trying to convince people who don’t already trust them. This kind of communication can include metaphors and slogans as decoration, but the bulk will be filled with details, and those details should constitute evidence: they should be a structured argument, one that lays out, scientifically, why others should come to the same conclusion.

A piece that tries to address multiple audiences can move between registers in a clean way. But if the register jumps back and forth, or if the wrong register is being used for a task, that usually means trouble. That trouble can be simple boredom, like a scientist’s typical conference talk that can’t decide whether it just wants other scientists to appreciate the work, whether it wants to teach them enough to actually use it, or whether it needs to convince any skeptics. It can also be more sinister: a lot of crackpots write pieces that are ostensibly aimed at convincing other scientists, but are almost entirely metaphors and slogans, pieces good at tugging on the general public’s intuition without actually giving scientists anything meaningful to engage with.

If you’re writing, or speaking, know what register you need to use to do what you’re trying to do! And if you run into a piece that doesn’t make sense, consider that it might be in a different register than you thought.

Fear of the Dark, Physics Version

Happy Halloween! I’ve got a yearly tradition on this blog of talking about the spooky side of physics. This year, we’ll think about what happens…when you turn off the lights.

Over history, astronomy has given us larger and larger views of the universe. We started out thinking the planets, Sun, and Moon were human-like, just a short distance away. Measuring distances, we started to understand the size of the Earth, then the Sun, then realized how much farther still the stars were from us. Gradually, we came to understand that some of the stars were much farther away than others. Thinkers like Immanuel Kant speculated that “nebulae” were clouds of stars like our own Milky Way, and in the early 20th century better distance measurements confirmed it, showing that Andromeda was not a nearby cloud, but an entirely different galaxy. By the 1960’s, scientists had observed the universe’s cosmic microwave background, seeing as far out as it was possible to see.

But what if we stopped halfway?

Since the 1920’s, we’ve known the universe is expanding. Since the 1990’s, we’ve thought that that expansion is speeding up: faraway galaxies are getting farther and farther away from us. Space itself is expanding, carrying the galaxies apart…faster than light.

That ever-increasing speed has a consequence. It means that, eventually, each galaxy will fly beyond our view. One by one, the other galaxies will disappear, so far away that light will not have had enough time to reach us.

From our perspective, it will be as if the lights, one by one, started to turn out. Each faraway light, each cloudy blur that hides a whirl of worlds, will wink out. The sky will get darker and darker, until to an astronomer from a distant future, the universe will appear a strangely limited place:

A single whirl of stars, in a deep, dark, void.

C. N. Yang, Dead at 103

I don’t usually do obituaries here, but sometimes I have something worth saying.

Chen Ning Yang, a towering figure in particle physics, died last week.

Picture from 1957, when he received his Nobel

I never met him. By the time I started my PhD at Stony Brook, Yang was long-retired, and hadn’t visited the Yang Institute for Theoretical Physics in quite some time.

(Though there was still an office door, tucked behind the institute’s admin staff, that bore his name.)

The Nobel Prize doesn’t always honor the most important theoretical physicists. In order to get a Nobel Prize, you need to discover something that gets confirmed by experiment. Generally, it has to be a very crisp, clear statement about reality. New calculation methods and broader new understandings are on shakier ground, and theorists who propose them tend to be left out, or at best combined together into lists of partial prizes long after the fact.

Yang was lucky. With T. D. Lee, he had made that crisp, clear statement. He claimed that the laws of physics, counter to everyone’s expectations, are not the same when reflected in a mirror. In 1956, Wu confirmed the prediction, and Lee and Yang got the prize the year after.

That’s a huge, fundamental discovery about the natural world. But as a theorist, I don’t think that was Yang’s greatest accomplishment.

Yang contributed to other fields. Practicing theorists have seen his name strewn across concepts, formalisms, and theorems. I didn’t have space to talk about him in my article on integrability for Quanta Magazine, but only just barely: another paragraph or two, and he would have been there.

But his most influential contribution is something even more fundamental. And long-time readers of this blog should already know what it is.

Yang, along with Robert Mills, proposed Yang-Mills Theory.

There isn’t a Nobel prize for Yang-Mills theory. In 1953, when Yang and Mills proposed the theory, it was obviously wrong, a theory that couldn’t explain anything in the natural world, mercilessly mocked by famous bullshit opponent Wolfgang Pauli. Not even an ambitious idea that seemed outlandish (like plate tectonics), it was a theory with such an obvious missing piece that, for someone who prioritized experiment like the Nobel committee does, it seemed pointless to consider.

All it had going for it was that it was a clear generalization, an obvious next step. If there are forces like electromagnetism, with one type of charge going from plus to minus, why not a theory with multiple, interacting types of charge?

Nothing about Yang-Mills theory was impossible, or contradictory. Mathematically, it was fine. It obeyed all the rules of quantum mechanics. It simply didn’t appear to match anything in the real world.

But, as theorists learn, nature doesn’t let a good idea go to waste.

Of the four fundamental forces of nature, as it would happen, half are Yang-Mills theories. Gravity is different, electromagnetism is simpler, and could be understood without Yang and Mills’ insights. But the weak nuclear force, that’s a Yang-Mills theory. It wasn’t obvious in 1953 because it wasn’t clear how the massless, photon-like particles in Yang-Mills theory could have mass, and it wouldn’t become clear until the work of Peter Higgs over a decade later. And the strong nuclear force, that’s also a Yang-Mills theory, missed because of the ability of such a strong force to “confine” charges, hiding them away.

So Yang got a Nobel, not for understanding half of nature’s forces before anyone else had, but from a quirky question of symmetry.

In practice, Yang was known for all of this, and more. He was enormously influential. I’ve heard it claimed that he personally kept China from investing in a new particle collider, the strength of his reputation the most powerful force on that side of the debate, as he argued that a developing country like China should be investing in science with more short-term industrial impact, like condensed matter and atomic physics. I wonder if the debate will shift with his death, and what commitments the next Chinese five-year plan will make.

Ultimately, Yang is an example of what a theorist can be, a mix of solid work, counterintuitive realizations, and the thought-through generalizations that nature always seems to make use of in the end. If you’re not clear on what a theoretical physicist is, or what one can do, let Yang’s story be your guide.

AGI Is an Economic Term, Not a Computer Science Term

Since it resonated with the audience, I’ll recap my main argument against AGI here. ‘General intelligence’ is like phlogiston, or the aether. It’s an outmoded scientific concept that does not refer to anything real. Any explanatory work it did can be done better by a richer scientific frame. 1/3

Shannon Vallor (@shannonvallor.bsky.social) 2025-10-02T22:09:06.610Z

I ran into this Bluesky post, and while a lot of the argument resonated with me, I think the author is missing something important.

Shannon Vallor is a philosopher of technology at the University of Edinburgh. She spoke recently at a meeting honoring the 75th anniversary of the Turing Test. The core of her argument, recapped in the Bluesky post, is that artificial general intelligence, or AGI, represents an outdated scientific concept, like phlogiston. While some researchers in the past thought of humans as having a kind of “general” intelligence that a machine would need to replicate, scientists today break down intelligence into a range of capabilities that can be present in different ways. From that perspective, searching for artificial general intelligence doesn’t make much sense: instead, researchers should focus on the particular capabilities they’re interested in.

I have a lot of sympathy for Vallor’s argument, though perhaps from a different direction than what she had in mind. I don’t know enough about intelligence in a biological context to comment there. But from a computer science perspective, intelligence obviously is composed of distinct capabilities. Something that computes, like a human or a machine, can have different amounts of memory, different processing speeds, different input and output rates. In terms of ability to execute algorithms, it can be a Turing machine, or something less than a Turing machine. In terms of the actual algorithms it runs, they can have different scaling for large inputs, and different overhead for small inputs. In terms of learning, one can have better data, or priors that are closer to the ground truth.

These days, all of these Turing machine algorithm capabilities are in some sense obviously not what the people interested in AGI are after. We already have them in currently-existing computers, after all. Instead, people who pursue AGI, and AI researchers more generally, are interested in heuristics. Humans do certain things without reliable algorithms, instead we do them faster, but unreliably. And while some human heuristics seem pretty general, it’s widely understood that in the heuristics world there is no free lunch. No heuristic is good for everything, and no heuristic is bad for everything.

So is “general intelligence” a mirage, like phlogiston?

If you think about it as a scientific goal, sure. But as a product, not so much.

Consider a word processor.

Obviously, from a scientific perspective, there are lots of capabilities that involve processing words. Some were things machines could do well before the advent of modern computers: consider typewriters, for instance. Others still are out of reach, after all, we do still pay people to write. (I myself am such person!)

But at the same time, if I say that a computer program is a word processor, you have a pretty good idea of what that means. There was a time when processing words involved an enormous amount of labor, work done by a large number of specialized people (mostly women). Look at a workplace documentary from the 1960’s, and compare it to a workplace today, and you’ll see that word processor technology has radically changed what tasks people do.

AGI may not make sense as a scientific goal, but it’s perfectly coherent in these terms.

Right now, a lot of tasks are done by what one could broadly call human intelligence. Some of these tasks have already fallen to technology, others will fall one by one. But it’s not unreasonable to think of a package deal, a technology that covers enough of such tasks that human intelligence stops being economically viable. That’s not because there will be some scientific general intelligence that the technology would then have, but because a decent number of intellectual tasks do seem to come bundled together. And you don’t need to cover 100% of human capabilities to radically change workplaces, any more than you needed to cover 100% of the work of a 1960’s secretary with a word processor for modern secretarial work to have a dramatically different scope and role.

It’s worth keeping in mind what is and isn’t scientifically coherent, to be aware that you can’t just extrapolate the idea of general intelligence to any future machine. (For one, it constrains what “superintelligence” could look like.) But that doesn’t mean we should be complacent, and assume that AGI is impossible in principle. AGI, like a word processor, would be a machine that covers a set of tasks well enough that people use it instead of hiring people to do the work by hand. It’s just a broader set of tasks.

Congratulations to John Clarke, Michel Devoret, and John Martinis!

The 2025 Physics Nobel Prize was announced this week, awarded to John Clarke, Michel Devoret, and John Martinis for building an electrical circuit that exhibited quantum effects like tunneling and energy quantization on a macroscopic scale.

Press coverage of this prize tends to focus on two aspects: the idea that these three “scaled up” quantum effects to medium-sized objects (the technical account quotes a description that calls it “big enough to get one’s grubby fingers on”), and that the work paved the way for some of the fundamental technologies people are exploring for quantum computing.

That’s a fine enough story, but it leaves out what made these folks’ work unique, why it differs from other Nobel laureates working with other quantum systems. It’s a bit more technical of a story, but I don’t think it’s that technical. I’ll try to tell it here.

To start, have you heard of Bose-Einstein Condensates?

Bose-Einstein Condensates are macroscopic quantum states that have already won Nobel prizes. First theorized based on ideas developed by Einstein and Bose (the namesake of bosons), they involve a large number of particles moving together, each in the same state. While the first gas that obeyed Einstein’s equations for a Bose-Einstein Condensate was created in the 1990’s, after Clarke, Devoret, and Martinis’s work, other things based on essentially the same principles were created much earlier. A laser works on the same principles as a Bose-Einstein condensate, as do phenomena like superconductivity and superfluidity.

This means that lasers, superfluids, and superconductors had been showing off quantum mechanics on grubby finger scales well before Clarke, Devoret, and Martinis’s work. But the science rewarded by this year’s Nobel turns out to be something quite different.

Because the different photons in laser light are independently in identical quantum states, lasers are surprisingly robust. You can disrupt the state of one photon, and it won’t interfere with the other states. You’ll have weakened the laser’s consistency a little bit, but the disruption won’t spread much, if at all.

That’s very different from the way quantum systems usually work. Schrodinger’s cat is the classic example. You have a box with a radioactive atom, and if that atom decays, it releases poison, killing the cat. You don’t know if the atom has decayed or not, and you don’t know if the cat is alive or not. We say the atom’s state is a superposition of decayed and not decayed, and the cat’s state is a superposition of alive and dead.

But unlike photons in a laser, the atom and the cat in Schrodinger’s cat are not independent: if the atom has decayed, the cat is dead, if the atom has not, the cat is alive. We say the states of atom and cat are entangled.

That makes these so-called “Schrodinger’s cat” states much more delicate. The state of the cat depends on the state of the atom, and those dependencies quickly “leak” to the outside world. If you haven’t sealed the box well, the smell of the room is now also entangled with the cat…which, if you have a sense of smell, means that you are entangled with the cat. That’s the same as saying that you have measured the cat, so you can’t treat it as quantum any more.

What Clarke, Devoret, and Martinis did was to build a circuit that could exhibit, not a state like a laser, but a “cat state”: delicately entangled, at risk of total collapse if measured.

That’s why they deserved a Nobel, even in a world where there are many other Nobels for different types of quantum states. Lasers, superconductors, even Bose-Einstein condensates were in a sense “easy mode”, robust quantum states that didn’t need all that much protection. This year’s physics laureates, in contrast, showed it was possible to make circuits that could make use of quantum mechanics’ most delicate properties.

That’s also why their circuits, in particular, are being heralded as a predecessor for modern attempts at quantum computers. Quantum computers do tricks with entanglement, they need “cat states”, not Bose-Einstein Condensates. And Clarke, Devoret, and Martinis’s work in the 1980’s was the first clear proof that this was a feasible thing to do.

When Your Theory Is Already Dead

Occasionally, people try to give “even-handed” accounts of crackpot physics, like people who claim to have invented anti-gravity devices. These accounts don’t go so far as to say that the crackpots are right, and will freely point out plausible doubts about the experiments. But at the end of the day, they’ll conclude that we still don’t really know the answer, and perhaps the next experiment will go differently. More tests are needed.

For someone used to engineering, or to sciences without much theory behind them, this might sound pretty reasonable. Sure, any one test can be critiqued. But you can’t prove a negative: you can’t rule out a future test that might finally see the effect.

That’s all well and good…if you have no idea what you’re doing. But these people, just like anyone else who grapples with physics, aren’t just proposing experiments. They’re proposing theories: models of the world.

And once you’ve got a theory, you don’t just have to care about future experiments. You have to care about past experiments too. Some theories…are already dead.

The "You're already dead" scene from the anime North Star
Warning: this is a link to TVTropes, enter only if you have lots of time on your hands

To get a little more specific, let’s talk about antigravity proposals that use scalar fields.

Scalar fields seem to have some sort of mysticism attached to them in the antigravity crackpot community, but for physicists they’re just the simplest possible type of field, the most obvious thing anyone would have proposed once they were comfortable enough with the idea of fields in the first place. We know of one, the Higgs field, which gives rise to the Higgs boson.

We also know that if there are any more, they’re pretty subtle…and as a result, pretty useless.

We know this because of a wide variety of what are called “fifth-force experiments“, tests and astronomical observations looking for an undiscovered force that, like gravity, reaches out to long distances. Many of these experiments are quite general, the sort of thing that would pick up a wide variety of scalar fields. And so far, none of them have seen anything.

That “so far” doesn’t mean “wait and see”, though. Each time physicists run a fifth-force experiment, they establish a limit. They say, “a fifth force cannot be like this“. It can’t be this strong, it can’t operate on these scales, it can’t obey this model. Each experiment doesn’t just say “no fifth force yet”, it says “no fifth force of this kind, at all”.

When you write down a theory, if you’re not careful, you might find it has already been ruled out by one of these experiments. This happens to physicists all the time. Physicists want to use scalar fields to understand the expansion of the universe, they use them to think about dark matter. And frequently, a model one physicist proposed will be ruled out, not by new experiments, but by someone doing the math and realizing that the model is already contradicted by a pre-existing fifth-force experiment.

So can you prove a negative? Sort of.

If you never commit to a model, if you never propose an explanation, then you can never be disproven, you can always wait for the experiment of your dreams to come true. But if you have any model, any idea, any explanation at all, then your explanation will have implications. Those implications may kill your theory in a future experiment. Or, they may have already killed it.

Requests for an Ethnography of Cheating

What is AI doing to higher education? And what, if anything, should be done about it?

Chad Orzel at Counting Atoms had a post on this recently, tying the question to a broader point. There is a fundamental tension in universities, between actual teaching and learning and credentials. A student who just wants the piece of paper at the end has no reason not to cheat if they can get away with it, so the easier it becomes to get away with cheating (say, by using AI), the less meaningful the credential gets. Meanwhile, professors who want students to actually learn something are reduced to trying to “trick” these goal-oriented students into accidentally doing something that makes them fall in love with a subject, while being required to police the credential side of things.

Social science, as Orzel admits and emphasizes, is hard. Any broad-strokes picture like this breaks down into details, and while Orzel talks through some of those details he and I are of course not social scientists.

Because of that, I’m not going to propose my own “theory” here. Instead, think of this post as a request.

I want to read an ethnography of cheating. Like other ethnographies, it should involve someone spending time in the culture in question (here, cheating students), talking to the people involved, and getting a feeling for what they believe and value. Ideally, it would be augmented with an attempt at quantitative data, like surveys, that estimate how representative the picture is.

I suspect that cheating students aren’t just trying to get a credential. Part of why is that I remember teaching pre-meds. In the US, students don’t directly study medicine as a Bachelor’s degree. Instead, they study other subjects as pre-medical students (“pre-meds”), and then apply to Medical School, which grants a degree on the same level as a PhD. As part of their application, they include a standardized test called the MCAT, which checks that they have the basic level of math and science that the medical schools expect.

A pre-med in a physics class, then, has good reason to want to learn: the better they know their physics, the better they will do on the MCAT. If cheating was mostly about just trying to get a credential, pre-meds wouldn’t cheat.

I’m pretty sure they do cheat, though. I didn’t catch any cheaters back when I taught, but there were a lot of students who tried to push the rules, pre-meds and not.

Instead, I think there are a few other motivations involved. And in an ethnography of cheating, I’d love to see some attempt to estimate how prevalent they are:

  1. Temptation: Maybe students know that they shouldn’t cheat, in the same way they know they should go to the gym. They want to understand the material and learn in the same way people who exercise have physical goals. But the mind, and flesh, are weak. You have a rough week, you feel like you can’t handle the work right now. So you compensate. Some of the motivation here is still due to credentials: a student who shrugs and accepts that their breakup will result in failing a course is a student who might have to pay for an extra year of ultra-expensive US university education to get that credential. But I suspect there is a more fundamental motivation here, related to ego and easy self-deception. If you do the assignment, even if you cheat for part of it, you get to feel like you did it, while if you just turn in a blank page you have to accept the failure.
  2. Skepticism: Education isn’t worth much if it doesn’t actually work. Students may be skeptical that the things that professors are asking them to do actually help them learn what they want to learn, or that the things the professors want them to learn are actually the course’s most valuable content. A student who uses ChatGPT to write an essay might believe that they will never have to write something without ChatGPT in life, so why not use it now? Sometimes professors simply aren’t explicit about what an exercise is actually meant to teach (there have been a huge number of blog posts explaining that writing is meant to teach you to think, not to write), and sometimes professors are genuinely pretty bad at teaching, since there is little done to retain the good ones in most places. A student in this situation still has to be optimistic about some aspect of the education, at some time. But they may be disillusioned, or just interested in something very different.
  3. Internalized Expectations: Do employers actually care if you get a bad grade? Does it matter? By the time a student is in college, they’ve been spending half their waking hours in a school environment for over a decade. Maybe the need to get good grades is so thoroughly drilled in that the actual incentives don’t matter. If you think of yourself as the kind of person who doesn’t fail courses, and you start failing, what do you do?
  4. External Non-Credential Expectations: Don’t worry about the employers, worry about the parents. Some college students have the kind of parents who keep checking in on how they’re doing, who want to see evidence and progress the same way they did when they were kids. Any feedback, no matter how much it’s intended to teach, not to judge, might get twisted into a judgement. Better to avoid that judgement, right?
  5. Credentials, but for the Government, not Employers: Of course, for some students, failing really does wreck their life. If you’re on the kind of student visa that requires you maintain grades a certain level, you’ve got a much stronger incentive to cheat, imposed for much less reason.

If you’re aware of a good ethnography of cheating, let me know! And if you’re a social scientist, consider studying this!

To Measure Something or to Test It

Black holes have been in the news a couple times recently.

On one end, there was the observation of an extremely large black hole in the early universe, when no black holes of the kind were expected to exist. My understanding is this is very much a “big if true” kind of claim, something that could have dramatic implications but may just be being misunderstood. At the moment, I’m not going to try to work out which one it is.

In between, you have a piece by me in Quanta Magazine a couple weeks ago, about tests of whether black holes deviate from general relativity. They don’t, by the way, according to the tests so far.

And on the other end, you have the coverage last week of a “confirmation” (or even “proof”) of the black hole area law.

The black hole area law states that the total area of the event horizons of all black holes will always increase. It’s also known as the second law of black hole thermodynamics, paralleling the second law of thermodynamics that entropy always increases. Hawking proved this as a theorem in 1971, assuming that general relativity holds true.

(That leaves out quantum effects, which indeed can make black holes shrink, as Hawking himself famously later argued.)

The black hole area law is supposed to hold even when two black holes collide and merge. While the combination may lose energy (leading to gravitational waves that carry energy to us), it will still have greater area, in the end, than the sum of the black holes that combined to make it.

Ok, so that’s the area law. What’s this paper that’s supposed to “finally prove” it?

The LIGO, Virgo, and KAGRA collaborations recently published a paper based on gravitational waves from one particularly clear collision of black holes, which they measured back in January. They compare their measurements to predictions from general relativity, and checked two things: whether the measurements agreed with predictions based on the Kerr metric (how space-time around a rotating black hole is supposed to behave), and whether they obeyed the area law.

The first check isn’t so different in purpose from the work I wrote about in Quanta Magazine, just using different methods. In both studies, physicists are looking for deviations from the laws of general relativity, triggered by the highly curved environments around black holes. These deviations could show up in one way or another in any black hole collision, so while you would ideally look for them by scanning over many collisions (as the paper I reported on did), you could do a meaningful test even with just one collision. That kind of a check may not be very strenuous (if general relativity is wrong, it’s likely by a very small amount), but it’s still an opportunity, diligently sought, to be proven wrong.

The second check is the one that got the headlines. It also got first billing in the paper title, and a decent amount of verbiage in the paper itself. And if you think about it for more than five minutes, it doesn’t make a ton of sense as presented.

Suppose the black hole area law is wrong, and sometimes black holes lose area when they collide. Even if this happened sometimes, you wouldn’t expect it to happen every time. It’s not like anyone is pondering a reverse black hole area law, where black holes only shrink!

Because of that, I think it’s better to say that LIGO measured the black hole area law for this collision, while they tested whether black holes obey the Kerr metric. In one case, they’re just observing what happened in this one situation. In the other, they can try to draw implications for other collisions.

That doesn’t mean their work wasn’t impressive, but it was impressive for reasons that don’t seem to be getting emphasized. It’s impressive because, prior to this paper, they had not managed to measure the areas of colliding black holes well enough to confirm that they obeyed the area law! The previous collisions looked like they obeyed the law, but when you factor in the experimental error they couldn’t say it with confidence. The current measurement is better, and can. So the new measurement is interesting not because it confirms a fundamental law of the universe or anything like that…it’s interesting because previous measurements were so bad, that they couldn’t even confirm this kind of fundamental law!

That, incidentally, feels like a “missing mood” in pop science. Some things are impressive not because of their amazing scale or awesome implications, but because they are unexpectedly, unintuitively, really really hard to do. These measurements shouldn’t be thought of, or billed, as tests of nature’s fundamental laws. Instead they’re interesting because they highlight what we’re capable of, and what we still need to accomplish.