Tag Archives: theoretical physics

Bonus Info For “Cosmic Paradox Reveals the Awful Consequence of an Observer-Free Universe”

I had a piece in Quanta Magazine recently, about a tricky paradox that’s puzzling quantum gravity researchers and some early hints at its resolution.

The paradox comes from trying to describe “closed universes”, which are universes where it is impossible to reach the edge, even if you had infinite time to do it. This could be because the universe wraps around like a globe, or because the universe is expanding so fast no traveler could ever reach an edge. Recently, theoretical physicists have been trying to describe these closed universes, and have noticed a weird issue: each such universe appears to have only one possible quantum state. In general, quantum systems have more possible states the more complex they are, so for a whole universe to have only one possible state is a very strange thing, implying a bizarrely simple universe. Most worryingly, our universe may well be closed. Does that mean that secretly, the real world has only one possible state?

There is a possible solution that a few groups are playing around with. The argument that a closed universe has only one state depends on the fact that nothing inside a closed universe can reach the edge. But if nothing can reach the edge, then trying to observe the universe as a whole from outside would tell you nothing of use. Instead, any reasonable measurement would have to come from inside the universe. Such a measurement introduces a new kind of “edge of the universe”, this time not in the far distance, but close by: the edge between an observer and the rest of the world. And when you add that edge to the calculations, the universe stops being closed, and has all the many states it ought to.

This was an unusually tricky story for me to understand. I narrowly avoided several misconceptions, and I’m still not sure I managed to dodge all of them. Likewise, it was unusually tricky for the editors to understand, and I suspect it was especially tricky for Quanta’s social media team to understand.

It was also, quite clearly, tricky for the readers to understand. So I thought I would use this post to clear up a few misconceptions. I’ll say a bit more about what I learned investigating this piece, and try to clarify what the result does and does not mean.

Q: I’m confused about the math terms you’re using. Doesn’t a closed set contain its boundary?

A: Annoyingly, what physicists mean by a closed universe is a bit different from what mathematicians mean by a closed manifold, which is in turn more restrictive than what mathematicians mean by a closed set. One way to think about this that helped me is that in an open set you can take a limit that takes you out of the set, which is like being able to describe a (possibly infinite) path that takes you “out of the universe”. A closed set doesn’t have that, every path, no matter how long, still ends up in the same universe.

Q: So a bunch of string theorists did a calculation and got a result that doesn’t make sense, a one-state universe. What if they’re just wrong?

A: Two things:

First, the people I talked to emphasized that it’s pretty hard to wiggle out of the conclusion. It’s not just a matter of saying you don’t believe in string theory and that’s that. The argument is based in pretty fundamental principles, and it’s not easy to propose a way out that doesn’t mess up something even more important.

That’s not to say it’s impossible. One of the people I interviewed, Henry Maxfield, thinks that some of the recent arguments are misunderstanding how to use one of their core techniques, in a way that accidentally presupposes the one-state universe.

But even he thinks that the bigger point, that closed universes have only one state, is probably true.

And that’s largely due to a second reason: there are older arguments that back the conclusion up.

One of the oldest dates back to John Wheeler, a physicist famous for both deep musings about the nature of space and time and coining evocative terms like “wormhole”. In the 1960’s, Wheeler argued that, in a theory where space and time can be curved, one should think of a system’s state as including every configuration it can evolve into over time, since it can be tricky to specify a moment “right now”. In a closed universe, you could expect a quantum system to explore every possible configuration…meaning that such a universe should be described by only one state.

Later, physicists studying holography ran into a similar conclusion. They kept noticing systems in quantum gravity where you can describe everything that happens inside by what happens on the edges. If there are no edges, that seems to suggest that in some sense there is nothing inside. Apparently, Lenny Susskind had a slide at the end of talks in the 90’s where he kept bringing up this point.

So even if the modern arguments are wrong, and even if string theory is wrong…it still looks like the overall conclusion is right.

Q: If a closed universe has only one state, does that make it deterministic, and thus classical?

A: Oh boy…

So, on the one hand, there is an idea, which I think also goes back to Wheeler, that asks: “if the universe as a whole has a wavefunction, how does it collapse?” One possibility is that the universe has only one state, so that nobody is needed to collapse the wavefunction, it already is in a definite state.

On the other hand, a universe with only one state does not actually look much like a classical universe. Our universe looks classical largely due to a process called decoherence, where small quantum systems interact with big quantum systems with many states, diluting quantum effects until the world looks classical. If there is only one state, there are no big systems to interact with, and the world has large quantum fluctuations that make it look very different from a classical universe.

Q: How, exactly, are you defining “observer”?

A: A few commenters helpfully chimed in to talk about how physics models observers as “witness” systems, objects that preserve some record of what happens to them. A simple example is a ball sitting next to a bowl: if you find the ball in the bowl later, it means something moved it. This process, preserving what happens and making it more obvious, is in essence how physicists think about observers.

However, this isn’t the whole story in this case. Here, different research groups introducing observers are doing it in different ways. That’s, in part, why none of them are confident they have the right answer.

One of the approaches describes an observer in terms of its path through space and time, its worldline. Instead of a detailed witness system with specific properties, all they do is pick out a line and say “the observer is there”. Identifying that line, and declaring it different from its surroundings, seems to be enough to recover the complexity the universe ought to have.

The other approach treats the witness system in a bit more detail. We usually treat an observer in quantum mechanics as infinitely large compared to the quantum systems they measure. This approach instead gives the observer a finite size, and uses that to estimate how far their experience will be from classical physics.

Crucially, both approaches aren’t a matter of defining a physical object, and looking for it in the theory. Given a collection of atoms, neither team can tell you what is an observer, and what isn’t. Instead, in each approach, the observer is arbitrary: a choice, made by us when we use quantum mechanics, of what to count as an observer and what to count as the rest of the world. That choice can be made in many different ways, and each approach tries to describe what happens when you change that choice.

This is part of what makes this approach uncomfortable to some more philosophically-minded physicists: it treats observers not as a predictable part of the physical world, but as a mathematical description used to make statements about the world.

Q: If these ideas come from AdS/CFT, which is an open universe, how do you use them to describe a closed universe?

A: While more examples emerged later, initially theorists were thinking about two types of closed universes:

First, think about a black hole. You may have heard that when you fall into a black hole, you watch the whole universe age away before your eyes, due to the dramatic differences in the passage of time caused by the extreme gravity. Once you’ve seen the outside universe fade away, you are essentially in a closed universe of your own. The outside world will never affect you again, and you are isolated, with no path to the outside. These black hole interiors are one of the examples theorists looked at.

The other example are so-called “baby universes”. When physicists use quantum mechanics to calculate the chance of something happening, they have to add up every possible series of events that could have happened in between. For quantum gravity, this includes every possible arrangement of space and time. This includes arrangements with different shapes, including ones with tiny extra “baby universes” which branch off from the main universe and return. Universes with these “baby universes” are another example that theorists considered to understand closed universes.

Q: So wait, are you actually saying the universe needs to be observed to exist? That’s ridiculous, didn’t the universe exist long before humans existed to observe it? Is this some sort of Copenhagen Interpretation thing, or that thing called QBism?

You’re starting to ask philosophical questions, and here’s the thing:

There are physicists who spend their time thinking about how to interpret quantum mechanics. They talk to philosophers, and try to figure out how to answer these kinds of questions in a consistent and systematic way, keeping track of all the potential pitfalls and implications. They’re part of a subfield called “quantum foundations”.

The physicists whose work I was talking about in that piece are not those people.

Of the people I interviewed, one of them, Rob Myers, probably has lunch with quantum foundations researchers on occasion. The others, based at places like MIT and the IAS, probably don’t even do that.

Instead, these are people trying to solve a technical problem, people whose first inclination is to put philosophy to the side, and “shut up and calculate”. These people did a calculation that ought to have worked, checking how many quantum states they could find in a closed universe, and found a weird and annoying answer: just one. Trying to solve the problem, they’ve done technical calculation work, introducing a path through the universe, or a boundary around an observer, and seeing what happens. While some of them may have their own philosophical leanings, they’re not writing works of philosophy. Their papers don’t talk through the philosophical implications of their ideas in all that much detail, and they may well have different thoughts as to what those implications are.

So while I suspect I know the answers they would give to some of these questions, I’m not sure.

Instead, how about I tell you what I think?

I’m not a philosopher, I can’t promise my views will be consistent, that they won’t suffer from some pitfall. But unlike other people’s views, I can tell you what my own views are.

To start off: yes, the universe existed before humans. No, there is nothing special about our minds, we don’t have psychic powers to create the universe with our thoughts or anything dumb like that.

What I think is that, if we want to describe the world, we ought to take lessons from science.

Science works. It works for many reasons, but two important ones stand out.

Science works because it leads to technology, and it leads to technology because it guides actions. It lets us ask, if I do this, what will happen? What will I experience?

And science works because it lets people reach agreement. It lets people reach agreement because it lets us ask, if I observe this, what do I expect you to observe? And if we agree, we can agree on the science.

Ultimately, if we want to describe the world with the virtues of science, our descriptions need to obey this rule: they need to let us ask “what if?” questions about observations.

That means that science cannot avoid an observer. It can often hide the observer, place them far away and give them an infinite mind to behold what they see, so that one observer is essentially the same as another. But we shouldn’t expect to always be able to do this. Sometimes, we can’t avoid saying something about the observer: about where they are, or how big they are, for example.

These observers, though, don’t have to actually exist. We should be able to ask “what if” questions about others, and that means we should be able to dream up fictional observers, and ask, if they existed, what would they see? We can imagine observers swimming in the quark-gluon plasma after the Big Bang, or sitting inside a black hole’s event horizon, or outside our visible universe. The existence of the observer isn’t a physical requirement, but a methodological one: a restriction on how we can make useful, scientific statements about the world. Our theory doesn’t have to explain where observers “come from”, and can’t and shouldn’t do that. The observers aren’t part of the physical world being described, they’re a precondition for us to describe that world.

Is this the Copenhagen Interpretation? I’m not a historian, but I don’t think so. The impression I get is that there was no real Copenhagen Interpretation, that Bohr and Heisenberg, while more deeply interested in philosophy than many physicists today, didn’t actually think things through in enough depth to have a perspective you can name and argue with.

Is this QBism? I don’t think so. It aligns with some things QBists say, but they say a lot of silly things as well. It’s probably some kind of instrumentalism, for what that’s worth.

Is it logical positivism? I’ve been told logical positivists would argue that the world outside the visible universe does not exist. If that’s true, I’m not a logical positivist.

Is it pragmatism? Maybe? What I’ve seen of pragmatism definitely appeals to me, but I’ve seen my share of negative characterizations as well.

In the end, it’s an idea about what’s useful and what’s not, about what moves science forward and what doesn’t. It tries to avoid being preoccupied with unanswerable questions, and as much as possible to cash things out in testable statements. If I do this, what happens? What if I did that instead?

The results I covered for Quanta, to me, show that the observer matters on a deep level. That isn’t a physical statement, it isn’t a mystical statement. It’s a methodological statement: if we want to be scientists, we can’t give up on the observer.

C. N. Yang, Dead at 103

I don’t usually do obituaries here, but sometimes I have something worth saying.

Chen Ning Yang, a towering figure in particle physics, died last week.

Picture from 1957, when he received his Nobel

I never met him. By the time I started my PhD at Stony Brook, Yang was long-retired, and hadn’t visited the Yang Institute for Theoretical Physics in quite some time.

(Though there was still an office door, tucked behind the institute’s admin staff, that bore his name.)

The Nobel Prize doesn’t always honor the most important theoretical physicists. In order to get a Nobel Prize, you need to discover something that gets confirmed by experiment. Generally, it has to be a very crisp, clear statement about reality. New calculation methods and broader new understandings are on shakier ground, and theorists who propose them tend to be left out, or at best combined together into lists of partial prizes long after the fact.

Yang was lucky. With T. D. Lee, he had made that crisp, clear statement. He claimed that the laws of physics, counter to everyone’s expectations, are not the same when reflected in a mirror. In 1956, Wu confirmed the prediction, and Lee and Yang got the prize the year after.

That’s a huge, fundamental discovery about the natural world. But as a theorist, I don’t think that was Yang’s greatest accomplishment.

Yang contributed to other fields. Practicing theorists have seen his name strewn across concepts, formalisms, and theorems. I didn’t have space to talk about him in my article on integrability for Quanta Magazine, but only just barely: another paragraph or two, and he would have been there.

But his most influential contribution is something even more fundamental. And long-time readers of this blog should already know what it is.

Yang, along with Robert Mills, proposed Yang-Mills Theory.

There isn’t a Nobel prize for Yang-Mills theory. In 1953, when Yang and Mills proposed the theory, it was obviously wrong, a theory that couldn’t explain anything in the natural world, mercilessly mocked by famous bullshit opponent Wolfgang Pauli. Not even an ambitious idea that seemed outlandish (like plate tectonics), it was a theory with such an obvious missing piece that, for someone who prioritized experiment like the Nobel committee does, it seemed pointless to consider.

All it had going for it was that it was a clear generalization, an obvious next step. If there are forces like electromagnetism, with one type of charge going from plus to minus, why not a theory with multiple, interacting types of charge?

Nothing about Yang-Mills theory was impossible, or contradictory. Mathematically, it was fine. It obeyed all the rules of quantum mechanics. It simply didn’t appear to match anything in the real world.

But, as theorists learn, nature doesn’t let a good idea go to waste.

Of the four fundamental forces of nature, as it would happen, half are Yang-Mills theories. Gravity is different, electromagnetism is simpler, and could be understood without Yang and Mills’ insights. But the weak nuclear force, that’s a Yang-Mills theory. It wasn’t obvious in 1953 because it wasn’t clear how the massless, photon-like particles in Yang-Mills theory could have mass, and it wouldn’t become clear until the work of Peter Higgs over a decade later. And the strong nuclear force, that’s also a Yang-Mills theory, missed because of the ability of such a strong force to “confine” charges, hiding them away.

So Yang got a Nobel, not for understanding half of nature’s forces before anyone else had, but from a quirky question of symmetry.

In practice, Yang was known for all of this, and more. He was enormously influential. I’ve heard it claimed that he personally kept China from investing in a new particle collider, the strength of his reputation the most powerful force on that side of the debate, as he argued that a developing country like China should be investing in science with more short-term industrial impact, like condensed matter and atomic physics. I wonder if the debate will shift with his death, and what commitments the next Chinese five-year plan will make.

Ultimately, Yang is an example of what a theorist can be, a mix of solid work, counterintuitive realizations, and the thought-through generalizations that nature always seems to make use of in the end. If you’re not clear on what a theoretical physicist is, or what one can do, let Yang’s story be your guide.

When Your Theory Is Already Dead

Occasionally, people try to give “even-handed” accounts of crackpot physics, like people who claim to have invented anti-gravity devices. These accounts don’t go so far as to say that the crackpots are right, and will freely point out plausible doubts about the experiments. But at the end of the day, they’ll conclude that we still don’t really know the answer, and perhaps the next experiment will go differently. More tests are needed.

For someone used to engineering, or to sciences without much theory behind them, this might sound pretty reasonable. Sure, any one test can be critiqued. But you can’t prove a negative: you can’t rule out a future test that might finally see the effect.

That’s all well and good…if you have no idea what you’re doing. But these people, just like anyone else who grapples with physics, aren’t just proposing experiments. They’re proposing theories: models of the world.

And once you’ve got a theory, you don’t just have to care about future experiments. You have to care about past experiments too. Some theories…are already dead.

The "You're already dead" scene from the anime North Star
Warning: this is a link to TVTropes, enter only if you have lots of time on your hands

To get a little more specific, let’s talk about antigravity proposals that use scalar fields.

Scalar fields seem to have some sort of mysticism attached to them in the antigravity crackpot community, but for physicists they’re just the simplest possible type of field, the most obvious thing anyone would have proposed once they were comfortable enough with the idea of fields in the first place. We know of one, the Higgs field, which gives rise to the Higgs boson.

We also know that if there are any more, they’re pretty subtle…and as a result, pretty useless.

We know this because of a wide variety of what are called “fifth-force experiments“, tests and astronomical observations looking for an undiscovered force that, like gravity, reaches out to long distances. Many of these experiments are quite general, the sort of thing that would pick up a wide variety of scalar fields. And so far, none of them have seen anything.

That “so far” doesn’t mean “wait and see”, though. Each time physicists run a fifth-force experiment, they establish a limit. They say, “a fifth force cannot be like this“. It can’t be this strong, it can’t operate on these scales, it can’t obey this model. Each experiment doesn’t just say “no fifth force yet”, it says “no fifth force of this kind, at all”.

When you write down a theory, if you’re not careful, you might find it has already been ruled out by one of these experiments. This happens to physicists all the time. Physicists want to use scalar fields to understand the expansion of the universe, they use them to think about dark matter. And frequently, a model one physicist proposed will be ruled out, not by new experiments, but by someone doing the math and realizing that the model is already contradicted by a pre-existing fifth-force experiment.

So can you prove a negative? Sort of.

If you never commit to a model, if you never propose an explanation, then you can never be disproven, you can always wait for the experiment of your dreams to come true. But if you have any model, any idea, any explanation at all, then your explanation will have implications. Those implications may kill your theory in a future experiment. Or, they may have already killed it.

To Measure Something or to Test It

Black holes have been in the news a couple times recently.

On one end, there was the observation of an extremely large black hole in the early universe, when no black holes of the kind were expected to exist. My understanding is this is very much a “big if true” kind of claim, something that could have dramatic implications but may just be being misunderstood. At the moment, I’m not going to try to work out which one it is.

In between, you have a piece by me in Quanta Magazine a couple weeks ago, about tests of whether black holes deviate from general relativity. They don’t, by the way, according to the tests so far.

And on the other end, you have the coverage last week of a “confirmation” (or even “proof”) of the black hole area law.

The black hole area law states that the total area of the event horizons of all black holes will always increase. It’s also known as the second law of black hole thermodynamics, paralleling the second law of thermodynamics that entropy always increases. Hawking proved this as a theorem in 1971, assuming that general relativity holds true.

(That leaves out quantum effects, which indeed can make black holes shrink, as Hawking himself famously later argued.)

The black hole area law is supposed to hold even when two black holes collide and merge. While the combination may lose energy (leading to gravitational waves that carry energy to us), it will still have greater area, in the end, than the sum of the black holes that combined to make it.

Ok, so that’s the area law. What’s this paper that’s supposed to “finally prove” it?

The LIGO, Virgo, and KAGRA collaborations recently published a paper based on gravitational waves from one particularly clear collision of black holes, which they measured back in January. They compare their measurements to predictions from general relativity, and checked two things: whether the measurements agreed with predictions based on the Kerr metric (how space-time around a rotating black hole is supposed to behave), and whether they obeyed the area law.

The first check isn’t so different in purpose from the work I wrote about in Quanta Magazine, just using different methods. In both studies, physicists are looking for deviations from the laws of general relativity, triggered by the highly curved environments around black holes. These deviations could show up in one way or another in any black hole collision, so while you would ideally look for them by scanning over many collisions (as the paper I reported on did), you could do a meaningful test even with just one collision. That kind of a check may not be very strenuous (if general relativity is wrong, it’s likely by a very small amount), but it’s still an opportunity, diligently sought, to be proven wrong.

The second check is the one that got the headlines. It also got first billing in the paper title, and a decent amount of verbiage in the paper itself. And if you think about it for more than five minutes, it doesn’t make a ton of sense as presented.

Suppose the black hole area law is wrong, and sometimes black holes lose area when they collide. Even if this happened sometimes, you wouldn’t expect it to happen every time. It’s not like anyone is pondering a reverse black hole area law, where black holes only shrink!

Because of that, I think it’s better to say that LIGO measured the black hole area law for this collision, while they tested whether black holes obey the Kerr metric. In one case, they’re just observing what happened in this one situation. In the other, they can try to draw implications for other collisions.

That doesn’t mean their work wasn’t impressive, but it was impressive for reasons that don’t seem to be getting emphasized. It’s impressive because, prior to this paper, they had not managed to measure the areas of colliding black holes well enough to confirm that they obeyed the area law! The previous collisions looked like they obeyed the law, but when you factor in the experimental error they couldn’t say it with confidence. The current measurement is better, and can. So the new measurement is interesting not because it confirms a fundamental law of the universe or anything like that…it’s interesting because previous measurements were so bad, that they couldn’t even confirm this kind of fundamental law!

That, incidentally, feels like a “missing mood” in pop science. Some things are impressive not because of their amazing scale or awesome implications, but because they are unexpectedly, unintuitively, really really hard to do. These measurements shouldn’t be thought of, or billed, as tests of nature’s fundamental laws. Instead they’re interesting because they highlight what we’re capable of, and what we still need to accomplish.

Microdosing Vibe Physics

Have you heard of “vibe physics”?

The phrase “vibe coding” came first. People have been using large language models like ChatGPT to write computer code (and not the way I did last year). They chat with the model, describing what they want to do and asking the model to code it up. You can guess the arguments around this, from people who are convinced AI is already better than a human programmer to people sure the code will be riddled with errors and vulnerabilities.

Now, there are people claiming not only to do vibe coding, but vibe physics: doing theoretical physics by chatting with an AI.

I think we can all agree that’s a lot less plausible. Some of the people who do vibe coding actually know how to code, but I haven’t seen anyone claiming to do vibe physics who actually understands physics. They’re tech entrepreneurs in the most prominent cases, random people on the internet otherwise. And while a lot of computer code is a minor tweak on something someone has already done, theoretical physics doesn’t work that way: if someone has already come up with your idea, you’re an educator, not a physicist.

Still, I think there is something to keep in mind about the idea of “vibe physics”, related to where physics comes from.

Here’s a question to start with: go back a bit before the current chat-bot boom. There were a ton of other computational and mathematical tools. Theorem-proving software could encode almost arbitrary mathematical statements in computer code and guarantee their accuracy. Statistical concepts like Bayes’ rule described how to reason from evidence to conclusions, not flawlessly but as well as anyone reliably can. We had computer simulations for a wealth of physical phenomena, and approximation schemes for many others.

With all those tools, why did we still have human physicists?

That is, go back before ChatGPT, before large language models. Why not just code up a program that starts with the evidence and checks which mathematical model fits it best?

In principle, I think you really could have done that. But you could never run that program. It would take too long.

Doing science 100% correctly and reliably is agonizingly slow, and prohibitively expensive. You cannot check every possible model, nor can you check those models against all the available data. You must simplify your problem, somehow, even if it makes your work less reliable, and sometimes incorrect.

And for most of history, humans have provided that simplification.

A physicist isn’t going to consider every possible model. They’re going to consider models that are similar to models they studied, or similar to models others propose. They aren’t going to consider all the evidence. They’ll look at some of the evidence, the evidence other physicists are talking about and puzzled by. They won’t simulate the consequences of their hypotheses in exhaustive detail. Instead, they’ll guess, based on their own experience, a calculation that captures what they expect to be relevant.

Human physicists provided the unreliable part of physics, the heuristics. The “vibe physics”, if you will.

AI is also unreliable, also heuristic. But humans still do this better than AI.

Part of the difference is specificity. These AIs are trained on all of human language, and then perhaps fine-tuned on a general class of problems. A human expert has spent their life fine-tuning on one specific type of problem, and their intuitions, their heuristics, their lazy associations and vibes, all will be especially well-suited to problems of that type.

Another part of the difference, though, is scale.

When you talk to ChatGPT, it follows its vibes into paragraphs of text. If you turn on reasoning features, you make it check its work in the background, but it still is generating words upon words inside, evaluating those words, then generating more.

I suspect, for a physicist, the “control loop” is much tighter. Many potential ideas get ruled out a few words in. Many aren’t even expressed in words at all, just concepts. A human physicist is ultimately driven by vibes, but they check and verify those vibes, based on their experience, at a much higher frequency than any current AI system can achieve.

(I know almost nothing about neuroscience. I’m just basing this on what it can feel like, to grope through a sentence and have it assemble itself as it goes into something correct, rather than having to go back and edit it.)

As companies get access to bigger datacenters, I suspect they’ll try to make this loop tighter, to get AI to do something closer to what (I suspect, it appears) humans do. And then maybe AI will be able to do vibe physics.

Even then, though, you should not do vibe physics with the AI.

If you look at the way people describe doing vibe physics, they’re not using the AI for the vibes. They’re providing the vibes, and the AI is supposed to check things.

And that, I can confidently say, is completely ass-backwards. The AI is a vibe machine, it is great at vibes. Substituting your vibes will just make it worse. On the other hand, the AI is awful at checking things. It can find published papers sometimes, which can help you check something. But it is not set up to do the math, at least not unless the math can be phrased as a simple Python script or an IMO problem. In order to do anything like that, it has to call another type of software to verify. And you could have just used that software.

Theoretical physics is still not something everyone can do. Proposing a crackpot theory based on a few papers you found on Google and a couple YouTube videos may make you feel less confident than proposing a crackpot theory based on praise from ChatGPT and a list of papers it claims have something to do with your idea, which makes it more tempting. But it’s still proposing a crackpot theory. If you want to get involved, there’s still no substitute for actually learning how physics works.

Value in Formal Theory Land

What makes a physics theory valuable?

You may think that a theory’s job is to describe reality, to be true. If that’s the goal, we have a whole toolbox of ways to assess its value. We can check if it makes predictions and if those predictions are confirmed. We can assess whether the theory can cheat to avoid the consequences of its predictions (falsifiability) and whether its complexity is justified by the evidence (Occam’s razor, and statistical methods that follow from it).

But not every theory in physics can be assessed this way.

Some theories aren’t even trying to be true. Others may hope to have evidence some day, but are clearly not there yet, either because the tests are too hard or the theory hasn’t been fleshed out enough.

Some people specialize in theories like these. We sometimes say they’re doing “formal theory”, working with the form of theories rather than whether they describe the world.

Physics isn’t mathematics. Work in formal theory is still supposed to help describe the real world. But that help might take a long time to arrive. Until then, how can formal theorists know which theories are valuable?

One option is surprise. After years tinkering with theories, a formal theorist will have some idea of which sorts of theories are possible and which aren’t. Some of this is intuition and experience, but sometimes it comes in the form of an actual “no-go theorem”, a proof that a specific kind of theory cannot be consistent.

Intuition and experience can be wrong, though. Even no-go theorems are fallible, both because they have assumptions which can be evaded and because people often assume they go further than they do. So some of the most valuable theories are valuable because they are surprising: because they do something that many experienced theorists think is impossible.

Another option is usefulness. Here I’m not talking about technology: these are theories that may or may not describe the real world and can’t be tested in feasible experiments, they’re not being used for technology! But they can certainly be used by other theorists. They can show better ways to make predictions from other theories, or better ways to check other theories for contradictions. They can be a basis that other theories are built on.

I remember, back before my PhD, hearing about the consistent histories interpretation of quantum mechanics. I hadn’t heard much about it, but I did hear that it allowed calculations that other interpretations didn’t. At the time, I thought this was an obvious improvement: surely, if you can’t choose based on observations, you should at least choose an interpretation that is useful. In practice, it doesn’t quite live up to the hype. The things it allows you to calculate are things other interpretations would say don’t make sense to ask, questions like “what was the history of the universe” instead of observations you can test like “what will I see next?” But still, being able to ask new questions has proven useful to some, and kept a community interested.

Often, formal theories are judged on vaguer criteria. There’s a notion of explanatory power, of making disparate effects more intuitively part of the same whole. There’s elegance, or beauty, which is the theorist’s Occam’s razor, favoring ideas that do more with less. And there’s pure coolness, where a bunch of nerds are going to lean towards ideas that let them play with wormholes and multiverses.

But surprise, and usefulness, feel more solid to me. If you can find someone who says “I didn’t think this was possible”, then you’ve almost certainly done something valuable. And if you can’t do that, “I’d like to use this” is an excellent recommendation too.

Why Solving the Muon Puzzle Doesn’t Solve the Puzzle

You may have heard that the muon g-2 problem has been solved.

Muons are electrons’ heavier cousins. As spinning charged particles, they are magnetic, the strength of that magnetism characterized by a number denoted “g”. If you were to guess this number from classical physics alone, you’d conclude it should be 2, but quantum mechanics tweaks it. The leftover part, “g-2”, can be measured, and predicted, with extraordinary precision, which ought to make it an ideal test: if our current understanding of the particle physics, called the Standard Model, is subtly wrong, the difference might be noticeable there.

And for a while, it looked like such a difference was indeed noticeable. Extremely precise experiments over the last thirty years have consistently found a number slightly different from the extremely precise calculations, different enough that it seemed quite unlikely to be due to chance.

Now, the headlines are singing a different tune.

What changed?

That headline might make you think the change was an experimental result, a new measurement that changed the story. It wasn’t, though. There is a new, more precise measurement, but it agrees with the old measurements.

So the change has to be in the calculations, right? They did a new calculation, corrected a mistake or just pushed up their precision, and found that the Standard Model matches the experiment after all?

…sort of, but again, not really. The group of theoretical physicists associated with the experiment did release new, more accurate calculations. But it wasn’t the new calculations, by themselves, that made a difference. Instead, it was a shift in what kind of calculations they used…or even more specifically, what kind of calculations they trusted.

Parts of the calculation of g-2 can be done with Feynman diagrams, those photogenic squiggles you see on physicists’ blackboards. That part is very precise, and not especially controversial. However, Feynman diagrams only work well when forces between particles are comparatively weak. They’re great for electromagnetism, even better for the weak nuclear force. But for the strong nuclear force, the one that holds protons and neutrons together, you often need a different method.

For g-2, that used to be done via a “data-driven” method. Physicists measured different things, particles affected by the strong nuclear force in different ways, and used that to infer how the strong force would affect g-2. By getting a consistent picture from different experiments, they were reasonably confident that they had the right numbers.

Back in 2020, though, a challenger came to the scene, with another method. Called lattice QCD, this method involves building gigantic computer simulations of the effect of the strong force. People have been doing lattice QCD since the 1970’s, and the simulations have been getting better and better, until in 2020, a group managed to calculate the piece of the g-2 calculation that had until then been done by the data-driven method.

The lattice group found a very different result than what had been found previously. Instead of a wild disagreement with experiment, their calculation agreed. According to them, everything was fine, the muon g-2 was behaving exactly as the Standard Model predicted.

For some of us, that’s where the mystery ended. Clearly, something must be wrong with the data-driven method, not with the Standard Model. No more muon puzzle.

But the data-driven method wasn’t just a guess, it was being used for a reason. A significant group of physicists found the arguments behind it convincing. Now, there was a new puzzle: figuring out why the data-driven method and lattice QCD disagree.

Five years later, has that mystery been solved? Is that, finally, what the headlines are about?

Again, not really, no.

The theorists associated with the experiment have decided to trust lattice QCD, not the data-driven method. But they don’t know what went wrong, exactly.

Instead, they’ve highlighted cracks in the data-driven method. The way the data-driven method works, it brings together different experiments to try to get a shared picture. But that shared picture has started to fall apart. A new measurement by a different experiment doesn’t fit into the system: the data-driven method now “has tensions”, as physicists say. It’s no longer possible to combine all experiments into a shared picture they way they used to. Meanwhile, lattice QCD has gotten even better, reaching even higher precision. From the perspective of the theorists associated with the muon g-2 experiment, switching methods is now clearly the right call.

But does that mean they solved the puzzle?

If you were confident that lattice QCD is the right approach, then the puzzle was already solved in 2020. All that changed was the official collaboration finally acknowledging that.

And if you were confident that the data-driven method was the right approach, then the puzzle is even worse. Now, there are tensions within the method itself…but still no explanation of what went wrong! If you had good reasons to think the method should work, you still have those good reasons. Now you’re just…more puzzled.

I am reminded of another mystery, a few years back, when an old experiment announced a dramatically different measurement for the mass of the W boson. Then, I argued the big mystery was not how the W boson’s mass had changed (it hadn’t), but how they came to be so confident in a result so different from what others, also confidently, had found. In physics, our confidence is encoded in numbers, estimated and measured and tested and computed. If we’re not estimating that confidence correctly…then that’s the real mystery, the real puzzle. One much more important to solve.


Also, I had two more pieces out this week! In Quanta I have a short explainer about bosons and fermions, while at Ars Technica I have a piece about machine learning at the LHC. I may have a “bonus info” post on the latter at some point, I have to think about whether I have enough material for it.

Amplitudes 2025 This Week

Summer is conference season for academics, and this week held my old sub-field’s big yearly conference, called Amplitudes. This year, it was in Seoul at Seoul National University, the first time the conference has been in Asia.

(I wasn’t there, I don’t go to these anymore. But I’ve been skimming slides in my free time, to give you folks the updates you crave. Be forewarned that conference posts like these get technical fast, I’ll be back to my usual accessible self next week.)

There isn’t a huge amplitudes community in Korea, but it’s bigger than it was back when I got started in the field. Of the organizers, Kanghoon Lee of the Asia Pacific Center for Theoretical Physics and Sangmin Lee of Seoul National University have what I think of as “core amplitudes interests”, like recursion relations and the double-copy. The other Korean organizers are from adjacent areas, work that overlaps with amplitudes but doesn’t show up at the conference each year. There was also a sizeable group of organizers from Taiwan, where there has been a significant amplitudes presence for some time now. I do wonder if Korea was chosen as a compromise between a conference hosted in Taiwan or in mainland China, where there is also quite a substantial amplitudes community.

One thing that impresses me every year is how big, and how sophisticated, the gravitational-wave community in amplitudes has grown. Federico Buccioni’s talk began with a plot that illustrates this well (though that wasn’t his goal):

At the conference Amplitudes, dedicated to the topic of scattering amplitudes, there were almost as many talks with the phrase “black hole” in the title as there were with “scattering” or “amplitudes”! This is for a topic that did not even exist in the subfield when I got my PhD eleven years ago.

With that said, gravitational wave astronomy wasn’t quite as dominant at the conference as Buccioni’s bar chart suggests. There were a few talks each day on the topic: I counted seven in total, excluding any short talks on the subject in the gong show. Spinning black holes were a significant focus, central to Jung-Wook Kim’s, Andres Luna’s and Mao Zeng’s talks (the latter two showing some interesting links between the amplitudes story and classic ideas in classical mechanics) and relevant in several others, with Riccardo Gonzo, Miguel Correia, Ira Rothstein, and Enrico Herrmann’s talks showing not just a wide range of approaches, but an increasing depth of research in this area.

Herrmann’s talk in particular dealt with detector event shapes, a framework that lets physicists think more directly about what a specific particle detector or observer can see. He applied the idea not just to gravitational waves but to quantum gravity and collider physics as well. The latter is historically where this idea has been applied the most thoroughly, as highlighted in Hua Xing Zhu’s talk, where he used them to pick out particular phenomena of interest in QCD.

QCD is, of course, always of interest in the amplitudes field. Buccioni’s talk dealt with the theory’s behavior at high-energies, with a nice example of the “maximal transcendentality principle” where some quantities in QCD are identical to quantities in N=4 super Yang-Mills in the “most transcendental” pieces (loosely, those with the highest powers of pi). Andrea Guerreri’s talk also dealt with high-energy behavior in QCD, trying to address an experimental puzzle where QCD results appeared to violate a fundamental bound all sensible theories were expected to obey. By using S-matrix bootstrap techniques, they clarify the nature of the bound, finding that QCD still obeys it once correctly understood, and conjecture a weird theory that should be possible to frame right on the edge of the bound. The S-matrix bootstrap was also used by Alexandre Homrich, who talked about getting the framework to work for multi-particle scattering.

Heribertus Bayu Hartanto is another recent addition to Korea’s amplitudes community. He talked about a concrete calculation, two-loop five-particle scattering including top quarks, a tricky case that includes elliptic curves.

When amplitudes lead to integrals involving elliptic curves, many standard methods fail. Jake Bourjaily’s talk raised a question he has brought up again and again: what does it mean to do an integral for a new type of function? One possible answer is that it depends on what kind of numerics you can do, and since more general numerical methods can be cumbersome one often needs to understand the new type of function in more detail. In light of that, Stephen Jones’ talk was interesting in taking a common problem often cited with generic approaches (that they have trouble with the complex numbers introduced by Minkowski space) and finding a more natural way in a particular generic approach (sector decomposition) to take them into account. Giulio Salvatori talked about a much less conventional numerical method, linked to the latest trend in Nima-ology, surfaceology. One of the big selling points of the surface integral framework promoted by people like Salvatori and Nima Arkani-Hamed is that it’s supposed to give a clear integral to do for each scattering amplitude, one which should be amenable to a numerical treatment recently developed by Michael Borinsky. Salvatori can currently apply the method only to a toy model (up to ten loops!), but he has some ideas for how to generalize it, which will require handling divergences and numerators.

Other approaches to the “problem of integration” included Anna-Laura Sattelberger’s talk that presented a method to find differential equations for the kind of integrals that show up in amplitudes using the mathematical software Macaulay2, including presenting a package. Matthias Wilhelm talked about the work I did with him, using machine learning to find better methods for solving integrals with integration-by-parts, an area where two other groups have now also published. Pierpaolo Mastrolia talked about integration-by-parts’ up-and-coming contender, intersection theory, a method which appears to be delving into more mathematical tools in an effort to catch up with its competitor.

Sometimes, one is more specifically interested in the singularities of integrals than their numerics more generally. Felix Tellander talked about a geometric method to pin these down which largely went over my head, but he did have a very nice short description of the approach: “Describe the singularities of the integrand. Find a map representing integration. Map the singularities of the integrand onto the singularities of the integral.”

While QCD and gravity are the applications of choice, amplitudes methods germinate in N=4 super Yang-Mills. Ruth Britto’s talk opened the conference with an overview of progress along those lines before going into her own recent work with one-loop integrals and interesting implications of ideas from cluster algebras. Cluster algebras made appearances in several other talks, including Anastasia Volovich’s talk which discussed how ideas from that corner called flag cluster algebras may give insights into QCD amplitudes, though some symbol letters still seem to be hard to track down. Matteo Parisi covered another idea, cluster promotion maps, which he thinks may help pin down algebraic symbol letters.

The link between cluster algebras and symbol letters is an ongoing mystery where the field is seeing progress. Another symbol letter mystery is antipodal duality, where flipping an amplitude like a palindrome somehow gives another valid amplitude. Lance Dixon has made progress in understanding where this duality comes from, finding a toy model where it can be understood and proved.

Others pushed the boundaries of methods specific to N=4 super Yang-Mills, looking for novel structures. Song He’s talk pushes an older approach by Bourjaily and collaborators up to twelve loops, finding new patterns and connections to other theories and observables. Qinglin Yang bootstraps Wilson loops with a Lagrangian insertion, adding a side to the polygon used in previous efforts and finding that, much like when you add particles to amplitudes in a bootstrap, the method gets stricter and more powerful. Jaroslav Trnka talked about work he has been doing with “negative geometries”, an odd method descended from the amplituhedron that looks at amplitudes from a totally different perspective, probing a bit of their non-perturbative data. He’s finding more parts of that setup that can be accessed and re-summed, finding interestingly that multiple-zeta-values show up in quantities where we know they ultimately cancel out. Livia Ferro also talked about a descendant of the amplituhedron, this time for cosmology, getting differential equations for cosmological observables in a particular theory from a combinatorial approach.

Outside of everybody’s favorite theories, some speakers talked about more general approaches to understanding the differences between theories. Andreas Helset covered work on the geometry of the space of quantum fields in a theory, applying the method to a general framework for characterizing deviations from the standard model called the SMEFT. Jasper Roosmale Nepveu also talked about a general space of theories, thinking about how positivity (a trait linked to fundamental constraints like causality and unitarity) gets tangled up with loop effects, and the implications this has for renormalization.

Soft theorems, universal behavior of amplitudes when a particle has low energy, continue to be a trendy topic, with Silvia Nagy showing how the story continues to higher orders and Sangmin Choi investigating loop effects. Callum Jones talks about one of the more powerful results from the soft limit, Weinberg’s theorem showing the uniqueness of gravity. Weinberg’s proof was set up in Minkowski space, but we may ultimately live in curved, de Sitter space. Jones showed how the ideas Weinberg explored generalize in de Sitter, using some tools from the soft-theorem-inspired field of dS/CFT. Julio Parra-Martinez, meanwhile, tied soft theorems to another trendy topic, higher symmetries, a more general notion of the usual types of symmetries that physicists have explored in the past. Lucia Cordova reported work that was not particularly connected to soft theorems but was connected to these higher symmetries, showing how they interact with crossing symmetry and the S-matrix bootstrap.

Finally, a surprisingly large number of talks linked to Kevin Costello and Natalie Paquette’s work with self-dual gauge theories, where they found exact solutions from a fairly mathy angle. Paquette gave an update on her work on the topic, while Alfredo Guevara talked about applications to black holes, comparing the power of expanding around a self-dual gauge theory to that of working with supersymmetry. Atul Sharma looked at scattering in self-dual backgrounds in work that merges older twistor space ideas with the new approach, while Roland Bittelson talked about calculating around an instanton background.


Also, I had another piece up this week at FirstPrinciples, based on an interview with the (outgoing) president of the Sloan Foundation. I won’t have a “bonus info” post for this one, as most of what I learned went into the piece. But if you don’t know what the Sloan Foundation does, take a look! I hadn’t known they funded Jupyter notebooks and Hidden Figures, or that they introduced Kahneman and Tversky.

In Scientific American, With a Piece on Vacuum Decay

I had a piece in Scientific American last week. It’s paywalled, but if you’re a subscriber there you can see it, or you can buy the print magazine.

(I also had two pieces out in other outlets this week. I’ll be saying more about them…in a couple weeks.)

The Scientific American piece is about an apocalyptic particle physics scenario called vacuum decay. It’s a topic I covered last year in Quanta Magazine, an unlikely event where the Higgs field which gives fundamental particles their mass changes value, suddenly making all other particles much more massive and changing physics as we know it. It’s a change that physicists think would start as a small bubble and spread at (almost) the speed of light, covering the universe.

What I wrote for Quanta was a short news piece covering a small adjustment to the calculation, one that made the chance of vacuum decay slightly more likely. (But still mind-bogglingly small, to be clear.)

Scientific American asked for a longer piece, and that gave me space to dig deeper. I was able to say more about how vacuum decay works, with a few metaphors that I think should make it a lot easier to understand. I also got to learn about some new developments, in particular, an interesting story about how tiny primordial black holes could make vacuum decay dramatically more likely.

One thing that was a bit too complicated to talk about were the puzzles involved in trying to calculate these chances. In the article, I mention a calculation of the chance of vacuum decay by a team including Matthew Schwartz. That calculation wasn’t the first to estimate the chance of vacuum decay, and it’s not the most recent update either. Instead, I picked it because Schwartz’s team approached the question in what struck me as a more reliable way, trying to cut through confusion by asking the most basic question you can in a quantum theory: given that now you observe X, what’s the chance that later you observe Y? Figuring out how to turn vacuum decay into that kind of question correctly is tricky (for example, you need to include the possibility that vacuum decay happens, then reverses, then happens again).

The calculations of black holes speeding things up didn’t work things out in quite as much detail. I like to think I’ve made a small contribution by motivating them to look at Schwartz’s work, which might spawn a more rigorous calculation in future. When I talked to Schwartz, he wasn’t even sure whether the picture of a bubble forming in one place and spreading at light speed is correct: he’d calculated the chance of the initial decay, but hadn’t found a similarly rigorous way to think about the aftermath. So even more than the uncertainty I talk about in the piece, the questions about new physics and probability, there is even some doubt about whether the whole picture really works the way we’ve been imagining it.

That makes for a murky topic! But it’s also a flashy one, a compelling story for science fiction and the public imagination, and yeah, another motivation to get high-precision measurements of the Higgs and top quark from future colliders! (If maybe not quite the way this guy said it.)

I Have a Theory

“I have a theory,” says the scientist in the book. But what does that mean? What does it mean to “have” a theory?

First, there’s the everyday sense. When you say “I have a theory”, you’re talking about an educated guess. You think you know why something happened, and you want to check your idea and get feedback. A pedant would tell you you don’t really have a theory, you have a hypothesis. It’s “your” hypothesis, “your theory”, because it’s what you think happened.

The pedant would insist that “theory” means something else. A theory isn’t a guess, even an educated guess. It’s an explanation with evidence, tested and refined in many different contexts in many different ways, a whole framework for understanding the world, the most solid knowledge science can provide. Despite the pedant’s insistence, that isn’t the only way scientists use the word “theory”. But it is a common one, and a central one. You don’t really “have” a theory like this, though, except in the sense that we all do. These are explanations with broad consensus, things you either know of or don’t, they don’t belong to one person or another.

Except, that is, if one person takes credit for them. We sometimes say “Darwin’s theory of evolution”, or “Einstein’s theory of relativity”. In that sense, we could say that Einstein had a theory, or that Darwin had a theory.

Sometimes, though, “theory” doesn’t mean this standard official definition, even when scientists say it. And that changes what it means to “have” a theory.

For some researchers, a theory is a lens with which to view the world. This happens sometimes in physics, where you’ll find experts who want to think about a situation in terms of thermodynamics, or in terms of a technique called Effective Field Theory. It happens in mathematics, where some choose to analyze an idea with category theory not to prove new things about it, but just to translate it into category theory lingo. It’s most common, though, in the humanities, where researchers often specialize in a particular “interpretive framework”.

For some, a theory is a hypothesis, but also a pet project. There are physicists who come up with an idea (maybe there’s a variant of gravity with mass! maybe dark energy is changing!) and then focus their work around that idea. That includes coming up with ways to test whether the idea is true, showing the idea is consistent, and understanding what variants of the idea could be proposed. These ideas are hypotheses, in that they’re something the scientist thinks could be true. But they’re also ideas with many moving parts that motivate work by themselves.

Taken to the extreme, this kind of “having” a theory can go from healthy science to political bickering. Instead of viewing an idea as a hypothesis you might or might not confirm, it can become a platform to fight for. Instead of investigating consistency and proposing tests, you focus on arguing against objections and disproving your rivals. This sometimes happens in science, especially in more embattled areas, but it happens much more often with crackpots, where people who have never really seen science done can decide it’s time for their idea, right or wrong.

Finally, sometimes someone “has” a theory that isn’t a hypothesis at all. In theoretical physics, a “theory” can refer to a complete framework, even if that framework isn’t actually supposed to describe the real world. Some people spend time focusing on a particular framework of this kind, understanding its properties in the hope of getting broader insights. By becoming an expert on one particular theory, they can be said to “have” that theory.

Bonus question: in what sense do string theorists “have” string theory?

You might imagine that string theory is an interpretive framework, like category theory, with string theorists coming up with the “string version” of things others understand in other ways. This, for the most part, doesn’t happen. Without knowing whether string theory is true, there isn’t much benefit in just translating other things to string theory terms, and people for the most part know this.

For some, string theory is a pet project hypothesis. There is a community of people who try to get predictions out of string theory, or who investigate whether string theory is consistent. It’s not a huge number of people, but it exists. A few of these people can get more combative, or make unwarranted assumptions based on dedication to string theory in particular: for example, you’ll see the occasional argument that because something is difficult in string theory it must be impossible in any theory of quantum gravity. You see a spectrum in the community, from people for whom string theory is a promising project to people for whom it is a position that needs to be defended and argued for.

For the rest, the question of whether string theory describes the real world takes a back seat. They’re people who “have” string theory in the sense that they’re experts, and they use the theory primarily as a mathematical laboratory to learn broader things about how physics works. If you ask them, they might still say that they hypothesize string theory is true. But for most of these people, that question isn’t central to their work.