Tag Archives: supersymmetry

Poll Results, and What’s Next

I’ll leave last week’s poll up a while longer as more votes trickle in, but the overall pattern (beyond “Zipflike“) is pretty clear.

From pretty early on, most requests were for more explanations of QFT, gravity, and string theory concepts, with amplitudes content a clear second. This is something I can definitely do more of: I haven’t had much inspiration for interesting pieces of this sort recently, but it’s something I can ramp up in future.

I suspect that many of the people voting for more QFT and more amplitudes content were also interested in something else, though: more physics news. Xezlec mentioned that with Résonaances and Of Particular Significance quiet, there’s an open niche for vaguely reasonable people blogging about physics.

The truth is, I didn’t think of adding a “more physics news” option to the poll. I’m not a great source of news: not being a phenomenologist, I don’t keep up with the latest experimental results, and since my sub-field is small and insular I’m not always aware of the latest thing Witten or Maldacena is working on.

For an example of the former: recently, various LHC teams presented results at the Moriond and Aspen conferences, with no new evidence of supersymmetry in the data they’ve gathered thus far. This triggered concessions on several bets about SUSY (including an amusingly awkward conversation about how to pay one of them).

And I only know about that because other bloggers talked about it.

So I’m not going to be a reliable source of physics news.

With that said, knowing there’s a sizable number of people interested in this kind of thing is helpful. I’ve definitely had times when I saw something I found interesting, but wasn’t sure if my audience would care. (For example, recently there’s been some substantial progress on the problem that gave this blog its name.) Now that I know some of you are interested, I’ll err on the side of posting about these kinds of things.

“What’s it like to be a physicist” and science popularization were both consistently third and fourth in the poll, switching back and forth as more votes came in. This tells me that while many of you want more technical content, there are still people interested in pieces aimed to a broader audience, so I won’t abandon those.

The other topics were fairly close together, with the more “news-y” ones (astrophysics/cosmology and criticism of bad science coverage) beating the less “news-y” ones. This also supports my guess that people were looking for a “more physics news” option. A few people even voted for “more arguments”, which was really more of a joke topic: getting into arguments with other bloggers tends to bring in readers, but it’s not something I ever plan to do intentionally.

So, what’s next? I’ll explain more quantum field theory, talk more about interesting progress in amplitudes, and mention news when I come across it, trusting you guys to find it interesting. I’ll keep up with the low-level stuff, and with trying to humanize physics, to get the public to understand what being a physicist is all about. And I’ll think about some of the specific suggestions you gave: I’m always looking for good post ideas.

The Parable of the Entanglers and the Bootstrappers

There’s been some buzz around a recent Quanta article by K. C. Cole, The Strange Second Life of String Theory. I found it a bit simplistic of a take on the topic, so I thought I’d offer a different one.

String theory has been called the particle physicist’s approach to quantum gravity. Other approaches use the discovery of general relativity as a model: they’re looking for a big conceptual break from older theories. String theory, in contrast, starts out with a technical problem (naive quantum gravity calculations that give infinity) proposes physical objects that could solve the problem (strings, branes), and figures out which theories of these objects are consistent with existing data (originally the five superstring theories, now all understood as parts of M theory).

That approach worked. It didn’t work all the way, because regardless of whether there are indirect tests that can shed light on quantum gravity, particle physics-style tests are far beyond our capabilities. But in some sense, it went as far as it can: we’ve got a potential solution to the problem, and (apart from some controversy about the cosmological constant) it looks consistent with observations. Until actual evidence surfaces, that’s the end of that particular story.

When people talk about the failure of string theory, they’re usually talking about its aspirations as a “theory of everything”. String theory requires the world to have eleven dimensions, with seven curled up small enough that we can’t observe them. Different arrangements of those dimensions lead to different four-dimensional particles. For a time, it was thought that there would be only a few possible arrangements: few enough that people could find the one that describes the world and use it to predict undiscovered particles.

That particular dream didn’t work out. Instead, it became apparent that there were a truly vast number of different arrangements of dimensions, with no unique prediction likely to surface.

By the time I took my first string theory course in grad school, all of this was well established. I was entering a field shaped by these two facts: string theory’s success as a particle-physics style solution to quantum gravity, and its failure as a uniquely predictive theory of everything.

The quirky thing about science: sociologically, success and failure look pretty similar. Either way, it’s time to find a new project.

A colleague of mine recently said that we’re all either entanglers or bootstrappers. It was a joke, based on two massive grants from the Simons Foundation. But it’s also a good way to summarize two different ways string theory has moved on, from its success and from its failure.

The entanglers start from string theory’s success and say, what’s next?

As it turns out, a particle-physics style understanding of quantum gravity doesn’t tell you everything you need to know. Some of the big conceptual questions the more general relativity-esque approaches were interested in are still worth asking. Luckily, string theory provides tools to answer them.

Many of those answers come from AdS/CFT, the discovery that string theory in a particular warped space-time is dual (secretly the same theory) to a more particle-physics style theory on the edge of that space-time. With that discovery, people could start understanding properties of gravity in terms of properties of particle-physics style theories. They could use concepts like information, complexity, and quantum entanglement (hence “entanglers”) to ask deeper questions about the structure of space-time and the nature of black holes.

The bootstrappers, meanwhile, start from string theory’s failure and ask, what can we do with it?

Twisting up the dimensions of string theory yields a vast number of different arrangements of particles. Rather than viewing this as a problem, why not draw on it as a resource?

“Bootstrappers” explore this space of particle-physics style theories, using ones with interesting properties to find powerful calculation tricks. The name comes from the conformal bootstrap, a technique that finds conformal theories (roughly: theories that are the same at every scale) by “pulling itself by its own boostraps”, using nothing but a kind of self-consistency.

Many accounts, including Cole’s, attribute people like the boostrappers to AdS/CFT as well, crediting it with inspiring string theorists to take a closer look at particle physics-style theories. That may be true in some cases, but I don’t think it’s the whole story: my subfield is bootstrappy, and while it has drawn on AdS/CFT that wasn’t what got it started. Overall, I think it’s more the case that the tools of string theory’s “particle physics-esque approach”, like conformal theories and supersymmetry, ended up (perhaps unsurprisingly) useful for understanding particle physics-style theories.

Not everyone is a “boostrapper” or an “entangler”, even in the broad sense I’m using the words. The two groups also sometimes overlap. Nevertheless, it’s a good way to think about what string theorists are doing these days. Both of these groups start out learning string theory: it’s the only way to learn about AdS/CFT, and it introduces the bootstrappers to a bunch of powerful particle physics tools all in one course. Where they go from there varies, and can be more or less “stringy”. But it’s research that wouldn’t have existed without string theory to get it started.

Particles Aren’t Vibrations (at Least, Not the Ones You Think)

You’ve probably heard this story before, likely from Brian Greene.

In string theory, the fundamental particles of nature are actually short lengths of string. These strings can vibrate, and like a string on a violin, that vibration is arranged into harmonics. The more energy in the string, the more complex the vibration. In string theory, each of these vibrations corresponds to a different particle, explaining how the zoo of particles we observe can come out of a single type of fundamental string.


Particles. Probably.

It’s a nice story. It’s even partly true. But it gives a completely wrong idea of where the particles we’re used to come from.

Making a string vibrate takes energy, and that energy is determined by the tension of the string. It’s a lot harder to wiggle a thick rubber band than a thin one, if you’re holding both tightly.

String theory’s strings are under a lot of tension, so it takes a lot of energy to make them vibrate. From our perspective, that energy looks like mass, so the more complicated harmonics on a string correspond to extremely massive particles, close to the Planck mass!

Those aren’t the particles you’re used to. They’re not electrons, they’re not dark matter. They’re particles we haven’t observed, and may never observe. They’re not how string theory explains the fundamental particles of nature.

So how does string theory go from one fundamental type of string to all of the particles in the universe, if not through these vibrations? As it turns out, there are several different ways it can happen, tricks that allow the lightest and simplest vibrations to give us all the particles we’ve observed.* I’ll describe a few.

The first and most important trick here is supersymmetry. Supersymmetry relates different types of particles to each other. In string theory, it means that along with vibrations that go higher and higher, there are also low-energy vibrations that behave like different sorts of particles. In a sense, string theory sticks a quantum field theory inside another quantum field theory, in a way that would make Xzibit proud.

Even with supersymmetry, string theory doesn’t give rise to all of the right sorts of particles. You need something else, like compactifications or branes.

The strings of string theory live in ten dimensions, it’s the only place they’re mathematically consistent. Since our world looks four-dimensional, something has to happen to the other six dimensions. They have to be curled up, in a process called compactification. There are lots and lots (and lots) of ways to do this compactification, and different ways of curling up the extra dimensions give different places for strings to move. These new options make the strings look different in our four-dimensional world: a string curled around a donut hole looks very different from one that moves freely. Each new way the string can move or vibrate can give rise to a new particle.

Another option to introduce diversity in particles is to use branes. Branes (short for membranes) are surfaces that strings can end on. If two strings end on the same brane, those ends can meet up and interact. If they end on different branes though, then they can’t. By cleverly arranging branes, then, you can have different sets of strings that interact with each other in different ways, reproducing the different interactions of the particles we’re familiar with.

In string theory, the particles we’re used to aren’t just higher harmonics, or vibrations with more and more energy. They come from supersymmetry, from compactifications and from branes. The higher harmonics are still important: there are theorems that you can’t fix quantum gravity with a finite number of extra particles, so the infinite tower of vibrations allows string theory to exploit a key loophole. They just don’t happen to be how string theory gets the particles of the Standard Model. The idea that every particle is just a higher vibration is a common misconception, and I hope I’ve given you a better idea of how string theory actually works.


*But aren’t these lightest vibrations still close to the Planck mass? Nope! See the discussion with TE in the comments for details.

Living in a Broken World: Supersymmetry We Can Test

I’ve talked before about supersymmetry. Supersymmetry relates particles with different spins, linking spin 1 force-carrying particles like photons and gluons to spin 1/2 particles similar to electrons, and spin 1/2 particles in turn to spin 0 “scalar” particles, the same general type as the Higgs. I emphasized there that, if two particles are related by supersymmetry, they will have some important traits in common: the same mass and the same interactions.

That’s true for the theories I like to work with. In particular, it’s true for N=4 super Yang-Mills. Adding supersymmetry allows us to tinker with neater, cleaner theories, gaining mastery over rice before we start experimenting with the more intricate “sushi” of theories of the real world.

However, it should be pretty clear that we don’t live in a world with this sort of supersymmetry. A quick look at the Standard Model indicates that no two known particles interact in precisely the same way. When people try to test supersymmetry in the real world, they’re not looking for this sort of thing. Rather, they’re looking for broken supersymmetry.

In the past, I’ve described broken supersymmetry as like a broken mirror: the two sides are no longer the same, but you can still predict one side’s behavior from the other. When supersymmetry is broken, related particles still have the same interactions. Now, though, they can have different masses.

The simplest version of supersymmetry, N=1, gives one partner to each particle. Since nothing in the Standard Model can be partners of each other, if we have broken N=1 supersymmetry in the real world then we need a new particle for each existing one…and each one of those particles has a potentially unknown, different mass. And if that sounds rather complicated…

Baroque enough to make Rubens happy.

That, right there, is the Minimal Supersymmetric Standard Model, the simplest thing you can propose if you want a world with broken supersymmetry. If you look carefully, you’ll notice that it’s actually a bit more complicated than just one partner for each known particle: there are a few extra Higgs fields as well!

If we’re hoping to explain anything in a simpler way, we seem to have royally screwed up. Luckily, though, the situation is not quite as ridiculous as it appears. Let’s go back to the mirror analogy.

If you look into a broken mirror, you can still have a pretty good idea of what you’ll see…but in order to do so, you have to know how the mirror is broken.

Similarly, supersymmetry can be broken in different ways, by different supersymmetry-breaking mechanisms.

The general idea is to start with a theory in which supersymmetry is precisely true, and all supersymmetric partners have the same mass. Then, consider some Higgs-like field. Like the Higgs, it can take some constant value throughout all of space, forming a background like the color of a piece of construction paper. While the rules that govern this field would respect supersymmetry, any specific value it takes wouldn’t. Instead, it would be biased: the spin 0, Higgs-like field could take on a constant value, but its spin 1/2 supersymmetric partner couldn’t. (If you want to know why, read my post on the Higgs linked above.)

Once that field takes on a specific value, supersymmetry is broken. That breaking then has to be communicated to the rest of the theory, via interactions between different particles. There are several different ways this can work: perhaps the interactions come from gravity, or are the same strength as gravity. Maybe instead they come from a new fundamental force, similar to the strong nuclear force but harder to discover. They could even come as byproducts of the breaking of other symmetries.

Each one of these options has different consequences, and leads to different predictions for the masses of undiscovered partner particles. They tend to have different numbers of extra parameters (for example, if gravity-based interactions are involved there are four new parameters, and an extra sign, that must be fixed). None of them have an entire standard model-worth of new parameters…but all of them have at least a few extra.

(Brief aside: I’ve been talking about the Minimal Supersymmetric Standard Model, but these days people have largely given up on finding evidence for it, and are exploring even more complicated setups like the Next-to-Minimal Supersymmetric Standard Model.)

If we’re introducing extra parameters without explaining existing ones, what’s the point of supersymmetry?

Last week, I talked about the problem of fine-tuning. I explained that when physicists are worried about fine-tuning, what we’re really worried about is whether the sorts of ultimate (low number of parameters) theories that we expect to hold could give rise to the apparently fine-tuned world we live in. In that post, I was a little misleading about supersymmetry’s role in that problem.

The goal of introducing (broken) supersymmetry is to solve a particular set of fine-tuning problems, mostly one specific one involving the Higgs. This doesn’t mean that supersymmetry is the sort of “ultimate” theory we’re looking for, rather supersymmetry is one of the few ways we know to bridge the gap between “ultimate” theories and a fine-tuned real world.

To explain it in terms of the language of the last post, it’s hard to find one of these “ultimate” theories that gives rise to a fine-tuned world. What’s quite a bit easier, though, is finding one of these “ultimate” theories that gives rise to a supersymmetric world, which in turn gives rise to a fine-tuned real world.

In practice, these are the sorts of theories that get tested. Very rarely are people able to propose testable versions of the more “ultimate” theories. Instead, one generally finds intermediate theories, theories that can potentially come from “ultimate” theories, and builds general versions of those that can be tested.

These intermediate theories come in multiple levels. Some physicists look for the most general version, theories like the Minimal Supersymmetric Standard Model with a whole host of new parameters. Others look for more specific versions, choices of supersymmetry-breaking mechanisms. Still others try to tie it further up, getting close to candidate “ultimate” theories like M theory (though in practice they generally make a few choices that put them somewhere in between).

The hope is that with a lot of people covering different angles, we’ll be able to make the best use of any new evidence that comes in. If “something” is out there, there are still a lot of choices for what that something could be, and it’s the job of physicists to try to understand whatever ends up being found.

Not bad for working in a broken world, huh?

The Real Problem with Fine-Tuning

You’ve probably heard it said that the universe is fine-tuned.

The Standard Model, our current best understanding of the rules that govern particle physics, is full of lots of fiddly adjustable parameters. The masses of fundamental particles and the strengths of the fundamental forces aren’t the sort of thing we can predict from first principles: we need to go out, do experiments, and find out what they are. And you’ve probably heard it argued that, if these fiddly parameters were even a little different from what they are, life as we know it could not exist.

That’s fine-tuning…or at least, that’s what many people mean when they talk about fine-tuning. It’s not exactly what physicists mean though. The thing is, almost nobody who studies particle physics thinks the parameters of the Standard Model are the full story. In fact, any theory with adjustable parameters probably isn’t the full story.

It all goes back to a point I made a while back: nature abhors a constant. The whole purpose of physics is to explain the natural world, and we have a long history of taking things that look arbitrary and linking them together, showing that reality has fewer parameters than we had thought. This is something physics is very good at. (To indulge in a little extremely amateurish philosophy, it seems to me that this is simply an inherent part of how we understand the world: if we encounter a parameter, we will eventually come up with an explanation for it.)

Moreover, at this point we have a rough idea of what this sort of explanation should look like. We have experience playing with theories that don’t have any adjustable parameters, or that only have a few: M theory is an example, but there are also more traditional quantum field theories that fill this role with no mention of string theory. From our exploration of these theories, we know that they can serve as the kind of explanation we need: in a world governed by one of these theories, people unaware of the full theory would observe what would look at first glance like a world with many fiddly adjustable parameters, parameters that would eventually turn out to be consequences of the broader theory.

So for a physicist, fine-tuning is not about those fiddly parameters themselves. Rather, it’s about the theory that predicts them. Because we have experience playing with these sorts of theories, we know roughly the sorts of worlds they create. What we know is that, while sometimes they give rise to worlds that appear fine-tuned, they tend to only do so in particular ways. Setups that give rise to fine-tuning have consequences: supersymmetry, for example, can give rise to an apparently fine-tuned universe but has to have “partner” particles that show up in powerful enough colliders. In general, a theory that gives rise to apparent fine-tuning will have some detectable consequences.

That’s where physicists start to get worried. So far, we haven’t seen any of these detectable consequences, and it’s getting to the point where we could have, had they been the sort many people expected.

Physicists are worried about fine-tuning, but not because it makes the universe “unlikely”. They’re worried because the more finely-tuned our universe appears, the harder it is to find an explanation for it in terms of the sorts of theories we’re used to working with, and the less likely it becomes that someone will discover a good explanation any time soon. We’re quite confident that there should be some explanation, hundreds of years of scientific progress strongly suggest that to be the case. But the nature of that explanation is becoming increasingly opaque.

N=8: That’s a Whole Lot of Symmetry

In two weeks, I’m planning an extensive overhaul of the blog. I’ll be switching from 4gravitons.wordpress.com to just 4gravitons.wordpress.com, since I’m no longer a grad student. Don’t worry, I’ll be forwarding traffic from the old address, so if you miss the changeover you’ll have plenty of time to readjust. I’ll also be changing the blog’s look a bit, and adding some new tools and sections, including my current project, a series on the theory N=8 supergravity. This is post will be the last in the N=8 supergravity series.

I’ve told you about how gravity can be thought of as interactions with spin 2 particles, called gravitons. I’ve talked about how adding supersymmetry gives you a whole new type of particle, a gravitino, one different from all of the other particles we’ve seen in nature. Add supersymmetry to gravity, and you get a type of theory called supergravity.

In this post I want to discuss a particularly interesting form of supergravity. It’s called N=8 supergravity, and it’s closely related to N=4 super Yang-Mills.

In my articles about N=4 super Yang-Mills, I talked about supersymmetry. Supersymmetry is a relationship between particles of spin X and particles of spin X-½, but it gets more complicated when N (the number of “directions” of supersymmetry) is greater than one.

I’d encourage you to read at least the two links in the above paragraph. The gist is that just like a symmetrical object can be turned in different directions and still remain the same, a supersymmetrical theory can be “turned” so that a particle with spin X becomes a particle of spin X-½ (a different type of particle), and the theory will remain the same. The higher the number N, the more different directions the theory can be “turned”.

N=4 was something I could depict in a picture. We started with a particle of spin 1, then could “turn” it in four different directions, each resulting in a different particle of spin ½. By combining two different “turns” we ended up with six distinct particles of spin 0. Miraculously, I could fit this all into one image.

N=8 is tougher. This time, we start with 1 particle of spin 2: the graviton, the particle that corresponds to the force of gravity. From there we can “turn” the theory in eight different directions, leading to 8 different gravitino particles with spin 3/2.

After that, things get more complicated. You can “turn” the theory twice to reach spin 1. Spin 1 particles correspond to Yang-Mills forces, the fundamental forces of nature (besides gravity). Photons are the spin 1 particles that correspond to Electromagnetism. The spin 1 particles here, connected as they are to gravity by supersymmetry, are typically called graviphotons. There are 28 distinct graviphotons in N=8 supergravity.

From the graviphotons, we can keep turning, getting to spin ½, where we find 56 new particles of the same “type” as electrons and quarks. On our fourth turn, we get to spin 0, the scalars, with 70 new particles. Turning further takes us back: from spin 0 to spin ½, spin ½ to spin 1, spin 1 to spin 3/2, and spin 3/2 to spin 2, back where we started after eight “turns”.

I’ve tried to depict this in the same way as N=4 super Yang-Mills, but there’s just no way to fit everything in. The best I can do is to take a slice through the space, letting certain particles overlap to give at best a general impression of what’s going on.

Graviton in black, gravitinos in grey, graviphotons in yellow, fermions in orange, scalars in red, and comprehensibility omitted entirely.

Graviton in black, gravitinos in grey, graviphotons in yellow, fermions in orange, scalars in red, making a firework of incomprehensible graphics. Incidentally, happy 4th of July to my American readers.

That picture doesn’t give you any intuition about the numbers. It doesn’t show you why there are 28 graviphotons, or 70 scalars. To explain that, it’s best to turn to another, hopefully more familiar picture, Pascal’s triangle.

Getting math class flashbacks yet?

Pascal’s triangle is a way of writing down how many distinct combinations you can make out of a list, and that’s really all that’s going on here. If you have four directions to “turn” and you pick one, you have four options, while picking two gives you six distinct choices. That’s just the 1-4-6-4-1 line on the triangle. If you go down to the eighth, you’ll spot the numbers from N=8 supergravity: 1 graviton, 8 gravitinos, 28 graviphotons, 56 fermions, and 70 scalars.

That’s a lot of particles. With that many particles, you might wonder if you could somehow fit the real world in there.

Actually, that isn’t such a naive thought. When N=8 supergravity was first discovered, people tried to fit the existing particles of nature inside it, hoping that it could explain them. Over the years though, it was realized that N=8 supergravity simply doesn’t provide enough tools to fully capture the particles of the standard model. Something more diverse, like string theory, would be needed.

That means that N=8 supergravity, like many of the things theorists call theories, does not describe the real world. Instead, it’s interesting for a different reason.

You’ve probably heard that gravity and quantum mechanics are incompatible. That’s not exactly true: you can write down a quantum theory of gravity about as easily as you can write down a quantum theory of anything else. The problem is that most such theories have divergences, infinite results that shouldn’t be infinite. Dealing with those results involves a process called renormalization, which papers over the infinities but reduces our ability to make predictions. For gravity theories, this process has to be performed an infinite number of times, resulting in an infinite loss of predictability. So while you can certainly write down a theory of quantum gravity, you can’t predict anything with it.

String theory is different. It doesn’t have the same sorts of infinite results, doesn’t require renormalization. That, really, is it’s purpose, it’s biggest virtue: everything else is a side benefit.

N=4 super Yang-Mills isn’t a theory of gravity at all, but it does have that same neat trait: you never get this sort of infinite results, so you never need to give up predictive power.

What’s so cool about N=8 supergravity is that it just might be in the same category. By all rights, it shouldn’t be…but loop after loop its divergences seem to be behaving much like N=4 super Yang-Mills. (For those new to this blog, loops are a measure of how complex a calculation is in particle physics. Most practical calculations only involve one or two loops, while four loops represents possibly the most precise test ever performed by science.)

Now, two predictions are at the fore. One suggests that this magic behavior will be broken at the terrifyingly complex level of seven loops. The other proposes that the magic will continue, and N=8 supergravity will never see a divergence. The only way for certain is to do the calculation, look at four gravitons at seven loops and see what happens.

If N=8 supergravity really doesn’t diverge, then the biggest “point” of string theory isn’t unique anymore. If you don’t need all the bells and whistles of string theory to get an acceptable quantum theory of gravity, then maybe there’s a better way to think about the problem of quantum gravity in general. Even if N=8 supergravity doesn’t describe the real world, there may be other ways forward, other ways to handle the problem of divergences. If someone can manage that calculation (not as impossible as it sounds nowadays, but still very very hard) then we might see something really truly new.

(Super)gravity: Meet the Gravitino

I’m putting together a series of posts about N=8 supergravity, with the goal of creating a guide much like I have for N=4 super Yang-Mills and the (2,0) theory.

N=8 supergravity is what happens when you add the maximum amount of supersymmetry to a theory of gravity. I’m going to strongly recommend that you read both of those posts before reading this one, as there are a number of important concepts there: the idea that different types of particles are categorized by a number called spin, the idea that supersymmetry is a relationship between particles with spin X and particles with spin X-½, and the idea that gravity can be thought of equally as a bending of space and time or as a particle with spin 2, called a graviton.

Knowing all that, if you add supersymmetry to gravity, you’d relate a spin 2 particle (the graviton) to a spin 3/2 particle (for 2-½).

What is a spin 3/2 particle?

Spin 0 particles correspond to a single number, like a temperature, that can vary over space. The Higgs boson is the one example of a spin 0 particle that we know of in the real world. Spin ½ covers electrons, protons, and almost all of the particles that make up ordinary matter, while spin 1 covers Yang-Mills forces. That covers the entire Standard Model, all of the particles scientists have seen in the real world. So what could a spin 3/2 particle possibly be?

We can at least guess at what it would be called. Whatever this spin 3/2 particle is, it’s the supersymmetric partner of the graviton. For somewhat stupid reasons, that means its name is determined by taking “graviton” and adding “-ino” to the end, to get gravitino.

But that still doesn’t answer the question: What is a gravitino?

Here’s the quick answer: A gravitino is a spin 1 particle combined with a spin ½ particle.

What sort of combination am I talking about? Not the one you might think. A gravitino is a fundamental particle, it is not made up of other particles.


NOT like this.

So in what sense is it a combination?

A handy way for physicists to think about particles is as manifestations of an underlying field. The field is stronger or weaker in different places, and when the field is “on”, a particle is present. For example, the electron field covers all of space, but only where that electron field is greater than zero do actual electrons show up.

I’ve said that a scalar field is simple to understand because it’s just a number, like a temperature, that takes different values in different places. The other types of fields are like this too, but instead of one number there’s generally a more complicated set of numbers needed to define them. Yang-Mills fields, with spin 1, are forces, with a direction and a strength. This is why they’re often called vector fields. Spin ½ particles have a set of numbers that characterizes them as well. It’s called a spinor, and unfortunately it’s not something I can give you an intuitive definition for. Just be aware that, like vectors, it involves a series of numbers that specify how the field behaves at each point.

It’s a bit like a computer game. The world is full of objects, and different objects have different stats. A weapon might have damage and speed, while a quest-giver would have information about what quests they give. Since everything is just code, though, you can combine the two, and all you have to do is put both types of stats on the same object.

Like this.

For quantum fields, the “stats” are the numbers I mentioned earlier: a single number for scalars, direction and strength for vectors, and the spinor information for spinors. So if you want to combine two of them, say spin 1 and spin ½, you just need a field that has both sets of “stats”.

That’s the gravitino. The gravitino has vector “stats” from the spin 1 part, and spinor “stats” from the spin ½ part. It’s a combination of two types of fundamental particles, to create one that nobody has seen before.

That doesn’t mean nobody will ever see one, though. Gravitinos could well exist in our world, they’re actually a potential (if problematic) candidate for dark matter.

But much like supersymmetry in general, while gravitinos may exist, N=8 of them certainly don’t. N=8 is a whole lot of supersymmetry…but that’s a topic for another post. Stay tuned for the next post in the series!

The (2, 0) Theory: What does it mean?

Part Two of a Series on the (2, 0) Theory

Apologies in advance. This is going to be a long one.

So now that you know that the (2, 0) theory is the world-volume theory of an M5-brane, you might be asking what the hell (2, 0) means. Why is this theory labeled with an arcane bunch of numbers rather than words like any sensible theory?

To explain that, we have to talk a bit about how we count supersymmetries. As I talked about with N=4 super Yang-Mills, supersymmetry is a relationship between particles of different spins, and since one particle can be related in this way to more than one other particle, we indicated the number of different related particles by the number N. (I’d recommend reading those posts to understand this one. If you need a quick summary, spin is a way of categorizing particles, with spin 1 corresponding to forces of nature like electromagnetism and the Yang-Mills forces in general, while spin ½ corresponds to the types of particles that make up much of everyday matter, like electrons and quarks.)

As it turns out, we count the number of supersymmetries N differently in different dimensions. The reasons are fairly technical, and are related to the fact that spin ½ particles are more complicated in higher dimensions. The end result is that while super Yang-Mills has N=4 in four dimensions (three space one time), in six dimensions it only has N=2 (in case you’re curious, it goes all the way down to N=1 in ten dimensions).

The “2” in the (2, 0) theory means the same thing as that N=2. However, the (2, 0) theory is very different from super Yang-Mills, and that’s where the other number in the pair comes in. To explain this, I have to talk a bit about something called chirality.

Chirality is a word for handedness. If you’re given a right-handed glove, no matter what you do you can’t rotate it to turn it into a left-handed glove. The only way you could change a right-handed glove into a left-handed glove would be to flip it through a mirror, like Alice through the looking glass.

Particles often behave similarly. While they don’t have fingers to flip, they do have spin.

I told you earlier to think of spin as just a way to classify particles. That’s still the best way for you to think about it, but in order to explain chirality I have to mention that spin isn’t just an arbitrary classification scheme, it’s a number that corresponds to how fast a particle is “spinning”.

Here I have to caution that the particle isn’t necessarily literally spinning. Rather, it acts as if it were spinning, interacting with other objects as if it were spinning with a particular speed. If you’ve ever played with a gyroscope, you know that a spinning object behaves differently from a non-spinning one: the faster it spins, the harder it is to change the direction in which it is spinning.

Suppose that a particle is flying at you head-on. If you measured the particle’s spin, it would appear to be spinning either clockwise or counterclockwise, to the left or to the right. This choice, left or right, is the particle’s chirality.

L for left, R for right, V and p show which way the particle is going.

The weird thing is that there are some particles that only spin one way. For example, every neutrino that has been discovered has left-handed chirality. In general when a fermion only spins one way we call it a chiral fermion.

What does this have to do with the (2, 0) theory?

Supersymmetry relates particles of spin X to particles of spin X-½.  As such, you can look at supersymmetry as taking the original particle, and “subtracting” a particle of spin ½. These aren’t really particles, but they share some properties, and those properties can include chirality. You can have left-supersymmetry, and right-supersymmetry.

So what does (2, 0) mean? It means that not only is the (2, 0) theory an N=2 theory in six dimensions, but those two supersymmetries are chiral. They are only left-handed (or, if you prefer, only right-handed). By contrast, super Yang-Mills in six dimensions is a (1, 1) theory. It has one left-handed supersymmetry, and one right-handed supersymmetry.

We can now learn a bit more about the sorts of particles in the (2, 0) theory.

As I said when discussing N=4 super Yang-Mills, N=4 is the most supersymmetry you can have in Yang-Mills in four dimensions. Any more, and you need to include gravity.  Recall that the (2, 0) theory comes from the behavior of M5-branes in M theory. M theory includes gravity, which means that it can go higher than N=4.

How high? As it turns out, the maximum including gravity (which I will explain a bit more when I do a series on supergravity) is N=8. That’s in four dimensions, however. In M theory’s native eleven dimensions, this is just N=1. In six dimensions, where the (2, 0) theory lives, this becomes N=4. More specifically, including information about chirality, its supersymmetry is (2, 2).

So if M theory in six dimensions has (2, 2) symmetry, how to we get to (2, 0)? What happens to the other ( ,2)?

As I talked about in the last post, the varying position of the M5-brane in the other five dimensions gives rise to five scalar fields. In a way, we have broken the symmetry between the eleven dimensions of M theory, treating five of them differently from the other six.

It turns out that supersymmetry is closely connected to the symmetry of space and time. What this means in practice is that when you break the symmetry of space-time, you can also break supersymmetry, reducing the number N of symmetries. Here, the M5-brane breaks supersymmetry from (2, 2) to (2, 0), so two of the supersymmetries are broken.

Just like the position of the M5-brane can vary, so too can the specific supersymmetries broken. What this means is that just like the numbers for the positions become scalar fields, the choices of supersymmetry to be broken become new fermion fields. Because supersymmetry is broken in a chiral way, these new fermion fields are chiral, which for technical reasons ends up meanings that because of the two broken supersymmetries, there are four new chiral fermions.

So far, we know that the (2, 0) theory has five scalar fields, and four chiral fermions. But scalar fields and chiral fermions are pretty ordinary, surely not as mysterious as the Emperor, or even Mara Jade. What makes the (2, 0) theory so mysterious, so difficult to deal with? What makes it, in a word, sexy? Tune in next week to find out!

What if there’s nothing new?

In the weeks after the folks at the Large Hadron Collider announced that they had found the Higgs, people I met would ask if I was excited. After all, the Higgs was what particle physicists were searching for, right?

 As usual in this blog, the answer is “Not really.”

We were all pretty sure the Higgs had to exist; we just didn’t know what its mass would be. And while many people had predictions for what properties the Higgs might have (including some string theorists), fundamentally they were interested for other reasons.

Those reasons, for the most part, are supersymmetry. If the Higgs had different properties than we expected, it could be evidence for one or another proposed form of supersymmetry. Supersymmetry is still probably the best explanation for dark matter, and it’s necessary in some form or another for string theory. It also helps with other goals of particle physics, like unifying the fundamental forces and getting rid of fine-tuned parameters.

Fundamentally, though, the Higgs isn’t likely to answer these questions. To get enough useful information we’ll need to discover an actual superpartner particle. And so far…we haven’t.

That’s why we’re not all that excited about the Higgs anymore. And that’s why, increasingly, particle physics is falling into doom and gloom.

Sure, when physicists talk about the situation, they’re quick to claim that they’re just as hopeful as ever. We still may well see supersymmetry in later runs of the LHC, as it still has yet to reach its highest energies. But people are starting, quietly and behind closed doors, to ask: what if we don’t?

What happens if we don’t see any new particles in the LHC?

There are good mathematical reasons to think that some form of supersymmetry holds. Even if we don’t see supersymmetric particles in the LHC, they may still exist. We just won’t know anything new about them.

That’s a problem.

We’ve been spinning our wheels for too long, and it’s becoming more and more obvious. With no new information from experiments, it’s not clear what we can do anymore.

And while, yes, many theorists are studying theories that aren’t true, sometimes without even an inkling of a connection to the real world, we’re all part of the same zeitgeist. We may not be studying reality itself, but at least we’re studying parts of reality, rearranged in novel ways. Without the support of experiment the rest of the field starts to decay. And one by one, those who can are starting to leave.

Despite how it may seem, most of physics doesn’t depend on supersymmetry. If you’re investigating novel materials, or the coolest temperatures ever achieved, or doing other awesome things with lasers, then the LHC’s failure to find supersymmetry will mean absolutely nothing to you. It’s only a rather small area of physics that will progressively fall into self-doubt until the only people left are the insane or the desperate.

But those of us in that area? If there really is nothing new? Yeah, we’re screwed.

N=4: Maximal Particles for Maximal Fun

Part Four of a Series on N=4 Super Yang-Mills Theory

This is the fourth in a series of articles that will explain N=4 super Yang-Mills theory. In this series I take that phrase apart bit by bit, explaining as I go. Because I’m perverse and out to confuse you, I started with the last bit here, and now I’ve reached the final part.

N=4 Super Yang-Mills Theory

Last time I explained supersymmetry as a relationship between two particles, one with spin X and the other with spin X-½. It’s actually a leeetle bit more complicated than that.

When a shape is symmetric, you can turn it around and it will look the same. When a theory is supersymmetric, you can “turn” it, moving from particles with spin X to particles of spin X-½, and the theory will look the same.

With a 2D shape, that’s the whole story. But if you have a symmetric 3D shape, you can turn it in two different directions, moving to different positions, and the shape will look the same either way. In supersymmetry, the number of different ways you can “turn” the theory and still have it look the same is called N.

N=1 symmetric shape

N=2 symmetric shape

Consider the example of super Yang-Mills. If we start out with a particle of spin 1 (a Yang-Mills field), N=1 supersymmetry says that there will also be a particle of spin ½, similar to the particles of everyday matter. But suppose that instead we had N=2 supersymmetry. You can move from the spin 1 particle to spin ½ in one direction, or in the other one, and just like regular symmetry moving in two different directions will get you to two different positions. That means you need two different spin ½ particles! Furthermore, you can also move in one direction, then in the other one: you go from spin 1 to spin ½, then down from spin ½ to spin 0. So our theory can’t just have spin 1 and spin ½, it has to have spin 0 particles as well!

You can keep increasing N, as long as you keep increasing the number and types of particles. Finally, at N=4, you’ve got the maximal set: one Yang-Mills field with spin 1, four different spin ½ particles, and six different spin 0 scalars. The diagram below shows how the particles are related: you start in the center with a Yang-Mills field, and then travel in one of four directions to the spin ½ particles. Picking two of those directions, you travel further, to a scalar in between two spin ½ particles. Applying more supersymmetry just takes you back down: first to spin ½, then all the way back to spin 1.

N=4 super Yang-Mills is where the magic happens. Its high degree of symmetry gives it conformal invariance and dual conformal invariance, it has been observed to have maximal transcendentality and it may even be integrable. Any one of those statements could easily take a full blog post to explain. For now, trust me when I tell you that while N=4 super Yang-Mills may seem complicated, its symmetry means that deep down it is one of the easiest theories to work with, and in fact it might be the simplest non-gravity quantum field theory possible. That makes it an immensely important stepping stone, the first link to take us to a full understanding of particle physics.

One final note: you’re probably wondering why we stopped at N=4. At N=4 we have enough symmetry to go out from spin 1 to spin 0, and then back in to spin 1 again. Any more symmetry, and we need more space, which in this case means higher spin, which means we need to start talking about gravity. Supergravity takes us all the way up to N=8, and has its own delightful properties…but that’s a topic for another day.