Tag Archives: relativity

Made of Energy, or Made of Nonsense?

I did a few small modifications to the blog settings this week. Comments now support Markdown, reply-chains in the comments can go longer, and there are a few more sharing buttons on the posts. I’m gearing up to do a more major revamp of the blog in July for when the name changes over from 4 gravitons and a grad student to just 4 gravitons.

io9 did an article recently on scientific ideas that scientists wish the public would stop misusing. They’ve got a lot of good ones (Proof, Quantum, Organic), but they somehow managed to miss one of the big ones: Energy. Matt Strassler has a nice, precise article on this particular misconception, but nonetheless I think it’s high time I wrote my own.

There’s a whole host of misconceptions regarding energy. Some of them are simple misuses of language, like zero-calorie energy drinks:

Zero Purpose

Energy can be measured in several different units. You can use Joules, or electron-Volts, or dynes…or calories. Calories are a measure of energy, so zero calories quite literally means zero energy.

Now, that’s not to say the makers of zero calorie energy drinks are lying. They’re just using a different meaning of energy from the scientific one. Their drinks give you vim and vigor, the get-up-and-go required to make money playing computer games. For most of the public, that “get-up-and-go” is called energy, even if scientifically it’s not.

That’s not really a misconception, more of an amusing use of language. This next one though really makes my blood boil.

Raise your hand if you’ve seen a Sci-Fi movie or TV show where some creature is described as being made of “pure energy”. Whether they’re peaceful, ultra-advanced ascended beings, or genocidal maniacs from another dimension, the concept of creatures made of “pure energy” shows up again and again and again.

You can’t fight the Drej, they’re pure bullshit!

Even if you aren’t the type to take Sci-Fi technobabble seriously, you’ve probably heard that matter and antimatter annihilate to form energy, or that photons are made out of energy. These sound more reasonable, but they rest on the same fundamental misconception:

Nothing is “made out of energy”.

Rather,

Energy is a property that things have.

Energy isn’t a substance, it isn’t a fluid, it isn’t some kind of nebulous stuff you can make into an indestructible alien body. Things have energy, but nothing is energy.

What about light, then? And what happens when antimatter collides with matter?

Light, just like anything else, has energy. The difference between light and most other things is that light also does not have mass.

In everyday life, we like to think of mass as some sort of basic “stuff”. If things are “made out of mass” or “made out of matter”, and something like light doesn’t have mass, then it must be made out of some other “stuff”, right?

The thing is, mass isn’t really “stuff” any more than energy is. Just like energy, mass is a property that things have. In fact, as I’ve talked about some before, mass is really just a type of energy. Specifically, mass is the energy something has when left alone and at rest. That’s the meaning of Einstein’s famous equation, E equals m c squared: it tells you how to take a known mass and calculate the rest energy that it implies.

Lots of hype for a unit conversion formula, huh?

In the case of light, all of its energy can be thought of in terms of its (light-speed) motion, so it has no mass. That might tempt you to think of it as being “made of energy”, but really, you and light are not so different.

You are made of atoms, and atoms are made of protons, neutrons, and electrons. Let’s consider a proton. A proton’s mass, expressed in the esoteric units physicists favor, is 938 Mega-electron-Volts. That’s how much energy a proton has alone and and rest. A proton is made of three quarks, so you’d think that they would contribute most of its mass. In reality, though, the quarks in protons have masses of only a few Mega-electron-Volts. Most of a proton’s mass doesn’t come from the mass of the quarks.

Quarks interact with each other via the strong nuclear force, the strongest fundamental force in existence. That interaction has a lot of energy, and when viewed from a distance that energy contributes almost all of the proton’s mass. So if light is “made of energy”, so are you.

So why do people say that matter and anti-matter annihilate to make energy?

A matter particle and its anti-matter partner are opposite in a lot of ways. In particular, they have opposite charges: not just electric charge, but other types of charge too.

Charge must be conserved, so if a particle collides with its anti-particle the result has a total charge of zero, as the opposite charges of the two cancel each other out. Light has zero charge, so it’s one of the most common results of a matter-antimatter collision. When people say that matter and antimatter produce “pure energy”, they really just mean that they produce light.

So next time someone says something is “made of energy”, be wary. Chances are, they aren’t talking about something fully scientific.

Editors, Please Stop Misquoting Hawking

If you’ve been following science news recently, you’ve probably heard the apparently alarming news that Steven Hawking has turned his back on black holes, or that black holes can actually be escaped, or…how about I just show you some headlines:

FoxHawking

NatureHawking

YahooHawking

Now, Hawking didn’t actually say that black holes don’t exist, but while there are a few good pieces on the topic, in many cases the real message has gotten lost in the noise.

From Hawking’s paper:

ActualPaperHawking

What Hawking is proposing is that the “event horizon” around a black hole, rather than being an absolute permanent boundary from which nothing can escape, is a more temporary “apparent” horizon, the properties of which he goes on to describe in detail.

Why is he proposing this? It all has to do with the debate over black hole firewalls.

Starting with a paper by Polchinski and colleagues a year and a half ago, the black hole firewall paradox centers on contradictory predictions from general relativity and quantum mechanics. General relativity predicts that an astronaut falling past a black hole’s event horizon will notice nothing particularly odd about the surrounding space, but that once past the event horizon none of the “information” that specifies the astronaut’s properties can escape to the outside world. Quantum mechanics on the other hand predicts that information cannot be truly lost. The combination appears to suggest something radical, a “firewall” of high energy radiation around the event horizon carrying information from everything that fell into the black hole in the past, so powerful that it would burn our hypothetical astronaut to a crisp.

Since then, a wide variety of people have made one proposal or another, either attempting to avoid the seemingly preposterous firewall or to justify and further explain it. The reason the debate is so popular is because it touches on some of the fundamental principles of quantum mechanics.

Now, as I have pointed out before, I’m not a good person to ask about the fundamental principles of quantum mechanics. (Incidentally, I’d love it if some of the more quantum information or general relativity-focused bloggers would take a more substantial crack at this! Carroll, Preskill, anyone?) What I can talk about, though, is hype.

All of the headlines I listed take Hawking’s quote out of context, but not all of the articles do. The problem isn’t so much the journalists, as the editors.

One of an editor’s responsibilities is to take articles and give them titles that draw in readers. The editor wants a title that will get people excited, make them curious, and most importantly, get them to click. While a journalist won’t have any particular incentive to improve ad revenue, the same cannot be said for an editor. Thus, editors will often rephrase the title of an article in a way that makes the whole story seem more shocking.

Now that, in itself, isn’t a problem. I’ve used titles like that myself. The problem comes when the title isn’t just shocking, but misleading.

When I call astrophysics “impossible”, nobody is going to think I mean it literally. The title is petulant and ridiculous enough that no-one would take it at face value, but still odd enough to make people curious. By contrast, when you say that Hawking has “changed his mind” about black holes or said that “black holes do not exist”, there are people who will take that at face value as supporting their existing beliefs, as the Borowitz Report humorously points out. These people will go off thinking that Hawking really has given up on black holes. If the title confirms their beliefs enough, people might not even bother to read the article. Thus, by using an actively misleading title, you may actually be decreasing clicks!

It’s not that hard to write a title that’s both enough of a hook to draw people in and won’t mislead. Editors of the world, you’re well-trained writers, certainly much better than me. I’m sure you can manage it.

There really is some interesting news here, if people had bothered to look into it. The firewall debate has been going on for a year and a half, and while Hawking isn’t the universal genius the media occasionally depicts he’s still the world’s foremost expert on the quantum properties of black holes. Why did he take so long to weigh in? Is what he’s proposing even particularly new? I seem to remember people discussing eliminating the horizon in one way or another (even “naked” singularities) much earlier in the firewall debate…what makes Hawking’s proposal novel and different?

This is the sort of thing you can use to draw in interest, editors of the world. Don’t just write titles that cause ignorant people to roll their eyes and move on, instead, get people curious about what’s really going on in science! More ad revenue for you, more science awareness for us, sounds like a win-win!

What’s A Graviton? Or: How I Learned to Stop Worrying and Love Quantum Gravity

I’m four gravitons and a grad student. And despite this, I haven’t bothered to explain what a graviton is. It’s time to change that.

Let’s start like we often do, with a quick answer that will take some unpacking:

Gravitons are the force-carrying bosons of gravity.

I mentioned force-carrying bosons briefly here. Basically, a force can either be thought of as a field, or as particles called bosons that carry the effect of that field. Thinking about the force in terms of particles helps, because it allows you to visualize Feynman diagrams. While most forces come from Yang-Mills fields with spin 1, gravity has spin 2.

Now you may well ask, how exactly does this relate to the idea that gravity, unlike other forces, is a result of bending space and time?

First, let’s talk about what it means for space itself to be bent. If space is bent, distances are different than they otherwise would be.

Suppose we’ve got some coordinates: x and y. How do we find a distance? We use the Pythagorean Theorem:

d^2=x^2+y^2

Where d is the full distance. If space is bent, the formula changes:

d^2=g_{x}x^2+g_{y}y^2

Here g_{x} and g_{y} come from gravity. Normally, they would depend on x and y, modifying the formula and thus “bending” space.

Let’s suppose instead of measuring a distance, we want to measure the momentum of some other particle, which we call \phi because physicists are overly enamored of Greek letters. If p_{x,\phi} is its momentum (physicists also really love subscripts), then its total momentum can be calculated using the Pythagorean Theorem as well:

p_\phi^2= p_{x,\phi}^2+ p_{y,\phi}^2

Or with gravity:

p_\phi^2= g_{x}p_{x,\phi}^2+ g_{y} p_{y,\phi}^2

At the moment, this looks just like the distance formula with a bunch of extra stuff in it. Interpreted another way, though, it becomes instructions for the interactions of the graviton. If g_{x} and g_{y} represent the graviton, then this formula says that one graviton can interact with two \phi particles, like so:

graviton

Saying that gravitons can interact with \phi particles ends up meaning the same thing as saying that gravity changes the way we measure the \phi particle’s total momentum. This is one of the more important things to understand about quantum gravity: the idea that when people talk about exotic things like “gravitons”, they’re really talking about the same theory that Einstein proposed in 1916. There’s nothing scary about describing gravity in terms of particles just like the other forces. The scary bit comes later, as a result of the particular way that quantum calculations with gravity end up. But that’s a tale for another day.

What are colliders for, anyway?

Above is a thoroughly famous photo from ATLAS, one of six different particle detectors that sit around the ring of the Large Hadron Collider (or LHC for short). Forming a 26 kilometer ring spanning a chunk of southern France and Switzerland, the LHC is the biggest experiment of its kind, with the machine alone costing around 4 billion dollars.

But what is “its kind”? And why does it need to be so huge?

Aesthetics, clearly.

Explaining what a particle collider like the LHC does is actually fairly simple, if you’re prepared for some rather extreme mental images: using incredibly strong magnetic fields, the LHC accelerates protons until they’re moving at 99.9999991% of the speed of light, then lets them smash into each other in the middle of sophisticated detectors designed to observe and track everything that comes out of the collision.

That’s all well and awesome, but why do the protons need to be moving so fast? Are they really really hard to crack open, or something?

This gets at a common misunderstanding of particle physics, which I’d like to correct here.

When most people imagine what a particle collider does, they picture it smashing particles together like hollow shells, revealing the smaller particles trapped inside. You may have even heard particle colliders referred to as “atom smashers”, and if you’re used to hearing about scientists “splitting the atom”, this all makes sense: with lots of energy, atoms can be broken apart into protons and neutrons, which is what they are made of. Protons are made of quarks, and quarks were discovered using particle colliders, so the story seems to check out, right?

The thing is, lots of things have been discovered using particle colliders that definitely aren’t part of protons and neutrons. Relatives of the electron like muons and tau particles, new varieties of neutrinos, heavier quarks…pretty much the only particles that are part of protons or neutrons are the three lightest quarks (and that’s leaving aside the fact that what is or is not “part of” a proton is a complicated question in its own right).

So where do the extra particles come from? How do you crash two protons together and get something out that wasn’t in either of them?

You…throw Einstein at them?

E equals m c squared. This equation, famous to the point of cliché, is often misinterpreted. One useful way to think about it is that it describes mass as a type of energy, and clarifies how to convert between units of mass and units of energy. Then E in the equation is merely the contribution to the energy of a particle from its mass, while the full energy also includes kinetic energy, the energy of motion.

Energy is conserved, that is, cannot be created or destroyed. Mass, on the other hand, being merely one type of energy, is not necessarily conserved. The reason why mass seems to be conserved in day to day life is because it takes a huge amount of energy to make any appreciable mass: the c in m c squared is the speed of light, after all. That’s why if you’ve got a radioactive atom it will decay into lighter elements, never heavier ones.

However, this changes with enough kinetic energy. If you get something like a proton accelerated to up near the speed of light, its kinetic energy will be comparable to (or even much higher than) its mass. With that much “spare” energy, energy can transform from one form into another: from kinetic energy into mass!

Of course, it’s not quite that simple. Energy isn’t the only thing that’s conserved: so is charge, and not just electric charge, but other sorts of charge too, like the colors of quarks.  All in all, the sorts of particles that are allowed to be created are governed by the ways particles can interact. So you need not just one high energy particle, but two high energy particles interacting in order to discover new particles.

And that, in essence, is what a particle collider is all about. By sending two particles hurtling towards each other at almost the speed of light you are allowing two high energy particles to interact. The bigger the machine, the faster those particles can go, and thus the more kinetic energy is free to transform into mass. Thus the more powerful you make your particle collider, the more likely you are to see rare, highly massive particles that if left alone in nature would transform unseen into less massive particles in order to release their copious energy. By producing these massive particles inside a particle collider we can make sure they are created inside of sophisticated particle detectors, letting us observe what they turn into with precision and extrapolate what the original particles were. That’s how we found the Higgs, and it’s how we’re trying to find superpartners. It’s one of the only ways we have to answer questions about the fundamental rules that govern the universe.

Black Holes and a Superluminal River of Glass

If I told you that scientists have been able to make black holes in their labs for years, you probably either wouldn’t believe me, or would suddenly get exceptionally paranoid. Turns out it’s true, provided you understand a little bit about black holes.

A black hole is, at its most basic, an object that light cannot escape. That’s why it’s “black”: it absorbs all colors of light. That’s really, deep down, all you need in order to have a black hole.

Black holes out in space, as you are likely aware, are the result of collapsed stars. Gather enough mass into a small enough space and, according to general relativity, space and time begin to bend. Bend space and time enough and the paths that light would follow curve in on themselves, until inside the event horizon (the “point of no return”) the only way light can go is down, into the center of the black hole.

That’s not the only way to get a “point of no return” though. Imagine flying a glider above a fast-moving river. If the plane is slower than the river, then any object placed in the river is like a “point of no return”:  once the object passes you, you can never fly back and find it again.

Of course, trying to apply this to light runs into a difficulty: you can have a river faster than a plane, but it’s pretty hard to have a river faster than light. You might even say it’s impossible: nothing can travel faster than light, after all, right?

The idea that nothing can travel faster than light is actually a common misconception, held because it makes a better buzzword than the truth: nothing can travel faster than light in a vacuum. Light in a vacuum goes straight to its target, the fastest thing in the universe. But light in a substance, moving through air or water or glass, gets deflected: it runs into atoms, gets absorbed, gets released, and overall moves slower. So in order to make a black hole, all we need is some substance moving faster than light moves in that substance: a superluminal river of glass.

(By the way, is that not an amazingly evocative phrase? Sounds like the title of a Gibson novel.)

Now it turns out that literally making glass move faster than light moves inside it is still well beyond modern science. But scientists can get around that. Instead of making the glass move, they  make the properties of the glass change, using lasers to alter the glass so that the altered area moves faster than the light around it. With this sort of setup, they can test all sorts of theoretical black hole properties up close, in the comfort of a university basement.

That’s just one example of how to create an artificial black hole. There are several others, and all of them rely on various ingenious manipulations of the properties of matter. You live in a world in which artificial black holes are routine and diverse. Inspiring, no?

Wormholes and Donut Holes

I’ve heard people claim that in order to understand wormholes, you need to understand five-dimensional space.

Well that’s just silly.

A wormhole is often described as a hole in space-time. It can be imagined as a black hole where instead of getting crushed when you fall in to the center, you emerge somewhere else (or even some-when else: wormholes are possibly the only way to get time travel). They’re a staple of science fiction, even if they aren’t always portrayed accurately.

Probably not what a wormhole looks like

How does this work? Well like many things in physics, it’s helpful to imagine it with fewer dimensions first:

Suppose that you live on the surface of a donut. You can’t get up off the surface; you’re stuck to its gooey sugary coating. All you can do is slide around it.

It’s a simple life

Let’s say that one day you’re sitting on the pink side of the donut, near the center. Your friend lives on the non-frosted side, and you want to go see her. You could go all the way back to the outside edge of the donut, around the side, and down to the bottom, but you’re tired and the frosting is sticky. Luckily, you can use your futuristic pastry technology, the donut hole! Instead of going around the outside, you dive in through the inside hole, getting to your friend’s house much faster.

That’s really all a wormhole is. Instead of living on a two-dimensional donut surface, you live in a world with three space dimensions and one time dimension. A wormhole is still just like a donut hole: a shortcut, made possible by space being a non-obvious shape.

Now earlier I said that you don’t need to understand five-dimensional space to understand wormholes, and that’s true. Yes, real donuts exist in three dimensions…but if you live on the surface only, you only see two: inward versus outward, and around the center. It’s like a 2D video game with a limited map: the world looks flat, but if you go up past the top edge you find yourself on the bottom. Going from the top edge directly to the bottom is easier than going all the way down the screen: it’s just the same as a wormhole. You don’t need extra dimensions to have wormholes, just rules: when you go up far enough, you come back down. Go to the center of the wormhole, and come out the other side. And as one finds in physics, it’s the rules, not naïve intuitions, that determine how the world works. Just like a video game.

Some thoughts about the current Flame Challenge

Ever tried to explain something to an eleven year old?

It’s not the same as talking to a six year old. There’s no need to talk down, or to oversimplify: eleven is smart enough to understand most of what you have to say. On the other hand, most eleven year olds haven’t had chemistry or physics, or algebra. They’re about as intelligent as they’re going to get, but with almost no knowledge base, which makes them a uniquely relevant challenge for communicating science.

That’s the concept behind Alan Alda’s Flame Challenge: eleven year olds around the country pick a question and scientists (via video, images, or text) attempt to answer it. Last year, the challenge question was “What is a flame?” a question from Alan Alda’s own youth. This year, the eleven year olds had their first opportunity to choose, and they chose a doozy: “What is time?”

This is…well, a difficult question. Not just hard to explain, it’s a question that could mean one of several different things. Alan Alda has embraced the ambiguity and assures contestants that they can pursue whichever interpretation they think best, but in the end the judges are eleven year olds around the country, and it will be their call whether an answer is sufficient.

(As an aside, I think this sort of ambiguous question isn’t a fluke: barring a new vetting procedure, we’re going to keep getting questions like this. If an eleven year old wants to understand something with a definite answer, he or she will just Google it. It’s only the ambiguous, tricky, arguably poorly-formed questions that can’t be answered by a quick search.)

I’ve been brainstorming a bit, and I’ve come up with a few meanings for the question “What is time?”

  • How should time travel work? In my own limited experience with kids asking about time, this is usually what they’re going for. Screw the big philosophical questions: can I go kill a dinosaur, and if I do, should I be worried that everyone will be speaking Chinese when I get back? In some ways this is the easiest question to answer because, barring Everett-style interpretations of quantum mechanics, there really is only one way for time travel to work consistent with current science, and that’s through wormholes. Wormholes aren’t an especially difficult concept: all they really require is some understanding of the idea that space can be curved. Flatland in particular proves ideal for teaching students to think of space as more than just three static directions, which is why I’m considering the (potentially wildly overambitious) idea of submitting an animated Flatland story dealing with wormholes and time travel for the Flame Challenge. By the way, any budding scientist-animators who are interested in collaborating on such a project are more than welcome! I’m not sure I can do this without help. By the way, one downside of this approach is that it is very well covered by movies and other media, so it is entirely possible that most eleven year olds know this already.
  • What makes time different from other dimensions? There is a flippant physicist answer to this question, and that is that time has a different sign in the Minkowski metric. What that means, in very vague terms, is that while rotations in space will always come back to where they started, if you rotate something in both space and time (it turns out all this means is gaining speed) you can keep going indefinitely, getting closer and closer to the speed of light without ever getting back to your previous speed. If you want to know why time is special like that, that’s harder to say, but occasionally papers bubble up on arXiv claiming that they understand why this should be the case. I’d love it if an author of one of those papers made a submission to the Flame Challenge.
  • Why does time have an arrow? Why does it only go forwards? This is not the same question as the previous one! This is much harder, and depending on who you talk to it relates somehow to entropy and thermodynamics or to quantum mechanics, or even to biology and psychology. It’s tricky to explain, but there have been many attempts, and I don’t doubt that a substantial number of the submissions will be in this vein.
  • How does Special Relativity (or General Relativity) work? How can time go faster or slower? This is a more specialized version of the question about why time is unique, and one that Alan Alda has made mention of in his interviews. Teaching Special Relativity or General Relativity to eleven year olds is a challenge, which is not to say it is impossible but rather the reverse: unlike the other questions, this is unambiguous enough that with enough work someone could do it, and possibly advance the field of science communication in doing so.
  • Is time real? Could time be an illusion? There are a number of variations of this, ranging from purely philosophical to directly scientific. Is it better to think of everything as happening at once, and our minds simply organizing it? Is time merely change, or could time exist in a changeless universe? There is a lot of ambiguity in answering this form of the question, and while we’ll see a few people trying to go in this vein I doubt there’s an answer that will satisfy the world’s eleven year olds.
  • Side topics. Someone could, of course, go on a completely different route. They could explain clocks, and timekeeping throughout the ages. They could talk about the definition of a second. They could talk about the beginning of time, and what that means, or discuss whether or not time had a beginning at all. They could talk about the relationship between energy and time, how one, via Noether’s Theorem, implies the other. There are many choices here, and the trick is to avoid straying too far from the main point. Eleven year olds are not forgiving folks, after all.

I am very much looking forward to seeing what people submit, and if all goes extraordinarily well, I may even have a submission too. It’s a very difficult topic this year, but we’re scientists! If anyone can do it, we can.