Tag Archives: relativity

What are colliders for, anyway?

Above is a thoroughly famous photo from ATLAS, one of six different particle detectors that sit around the ring of the Large Hadron Collider (or LHC for short). Forming a 26 kilometer ring spanning a chunk of southern France and Switzerland, the LHC is the biggest experiment of its kind, with the machine alone costing around 4 billion dollars.

But what is “its kind”? And why does it need to be so huge?

Aesthetics, clearly.

Explaining what a particle collider like the LHC does is actually fairly simple, if you’re prepared for some rather extreme mental images: using incredibly strong magnetic fields, the LHC accelerates protons until they’re moving at 99.9999991% of the speed of light, then lets them smash into each other in the middle of sophisticated detectors designed to observe and track everything that comes out of the collision.

That’s all well and awesome, but why do the protons need to be moving so fast? Are they really really hard to crack open, or something?

This gets at a common misunderstanding of particle physics, which I’d like to correct here.

When most people imagine what a particle collider does, they picture it smashing particles together like hollow shells, revealing the smaller particles trapped inside. You may have even heard particle colliders referred to as “atom smashers”, and if you’re used to hearing about scientists “splitting the atom”, this all makes sense: with lots of energy, atoms can be broken apart into protons and neutrons, which is what they are made of. Protons are made of quarks, and quarks were discovered using particle colliders, so the story seems to check out, right?

The thing is, lots of things have been discovered using particle colliders that definitely aren’t part of protons and neutrons. Relatives of the electron like muons and tau particles, new varieties of neutrinos, heavier quarks…pretty much the only particles that are part of protons or neutrons are the three lightest quarks (and that’s leaving aside the fact that what is or is not “part of” a proton is a complicated question in its own right).

So where do the extra particles come from? How do you crash two protons together and get something out that wasn’t in either of them?

You…throw Einstein at them?

E equals m c squared. This equation, famous to the point of cliché, is often misinterpreted. One useful way to think about it is that it describes mass as a type of energy, and clarifies how to convert between units of mass and units of energy. Then E in the equation is merely the contribution to the energy of a particle from its mass, while the full energy also includes kinetic energy, the energy of motion.

Energy is conserved, that is, cannot be created or destroyed. Mass, on the other hand, being merely one type of energy, is not necessarily conserved. The reason why mass seems to be conserved in day to day life is because it takes a huge amount of energy to make any appreciable mass: the c in m c squared is the speed of light, after all. That’s why if you’ve got a radioactive atom it will decay into lighter elements, never heavier ones.

However, this changes with enough kinetic energy. If you get something like a proton accelerated to up near the speed of light, its kinetic energy will be comparable to (or even much higher than) its mass. With that much “spare” energy, energy can transform from one form into another: from kinetic energy into mass!

Of course, it’s not quite that simple. Energy isn’t the only thing that’s conserved: so is charge, and not just electric charge, but other sorts of charge too, like the colors of quarks.  All in all, the sorts of particles that are allowed to be created are governed by the ways particles can interact. So you need not just one high energy particle, but two high energy particles interacting in order to discover new particles.

And that, in essence, is what a particle collider is all about. By sending two particles hurtling towards each other at almost the speed of light you are allowing two high energy particles to interact. The bigger the machine, the faster those particles can go, and thus the more kinetic energy is free to transform into mass. Thus the more powerful you make your particle collider, the more likely you are to see rare, highly massive particles that if left alone in nature would transform unseen into less massive particles in order to release their copious energy. By producing these massive particles inside a particle collider we can make sure they are created inside of sophisticated particle detectors, letting us observe what they turn into with precision and extrapolate what the original particles were. That’s how we found the Higgs, and it’s how we’re trying to find superpartners. It’s one of the only ways we have to answer questions about the fundamental rules that govern the universe.

Black Holes and a Superluminal River of Glass

If I told you that scientists have been able to make black holes in their labs for years, you probably either wouldn’t believe me, or would suddenly get exceptionally paranoid. Turns out it’s true, provided you understand a little bit about black holes.

A black hole is, at its most basic, an object that light cannot escape. That’s why it’s “black”: it absorbs all colors of light. That’s really, deep down, all you need in order to have a black hole.

Black holes out in space, as you are likely aware, are the result of collapsed stars. Gather enough mass into a small enough space and, according to general relativity, space and time begin to bend. Bend space and time enough and the paths that light would follow curve in on themselves, until inside the event horizon (the “point of no return”) the only way light can go is down, into the center of the black hole.

That’s not the only way to get a “point of no return” though. Imagine flying a glider above a fast-moving river. If the plane is slower than the river, then any object placed in the river is like a “point of no return”:  once the object passes you, you can never fly back and find it again.

Of course, trying to apply this to light runs into a difficulty: you can have a river faster than a plane, but it’s pretty hard to have a river faster than light. You might even say it’s impossible: nothing can travel faster than light, after all, right?

The idea that nothing can travel faster than light is actually a common misconception, held because it makes a better buzzword than the truth: nothing can travel faster than light in a vacuum. Light in a vacuum goes straight to its target, the fastest thing in the universe. But light in a substance, moving through air or water or glass, gets deflected: it runs into atoms, gets absorbed, gets released, and overall moves slower. So in order to make a black hole, all we need is some substance moving faster than light moves in that substance: a superluminal river of glass.

(By the way, is that not an amazingly evocative phrase? Sounds like the title of a Gibson novel.)

Now it turns out that literally making glass move faster than light moves inside it is still well beyond modern science. But scientists can get around that. Instead of making the glass move, they  make the properties of the glass change, using lasers to alter the glass so that the altered area moves faster than the light around it. With this sort of setup, they can test all sorts of theoretical black hole properties up close, in the comfort of a university basement.

That’s just one example of how to create an artificial black hole. There are several others, and all of them rely on various ingenious manipulations of the properties of matter. You live in a world in which artificial black holes are routine and diverse. Inspiring, no?

Wormholes and Donut Holes

I’ve heard people claim that in order to understand wormholes, you need to understand five-dimensional space.

Well that’s just silly.

A wormhole is often described as a hole in space-time. It can be imagined as a black hole where instead of getting crushed when you fall in to the center, you emerge somewhere else (or even some-when else: wormholes are possibly the only way to get time travel). They’re a staple of science fiction, even if they aren’t always portrayed accurately.

Probably not what a wormhole looks like

How does this work? Well like many things in physics, it’s helpful to imagine it with fewer dimensions first:

Suppose that you live on the surface of a donut. You can’t get up off the surface; you’re stuck to its gooey sugary coating. All you can do is slide around it.

It’s a simple life

Let’s say that one day you’re sitting on the pink side of the donut, near the center. Your friend lives on the non-frosted side, and you want to go see her. You could go all the way back to the outside edge of the donut, around the side, and down to the bottom, but you’re tired and the frosting is sticky. Luckily, you can use your futuristic pastry technology, the donut hole! Instead of going around the outside, you dive in through the inside hole, getting to your friend’s house much faster.

That’s really all a wormhole is. Instead of living on a two-dimensional donut surface, you live in a world with three space dimensions and one time dimension. A wormhole is still just like a donut hole: a shortcut, made possible by space being a non-obvious shape.

Now earlier I said that you don’t need to understand five-dimensional space to understand wormholes, and that’s true. Yes, real donuts exist in three dimensions…but if you live on the surface only, you only see two: inward versus outward, and around the center. It’s like a 2D video game with a limited map: the world looks flat, but if you go up past the top edge you find yourself on the bottom. Going from the top edge directly to the bottom is easier than going all the way down the screen: it’s just the same as a wormhole. You don’t need extra dimensions to have wormholes, just rules: when you go up far enough, you come back down. Go to the center of the wormhole, and come out the other side. And as one finds in physics, it’s the rules, not naïve intuitions, that determine how the world works. Just like a video game.

Some thoughts about the current Flame Challenge

Ever tried to explain something to an eleven year old?

It’s not the same as talking to a six year old. There’s no need to talk down, or to oversimplify: eleven is smart enough to understand most of what you have to say. On the other hand, most eleven year olds haven’t had chemistry or physics, or algebra. They’re about as intelligent as they’re going to get, but with almost no knowledge base, which makes them a uniquely relevant challenge for communicating science.

That’s the concept behind Alan Alda’s Flame Challenge: eleven year olds around the country pick a question and scientists (via video, images, or text) attempt to answer it. Last year, the challenge question was “What is a flame?” a question from Alan Alda’s own youth. This year, the eleven year olds had their first opportunity to choose, and they chose a doozy: “What is time?”

This is…well, a difficult question. Not just hard to explain, it’s a question that could mean one of several different things. Alan Alda has embraced the ambiguity and assures contestants that they can pursue whichever interpretation they think best, but in the end the judges are eleven year olds around the country, and it will be their call whether an answer is sufficient.

(As an aside, I think this sort of ambiguous question isn’t a fluke: barring a new vetting procedure, we’re going to keep getting questions like this. If an eleven year old wants to understand something with a definite answer, he or she will just Google it. It’s only the ambiguous, tricky, arguably poorly-formed questions that can’t be answered by a quick search.)

I’ve been brainstorming a bit, and I’ve come up with a few meanings for the question “What is time?”

  • How should time travel work? In my own limited experience with kids asking about time, this is usually what they’re going for. Screw the big philosophical questions: can I go kill a dinosaur, and if I do, should I be worried that everyone will be speaking Chinese when I get back? In some ways this is the easiest question to answer because, barring Everett-style interpretations of quantum mechanics, there really is only one way for time travel to work consistent with current science, and that’s through wormholes. Wormholes aren’t an especially difficult concept: all they really require is some understanding of the idea that space can be curved. Flatland in particular proves ideal for teaching students to think of space as more than just three static directions, which is why I’m considering the (potentially wildly overambitious) idea of submitting an animated Flatland story dealing with wormholes and time travel for the Flame Challenge. By the way, any budding scientist-animators who are interested in collaborating on such a project are more than welcome! I’m not sure I can do this without help. By the way, one downside of this approach is that it is very well covered by movies and other media, so it is entirely possible that most eleven year olds know this already.
  • What makes time different from other dimensions? There is a flippant physicist answer to this question, and that is that time has a different sign in the Minkowski metric. What that means, in very vague terms, is that while rotations in space will always come back to where they started, if you rotate something in both space and time (it turns out all this means is gaining speed) you can keep going indefinitely, getting closer and closer to the speed of light without ever getting back to your previous speed. If you want to know why time is special like that, that’s harder to say, but occasionally papers bubble up on arXiv claiming that they understand why this should be the case. I’d love it if an author of one of those papers made a submission to the Flame Challenge.
  • Why does time have an arrow? Why does it only go forwards? This is not the same question as the previous one! This is much harder, and depending on who you talk to it relates somehow to entropy and thermodynamics or to quantum mechanics, or even to biology and psychology. It’s tricky to explain, but there have been many attempts, and I don’t doubt that a substantial number of the submissions will be in this vein.
  • How does Special Relativity (or General Relativity) work? How can time go faster or slower? This is a more specialized version of the question about why time is unique, and one that Alan Alda has made mention of in his interviews. Teaching Special Relativity or General Relativity to eleven year olds is a challenge, which is not to say it is impossible but rather the reverse: unlike the other questions, this is unambiguous enough that with enough work someone could do it, and possibly advance the field of science communication in doing so.
  • Is time real? Could time be an illusion? There are a number of variations of this, ranging from purely philosophical to directly scientific. Is it better to think of everything as happening at once, and our minds simply organizing it? Is time merely change, or could time exist in a changeless universe? There is a lot of ambiguity in answering this form of the question, and while we’ll see a few people trying to go in this vein I doubt there’s an answer that will satisfy the world’s eleven year olds.
  • Side topics. Someone could, of course, go on a completely different route. They could explain clocks, and timekeeping throughout the ages. They could talk about the definition of a second. They could talk about the beginning of time, and what that means, or discuss whether or not time had a beginning at all. They could talk about the relationship between energy and time, how one, via Noether’s Theorem, implies the other. There are many choices here, and the trick is to avoid straying too far from the main point. Eleven year olds are not forgiving folks, after all.

I am very much looking forward to seeing what people submit, and if all goes extraordinarily well, I may even have a submission too. It’s a very difficult topic this year, but we’re scientists! If anyone can do it, we can.