4gravitons, Spinning Up

I had a new paper out last week, with Michèle Levi and Andrew McLeod. But to explain it, I’ll need to clarify something about our last paper.

Two weeks ago, I told you that Andrew and Michèle and I had written a paper, predicting what gravitational wave telescopes like LIGO see when black holes collide. You may remember that LIGO doesn’t just see colliding black holes: it sees colliding neutron stars too. So why didn’t we predict what happens when neutron stars collide?

Actually, we did. Our calculation doesn’t just apply to black holes. It applies to neutron stars too. And not just neutron stars: it applies to anything of roughly the right size and shape. Black holes, neutron stars, very large grapefruits…

LIGO’s next big discovery

That’s the magic of Effective Field Theory, the “zoom lens” of particle physics. Zoom out far enough, and any big, round object starts looking like a particle. Black holes, neutron stars, grapefruits, we can describe them all using the same math.

Ok, so we can describe both black holes and neutron stars. Can we tell the difference between them?

In our last calculation, no. In this one, yes!

Effective Field Theory isn’t just a zoom lens, it’s a controlled approximation. That means that when we “zoom out” we don’t just throw out anything “too small to see”. Instead, we approximate it, estimating how big of an effect it can have. Depending on how precise we want to be, we can include more and more of these approximated effects. If our estimates are good, we’ll include everything that matters, and get a good approximation for what we’re trying to observe.

At the precision of our last calculation, a black hole and a neutron star still look exactly the same. Our new calculation aims for a bit higher precision though. (For the experts: we’re at a higher order in spin.) The higher precision means that we can actually see the difference: our result changes for two colliding black holes versus two colliding grapefruits.

So does that mean I can tell you what happens when two neutron stars collide, according to our calculation? Actually, no. That’s not because we screwed up the calculation: it’s because some of the properties of neutron stars are unknown.

The Effective Field Theory of neutron stars has what we call “free parameters”, unknown variables. People have tried to estimate some of these (called “Love numbers” after the mathematician A. E. H. Love), but they depend on the details of how neutron stars work: what stuff they contain, how that stuff is shaped, and how it can move. To find them out, we probably can’t just calculate: we’ll have to measure, observe an actual neutron star collision and see what the numbers actually are.

That’s one of the purposes of gravitational wave telescopes. It’s not (as far as I know) something LIGO can measure. But future telescopes, with more precision, should be able to. By watching two colliding neutron stars and comparing to a high-precision calculation, physicists will better understand what those neutron stars are made of. In order to do that, they will need someone to do that high-precision calculation. And that’s why people like me are involved.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s