Earlier this year, I made a list of topics I wanted to understand. The most abstract and technical of them was something called “Wilsonian effective field theory”. I still don’t understand Wilsonian effective field theory. But while thinking about it, I noticed something that seemed weird. It’s something I think many physicists already understand, but that hasn’t really sunk in with the public yet.
There’s an old problem in particle physics, described in many different ways over the years. Take our theories and try to calculate some reasonable number (say, the angle an electron turns in a magnetic field), and instead of that reasonable number we get infinity. We fix this problem with a process called renormalization that hides that infinity away, changing the “normalization” of some constant like a mass or a charge. While renormalization first seemed like a shady trick, physicists eventually understood it better. First, we thought of it as a way to work around our ignorance, that the true final theory would have no infinities at all. Later, physicists instead thought about renormalization in terms of scaling.
Imagine looking at the world on a camera screen. You can zoom in, or zoom out. The further you zoom out, the more details you’ll miss: they’re just too small to be visible on your screen. You can guess what they might be, but your picture will be different depending on how you zoom.
In particle physics, many of our theories are like that camera. They come with a choice of “zoom setting”, a minimum scale where they still effectively tell the whole story. We call theories like these effective field theories. Some physicists argue that these are all we can ever have: since our experiments are never perfect, there will always be a scale so small we have no evidence about it.
In general, theories can be quite different at different scales. Some theories, though, are especially nice: they look almost the same as we zoom in to smaller scales. The only things that change are the mass of different particles, and their charges.
One theory like this is Quantum Chromodynamics (or QCD), the theory of quarks and gluons. Zoom in, and the theory looks pretty much the same, with one crucial change: the force between particles get weaker. There’s a number, called the “coupling constant“, that describes how strong a force is, think of it as sort of like an electric charge. As you zoom in to quarks and gluons, you find you can still describe them with QCD, just with a smaller coupling constant. If you could zoom “all the way in”, the constant (and thus the force between particles) would be zero.
This makes QCD a rare kind of theory: one that could be complete to any scale. No matter how far you zoom in, QCD still “makes sense”. It never gives contradictions or nonsense results. That doesn’t mean it’s actually true: it interacts with other forces, like gravity, that don’t have complete theories, so it probably isn’t complete either. But if we didn’t have gravity or electricity or magnetism, if all we had were quarks and gluons, then QCD could have been the final theory that described them.
And this starts feeling a little weird, when you think about reductionism.
Philosophers define reductionism in many different ways. I won’t be that sophisticated. Instead, I’ll suggest the following naive definition: Reductionism is the claim that theories on larger scales reduce to theories on smaller scales.
Here “reduce to” is intentionally a bit vague. It might mean “are caused by” or “can be derived from” or “are explained by”. I’m gesturing at the sort of thing people mean when they say that biology reduces to chemistry, or chemistry to physics.
What happens when we think about QCD, with this intuition?
QCD on larger scales does indeed reduce to QCD on smaller scales. If you want to ask why QCD on some scale has some coupling constant, you can explain it by looking at the (smaller) QCD coupling constant on a smaller scale. If you have equations for QCD on a smaller scale, you can derive the right equations for a larger scale. In some sense, everything you observe in your larger-scale theory of QCD is caused by what happens in your smaller-scale theory of QCD.
But this isn’t quite the reductionism you’re used to. When we say biology reduces to chemistry, or chemistry reduces to physics, we’re thinking of just a few layers: one specific theory reduces to another specific theory. Here, we have an infinite number of layers, every point on the scale from large to small, each one explained by the next.
Maybe you think you can get out of this, by saying that everything should reduce to the smallest scale. But remember, the smaller the scale the smaller our “coupling constant”, and the weaker the forces between particles. At “the smallest scale”, the coupling constant is zero, and there is no force. It’s only when you put your hand on the zoom nob and start turning that the force starts to exist.
It’s reductionism, perhaps, but not as we know it.
Now that I understand this a bit better, I get some of the objections to my post about naturalness a while back. I was being too naive about this kind of thing, as some of the commenters (particularly Jacques Distler) noted. I believe there’s a way to rephrase the argument so that it still works, but I’d have to think harder about how.
I also get why I was uneasy about Sabine Hossenfelder’s FQXi essay on reductionism. She considered a more complicated case, where the chain from large to small scale could be broken, a more elaborate variant of a problem in Quantum Electrodynamics. But if I’m right here, then it’s not clear that scaling in effective field theories is even the right way to think about this. When you have an infinite series of theories that reduce to other theories, you’re pretty far removed from what most people mean by reductionism.
Finally, this is the clearest reason I can find why you can’t do science without an observer. The “zoom” is just a choice we scientists make, an arbitrary scale describing our ignorance. But without it, there’s no way to describe QCD. The notion of scale is an inherent and inextricable part of the theory, and it doesn’t have to mean our theory is incomplete.
Experts, please chime in here if I’m wrong on the physics here. As I mentioned at the beginning, I still don’t think I understand Wilsonian effective field theory. If I’m right though, this seems genuinely weird, and something more of the public should appreciate.







