I’ll be at Amplitudes, my subfield’s big yearly conference, next week, so I don’t have a lot to talk about. That said, I wanted to give a shout-out to my collaborator and future colleague Andrew McLeod, who is a co-author (along with Øyvind Almelid, Claude Duhr, Einan Gardi, and Chris White) on a rather cool paper that went up on arXiv this week.
Andrew and I work on “bootstrapping” calculations in quantum field theory. In particular, we start with a guess for what the result will be based on a specific set of mathematical functions (in my case, “hexagon functions” involving interactions of six particles). We then narrow things down, using other calculations that by themselves only predict part of the result, until we know the right answer. The metaphor here is that we’re “pulling ourselves up by our own bootstraps”, skipping a long calculation by essentially just guessing the answer.
This method has worked pretty well…in a toy model anyway. The calculations I’ve done with it use N=4 super Yang-Mills, a simpler cousin of the theories that describe the real world. There, fewer functions can show up, so our guess is much less unwieldy than it would be otherwise.
What’s impressive about Andrew and co.’s new paper is that they apply this method, not to N=4 super Yang-Mills, but to QCD, the theory that describes quarks and gluons in the real world. This is exactly the sort of thing I’ve been hoping to see more of, these methods built into something that can help with real, useful calculations.
Currently, what they can do is still fairly limited. For the particular problem they’re looking at, the functions required ended up being relatively simple, involving interactions between at most four particles. So far, they’ve just reproduced a calculation done by other means. Going further (more “loops”) would involve interactions between more particles, as well as mixing different types of functions (different “transcendental weight”), either of which make the problem much more complicated.
That said, the simplicity of their current calculation is also a reason to be optimistic. Their starting “guess” had just thirteen parameters, while the one Andrew and I are working on right now (in N=4 super Yang-Mills) has over a thousand. Even if things get a lot more complicated for them at the next loop, we’ve shown that “a lot more complicated” can still be quite doable.
So overall, I’m excited. It looks like there are contexts in which one really can “bootstrap” up calculations in a realistic theory, and that’s a method that could end up really useful.