# The State of Four Gravitons

This blog is named for a question: does the four-graviton amplitude in N=8 supergravity diverge?

Over the years, Zvi Bern and a growing cast of collaborators have been trying to answer that question. They worked their way up, loop by loop, until they stalled at five loops. Last year, they finally broke the stall, and last week, they published the result of the five-loop calculation. They find that N=8 supergravity does not diverge at five loops in four dimensions, but does diverge in 24/5 dimensions. I thought I’d write a brief FAQ about the status so far.

Q: Wait a minute, 24/5 dimensions? What does that mean? Are you talking about fractals, or…

Nothing so exotic. The number 24/5 comes from a regularization trick. When we’re calculating an amplitude that might be divergent, one way to deal with it is to treat the dimension like a free variable. You can then see what happens as you vary the dimension, and see when the amplitude starts diverging. If the dimension is an integer, then this ends up matching a more physics-based picture, where you start with a theory in eleven dimensions and curl up the extra ones until you get to the dimension you’re looking for. For fractional dimensions, it’s not clear that there’s any physical picture like this: it’s just a way to talk about how close something is to diverging.

Q: I’m really confused. What’s a graviton? What is supergravity? What’s a divergence?

I don’t have enough space to explain these things here, but that’s why I write handbooks. Here are explanations of gravitons, supersymmetry, and (N=8) supergravity, loops, and divergences. Please let me know if anything in those explanations is unclear, or if you have any more questions.

Q: Why do people think that N=8 supergravity will diverge at seven loops?

There’s a useful rule of thumb in quantum field theory: anything that can happen, will happen. In this case, that means if there’s a way for a theory to diverge that’s consistent with the symmetries of the theory, then it almost always does diverge. In the past, that meant that people expected N=8 supergravity to diverge at five loops. However, researchers found a previously unknown symmetry that looked like it would forbid the five-loop divergence, and only allow a divergence at seven loops (in four dimensions). Zvi and co.’s calculation confirms that the five-loop divergence doesn’t show up.

More generally, string theory not only avoids divergences but clears up other phenomena, like black holes. These two things seem tied together: string theory cleans up problems in quantum gravity in a consistent, unified way. There isn’t a clear way for N=8 supergravity on its own to clean up these kinds of problems, which makes some people skeptical that it can match string theory’s advantages. Either way N=8 supergravity, unlike string theory, isn’t a candidate theory of nature by itself: it would need to be modified in order to describe our world, and no-one has suggested a way to do that.

Q: Why do people think that N=8 supergravity won’t diverge at seven loops?

There’s a useful rule of thumb in amplitudes: amplitudes are weird. In studying amplitudes we often notice unexpected simplifications, patterns that uncover new principles that weren’t obvious before.

Gravity in general seems to have a lot of these kinds of simplifications. Even without any loops, its behavior is surprisingly tame: it’s a theory that we can build up piece by piece from the three-particle interaction, even though naively we shouldn’t be able to (for the experts: I’m talking about large-z behavior in BCFW). This behavior seems to have an effect on one-loop amplitudes as well. There are other ways in which gravity seems better-behaved than expected, overall this suggests that we still have a fair ways to go before we understand all of the symmetries of gravity theories.

Supersymmetric gravity in particular also seems unusually well-behaved. N=5 supergravity was expected to diverge at four loops, but doesn’t. N=4 supergravity does diverge at four loops, but that seems to be due to an effect that is specific to that case (for the experts: an anomaly).

For N=8 specifically, a suggestive hint came from varying the dimension. If you checked the dimension in which the theory diverged at each loop, you’d find it matched the divergences of another theory, N=4 super Yang-Mills. At $l$ loops, N=4 super Yang-Mills diverges in dimension $4+6/l$. From that formula, you can see that no matter how much you increase $l$, you’ll never get to four dimensions: in four dimensions, N=4 super Yang-Mills doesn’t diverge.

At five loops, N=4 super Yang-Mills diverges in 26/5 dimensions. Zvi Bern made a bet with supergravity expert Kelly Stelle that the dimension would be the same for N=8 supergravity: a bottle of California wine from Bern versus English wine from Stelle. Now that they’ve found a divergence in 24/5 dimensions instead, Stelle will likely be getting his wine soon.

Q: It sounds like the calculation was pretty tough. Can they still make it to seven loops?

I think so, yes. Doing the five-loop calculation they noticed simplifications, clever tricks uncovered by even more clever grad students. The end result is that if they just want to find out whether the theory diverges then they don’t have to do the “whole calculation”, just part of it. This simplifies things a lot. They’ll probably have to find a few more simplifications to make seven loops viable, but I’m optimistic that they’ll find them, and in the meantime the new tricks should have some applications in other theories.

Q: What do you think? Will the theory diverge?

I’m not sure.

To be honest, I’m a bit less optimistic than I used to be. The agreement of divergence dimensions between N=8 supergravity and N=4 super Yang-Mills wasn’t the strongest argument (there’s a reason why, though Stelle accepted the bet on five loops, string theorist Michael Green is waiting on seven loops for his bet). Fractional dimensions don’t obviously mean anything physically, and many of the simplifications in gravity seem specific to four dimensions. Still, it was suggestive, the kind of “motivation” that gets a conjecture started.

Without that motivation, none of the remaining arguments are specific to N=8. I still think unexpected simplifications are likely, that gravity overall behaves better than we yet appreciate. I still would bet on seven loops being finite. But I’m less confident about what it would mean for the theory overall. That’s going to take more serious analysis, digging in to the anomaly in N=4 supergravity and seeing what generalizes. It does at least seem like Zvi and co. are prepared to undertake that analysis.

Regardless, it’s still worth pushing for seven loops. Having that kind of heavy-duty calculation in our sub-field forces us to improve our mathematical technology, in the same way that space programs and particle colliders drive technology in the wider world. If you think your new amplitudes method is more efficient than the alternatives, the push to seven loops is the ideal stress test. Jacob Bourjaily likes to tell me how his prescriptive unitarity technique is better than what Zvi and co. are doing, this is our chance to find out!

Overall, I still stand by what I say in my blog’s sidebar. I’m interested in N=8 supergravity, I’d love to find out whether the four-graviton amplitude diverges…and now that the calculation is once again making progress, I expect that I will.

# Bubbles of Nothing

I recently learned about a very cool concept, called a bubble of nothing.

Read about physics long enough, and you’ll hear all sorts of cosmic disaster scenarios. If the Higgs vacuum decays, and the Higgs field switches to a different value, then the masses of most fundamental particles would change. It would be the end of physics, and life, as we know it.

A bubble of nothing is even more extreme. In a bubble of nothing, space itself ceases to exist.

The idea was first explored by Witten in 1982. Witten started with a simple model, a world with our four familiar dimensions of space and time, plus one curled-up extra dimension. What he found was that this simple world is unstable: quantum mechanics (and, as was later found, thermodynamics) lets it “tunnel” to another world, one that contains a small “bubble”, a sphere in which nothing at all exists.

Except perhaps the Nowhere Man

A bubble of nothing might sound like a black hole, but it’s quite different. Throw a particle into a black hole and it will fall in, never to return. Throw it into a bubble of nothing, though, and something more interesting happens. As you get closer, the extra dimension of space gets smaller and smaller. Eventually, it stops, smoothly closing off. The particle you threw in will just bounce back, smoothly, off the outside of the bubble. Essentially, it reached the edge of the universe.

The bubble starts out small, comparable to the size of the curled-up dimension. But it doesn’t stay that way. In Witten’s setup, the bubble grows, faster and faster, until it’s moving at the speed of light, erasing the rest of the universe from existence.

You probably shouldn’t worry about this happening to us. As far as I’m aware, nobody has written down a realistic model that can transform into a bubble of nothing.

Still, it’s an evocative concept, and one I’m surprised isn’t used more often in science fiction. I could see writers using a bubble of nothing as a risk from an experimental FTL drive, or using a stable (or slowly growing) bubble as the relic of some catastrophic alien war. The idea of a bubble of literal nothing is haunting enough that it ought to be put to good use.

# We Didn’t Deserve Hawking

I don’t usually do obituaries. I didn’t do one when Joseph Polchinksi died, though his textbook is sitting an arm’s reach from me right now. I never collaborated with Polchinski, I never met him, and others were much better at telling his story.

I never met Stephen Hawking, either. When I was at Perimeter, I’d often get asked if I had. Visitors would see his name on the Perimeter website, and I’d have to disappoint them by explaining that he hadn’t visited the institute in quite some time. His health, while exceptional for a septuagenarian with ALS, wasn’t up to the travel.

Was his work especially relevant to mine? Only because of its relevance to everyone who does gravitational physics. The universality of singularities in general relativity, black hole thermodynamics and Hawking radiation, these sharpened the questions around quantum gravity. Without his work, string theory wouldn’t have tried to answer the questions Hawking posed, and it wouldn’t have become the field it is today.

Hawking was unique, though, not necessarily because of his work, but because of his recognizability. Those visitors to Perimeter were a cross-section of the Canadian public. Some of them didn’t know the name of the speaker for the lecture they came to see. Some, arriving after reading Lee Smolin’s book, could only refer to him as “that older fellow who thinks about quantum gravity”. But Hawking? They knew Hawking. Without exception, they knew Hawking.

Who was the last physicist the public knew, like that? Feynman, at the height of his popularity, might have been close. You’d have to go back to Einstein to find someone who was really solidly known like that, who you could mention in homes across the world and expect recognition. And who else has that kind of status? Bohr might have it in Denmark. Go further back, and you’ll find people know Newton, they know Gaileo.

Einstein changed our picture of space and time irrevocably. Newton invented physics as we know it. Galileo and Copernicus pointed up to the sky and shouted that the Earth moves!

Hawking asked questions. He told us what did and didn’t make sense, he showed what we had to take into account. He laid the rules of engagement, and the rest of quantum gravity came and asked alongside him.

We live in an age of questions now. We’re starting to glimpse the answers, we have candidates and frameworks and tools, and if we’re feeling very optimistic we might already be sitting on a theory of everything. But we haven’t turned that corner yet, from asking questions to changing the world.

These ages don’t usually get a household name. Normally, you need an Einstein, a Newton, a Galileo, you need to shake the foundations of the world.

Somehow, Hawking gave us one anyway. Somehow, in our age of questions, we put a face in everyone’s mind, a figure huddled in a wheelchair with a snarky, computer-generated voice. Somehow Hawking reached out and reminded the world that there were people out there asking, that there was a big beautiful puzzle that our field was trying to solve.

Deep down, I’m not sure we deserved that. I hope we deserve it soon.

# Epistemology, Not Metaphysics, Justifies Experiments

While I was visiting the IAS a few weeks back, they had a workshop on Quantum Information and Black Holes. I didn’t see many of the talks, but I did get to see Leonard Susskind talk about his new slogan, GR=QM.

For some time now, researchers have been uncovering deep connections between gravity and quantum mechanics. Juan Maldacena jump-started the field with the discovery of AdS/CFT, showing that theories that describe gravity in a particular curved space (Anti-de Sitter, or AdS) are equivalent to non-gravity quantum theories describing the boundary of that space (specifically, Conformal Field Theories, or CFTs). The two theories contain the same information and, with the right “dictionary”, describe the same physics: in our field’s vernacular, they’re dual. Since then, physicists have found broader similarities, situations where properties of quantum mechanics, like entanglement, are closely linked to properties of gravity theories. Maldacena’s ER=EPR may be the most publicized of these, a conjectured equivalence between Einstein-Rosen bridges (colloquially known as wormholes) and entangled pairs of particles (famously characterized by Einstein, Podolsky, and Rosen).

GR=QM is clearly a riff on ER=EPR, but Susskind is making a more radical claim. Based on these developments, including his own work on quantum complexity, Susskind is arguing that the right kind of quantum mechanical system automatically gives rise to quantum gravity. What’s more, he claims that these systems will be available, using quantum computers, within roughly a decade. Within ten years or so, we’ll be able to do quantum gravity experiments.

That sounds ridiculous, until you realize he’s talking about dual theories. What he’s imagining is not an experiment at the absurdly high energies necessary to test quantum gravity, but rather a low-energy quantum mechanics experiment that is equivalent, by something like AdS/CFT, to a quantum gravity experiment.

Most people would think of that as a simulation, not an actual test of quantum gravity. Susskind, though, spends quite a bit of time defending the claim that it really is gravity, that literally GR=QM. His description of clever experiments and overarching physical principles is aimed at piling on evidence for that particular claim.

What do I think? I don’t think it matters much.

The claim Susskind is making is one of metaphysics: the philosophy of which things do and do not “really” exist. Unlike many physicists, I think metaphysics is worth discussing, that there are philosophers who make real progress with it.

But ultimately, Susskind is proposing a set of experiments. And what justifies experiments isn’t metaphysics, it’s epistemology: not what’s “really there”, but what we can learn.

What can we learn from the sorts of experiments Susskind is proposing?

Let’s get this out of the way first: we can’t learn which theory describes quantum gravity in our own world.

That’s because every one of these experiments relies on setting up a quantum system with particular properties. Every time, you’re choosing the “boundary theory”, the quantum mechanical side of GR=QM. Either you choose a theory with a known gravity partner, and you know how the inside should behave, or you choose a theory with an unknown partner. Either way, you have no reason to expect the gravity side to resemble the world we live in.

Plenty of people would get suspicious of Susskind here, and accuse him of trying to mislead people. They’re imagining headlines, “Experiment Proves String Theory”, based on a system intentionally set up to have a string theory dual, a system that can’t actually tell us whether string theory describes the real world.

That’s not where I’m going with this.

The experiments that Susskind is describing can’t prove string theory. But we could still learn something from them.

For one, we could learn whether these pairs of theories really are equivalent. AdS/CFT, ER=EPR, these are conjectures. In some cases, they’re conjectures with very good evidence. But they haven’t been proven, so it’s still possible there’s a problem people overlooked. One of the nice things about experiments and simulations is that they’re very good at exposing problems that were overlooked.

For another, we could get a better idea of how gravity behaves in general. By simulating a wide range of theories, we could look for overarching traits, properties that are common to most gravitational theories. We wouldn’t be sure that those properties hold in our world…but with enough examples, we could get pretty confident. Hopefully, we’d stumble on things that gravity has to do, in order to be gravity.

Susskind is quite capable of making these kinds of arguments, vastly more so than I. So it frustrates me that every time I’ve seen him talk or write about this, he hasn’t. Instead, he keeps framing things in terms of metaphysics, whether quantum mechanics “really is” gravity, whether the experiment “really” explores a wormhole. If he wants to usher in a new age of quantum gravity experiments, not just as a buzzword but as real, useful research, then eventually he’s going to have to stop harping on metaphysics and start talking epistemology. I look forward to when that happens.

# The Quantum Kids

I gave a pair of public talks at the Niels Bohr International Academy this week on “The Quest for Quantum Gravity” as part of their “News from the NBIA” lecture series. The content should be familiar to long-time readers of this blog: I talked about renormalization, and gravitons, and the whole story leading up to them.

(I wanted to title the talk “How I Learned to Stop Worrying and Love Quantum Gravity”, like my blog post, but was told Danes might not get the Doctor Strangelove reference.)

I also managed to work in some history, which made its way into the talk after Poul Damgaard, the director of the NBIA, told me I should ask the Niels Bohr Archive about Gamow’s Thought Experiment Device.

“What’s a Thought Experiment Device?”

This, apparently

If you’ve heard of George Gamow, you’ve probably heard of the Alpher-Bethe-Gamow paper, his work with grad student Ralph Alpher on the origin of atomic elements in the Big Bang, where he added Hans Bethe to the paper purely for an alpha-beta-gamma pun.

As I would learn, Gamow’s sense of humor was prominent quite early on. As a research fellow at the Niels Bohr Institute (essentially a postdoc) he played with Bohr’s kids, drew physics cartoons…and made Thought Experiment Devices. These devices were essentially toy experiments, apparatuses that couldn’t actually work but that symbolized some physical argument. The one I used in my talk, pictured above, commemorated Bohr’s triumph over one of Einstein’s objections to quantum theory.

Learning more about the history of the institute, I kept noticing the young researchers, the postdocs and grad students.

Lev Landau, George Gamow, Edward Teller. The kids are Aage and Ernest Bohr. Picture from the Niels Bohr Archive.

We don’t usually think about historical physicists as grad students. The only exception I can think of is Feynman, with his stories about picking locks at the Manhattan project. But in some sense, Feynman was always a grad student.

This was different. This was Lev Landau, patriarch of Russian physics, crowning name in a dozen fields and author of a series of textbooks of legendary rigor…goofing off with Gamow. This was Edward Teller, father of the Hydrogen Bomb, skiing on the institute lawn.

These were the children of the quantum era. They came of age when the laws of physics were being rewritten, when everything was new. Starting there, they could do anything, from Gamow’s cosmology to Landau’s superconductivity, spinning off whole fields in the new reality.

On one level, I envy them. It’s possible they were the last generation to be on the ground floor of a change quite that vast, a shift that touched all of physics, the opportunity to each become gods of their own academic realms.

I’m glad to know about them too, though, to see them as rambunctious grad students. It’s all too easy to feel like there’s an unbridgeable gap between postdocs and professors, to worry that the only people who make it through seem to have always been professors at heart. Seeing Gamow and Landau and Teller as “quantum kids” dispels that: these are all-too-familiar grad students and postdocs, joking around in all-too-familiar ways, who somehow matured into some of the greatest physicists of their era.

# You Can’t Smooth the Big Bang

As a kid, I was fascinated by cosmology. I wanted to know how the universe began, possibly disproving gods along the way, and I gobbled up anything that hinted at the answer.

At the time, I had to be content with vague slogans. As I learned more, I could match the slogans to the physics, to see what phrases like “the Big Bang” actually meant. A large part of why I went into string theory was to figure out what all those documentaries are actually about.

In the end, I didn’t end up working on cosmology due my ignorance of a few key facts while in college (mostly, who Vilenkin was). Thus, while I could match some of the old popularization stories to the science, there were a few I never really understood. In particular, there were two claims I never quite saw fleshed out: “The universe emerged from nothing via quantum tunneling” and “According to Hawking, the big bang was not a singularity, but a smooth change with no true beginning.”

As a result, I’m delighted that I’ve recently learned the physics behind these claims, in the context of a spirited take-down of both by Perimeter’s Director Neil Turok.

My boss

Neil held a surprise string group meeting this week to discuss the paper I linked above, “No smooth beginning for spacetime” with Job Feldbrugge and Jean-Luc Lehners, as well as earlier work with Steffen Gielen. In it, he talked about problems in the two proposals I mentioned: Hawking’s suggestion that the big bang was smooth with no true beginning (really, the Hartle-Hawking no boundary proposal) and the idea that the universe emerged from nothing via quantum tunneling (really, Vilenkin’s tunneling from nothing proposal).

In popularization-speak, these two proposals sound completely different. In reality, though, they’re quite similar (and as Neil argues, they end up amounting to the same thing). I’ll steal a picture from his paper to illustrate:

The picture on the left depicts the universe under the Hartle-Hawking proposal, with time increasing upwards on the page. As the universe gets older, it looks like the expanding (de Sitter) universe we live in. At the beginning, though, there’s a cap, one on which time ends up being treated not in the usual way (Lorentzian space) but on the same footing as the other dimensions (Euclidean space). This lets space be smooth, rather than bunching up in a big bang singularity. After treating time in this way the result is reinterpreted (via a quantum field theory trick called Wick rotation) as part of normal space-time.

What’s the connection to Vilenkin’s tunneling picture? Well, when we talk about quantum tunneling, we also end up describing it with Euclidean space. Saying that the universe tunneled from nothing and saying it has a Euclidean “cap” then end up being closely related claims.

Before Neil’s work these two proposals weren’t thought of as the same because they were thought to give different results. What Neil is arguing is that this is due to a fundamental mistake on Hartle and Hawking’s part. Specifically, Neil is arguing that the Wick rotation trick that Hartle and Hawking used doesn’t work in this context, when you’re trying to calculate small quantum corrections for gravity. In normal quantum field theory, it’s often easier to go to Euclidean space and use Wick rotation, but for quantum gravity Neil is arguing that this technique stops being rigorous. Instead, you should stay in Lorentzian space, and use a more powerful mathematical technique called Picard-Lefschetz theory.

Using this technique, Neil found that Hartle and Hawking’s nicely behaved result was mistaken, and the real result of what Hartle and Hawking were proposing looks more like Vilenkin’s tunneling proposal.

Neil then tried to see what happens when there’s some small perturbation from a perfect de Sitter universe. In general in physics if you want to trust a result it ought to be stable: small changes should stay small. Otherwise, you’re not really starting from the right point, and you should instead be looking at wherever the changes end up taking you. What Neil found was that the Hartle-Hawking and Vilenkin proposals weren’t stable. If you start with a small wiggle in your no-boundary universe you get, not the purple middle drawing with small wiggles, but the red one with wiggles that rapidly grow unstable. The implication is that the Hartle-Hawking and Vilenkin proposals aren’t just secretly the same, they also both can’t be the stable state of the universe.

Neil argues that this problem is quite general, and happens under the following conditions:

1. A universe that begins smoothly and semi-classically (where quantum corrections are small) with no sharp boundary,
2. with a positive cosmological constant (the de Sitter universe mentioned earlier),
3. under which the universe expands many times, allowing the small fluctuations to grow large.

If the universe avoids one of those conditions (maybe the cosmological constant changes in the future and the universe stops expanding, for example) then you might be able to avoid Neil’s argument. But if not, you can’t have a smooth semi-classical beginning and still have a stable universe.

Now, no debate in physics ends just like that. Hartle (and collaborators) don’t disagree with Neil’s insistence on Picard-Lefschetz theory, but they argue there’s still a way to make their proposal work. Neil mentioned at the group meeting that he thinks even the new version of Hartle’s proposal doesn’t solve the problem, he’s been working out the calculation with his collaborators to make sure.

Often, one hears about an idea from science popularization and then it never gets mentioned again. The public hears about a zoo of proposals without ever knowing which ones worked out. I think child-me would appreciate hearing what happened to Hawking’s proposal for a universe with no boundary, and to Vilenkin’s proposal for a universe emerging from nothing. Adult-me certainly does. I hope you do too.

# Scattering Amplitudes at KITP

I’ve been visiting the Kavli Institute for Theoretical Physics in Santa Barbara for a program on scattering amplitudes. This week they’re having a conference, so I don’t have time to say very much.

The conference logo, on the other hand, seems to be saying quite a lot

We’ve had talks from a variety of corners of amplitudes, with major themes including the web of theories that can sort of be described by string theory-esque models, the amplituhedron, and theories you can “square” to get other theories. I’m excited about Zvi Bern’s talk at the end of the conference, which will describe the progress I talked about last week. There’s also been recent progress on understanding the amplituhedron, which I will likely post about in the near future.

We also got an early look at Whispers of String Theory, a cute short documentary filmed at the IGST conference.

# The Road to Seven-Loop Supergravity

Do the same thing you would with any other theory, and you get infinity. You get repeated infinities, an infinity of infinities. And while you could fix one or two infinities, fixing an infinite number requires giving up an infinity of possible predictions, so in the end your theory predicts nothing.

String theory fixes this with its own infinity, the infinite number of ways a string can vibrate. Because this infinity is organized and structured and well-understood, you’re left with a theory that is still at least capable of making predictions.

(Note that this is an independent question from whether string theory can make predictions for experiments in the real world. This is a much more “in-principle” statement: if we knew everything we might want to about physics, all the fields and particles and shapes of the extra dimensions, we could use string theory to make predictions. Even if we knew all of that, we still couldn’t make predictions from naive quantum gravity.)

Are there ways to fix the problem that don’t involve an infinity of vibrations? Or at least, to fix part of the problem?

That’s what Zvi Bern, John Joseph Carrasco, Henrik Johansson, and a growing cast of collaborators have been trying to find out.

They’re investigating N=8 supergravity, a theory that takes gravity and adds on a host of related particles. It’s one of the easiest theories to get from string theory, by curling up extra dimensions in a particularly simple way and ignoring higher-energy vibrations.

Bern, along with Lance Dixon and David Kosower, invented the generalized unitarity technique I talked about last week. Along with Carrasco and Johansson, he figured out another important trick: the idea that you can do calculations in gravity by squaring the appropriate part of calculations in Yang-Mills theory. For N=8 supergravity, the theory you need to square is my favorite theory, N=4 super Yang-Mills.

Using this, they started pushing forward, calculating approximations to greater and greater precision (more and more loops).

What they found, at each step, was that N=8 supergravity behaved better than expected. In fact, it behaved like N=4 super Yang-Mills.

N=4 super Yang-Mills is special, because in four dimensions (three space and one time, the dimensions we’re used to in daily life) there are no infinities to fix. In a world with more dimensions, though, you start getting infinities, and with more and more loops you need fewer and fewer dimensions to see them.

N=8 supergravity, unexpectedly, was giving infinities in the same dimensions that N=4 super Yang-Mills did (and no earlier). If it kept doing that, you might guess that it also had no infinities in four dimensions. You might wonder if, at least loop by loop, N=8 supergravity could be a way to fix quantum gravity without string theory.

Of course, you’d only really know if you could check in four dimensions.

If you want to check in four dimensions, though, you run into a problem. The fewer dimensions you’re looking at, the more loops you need before N=8 supergravity could possibly give infinity. In four dimensions, you need a forbidding seven loops of precision.

Still, Bern, Carrasco, and Johansson were up to the challenge. Along with Lance Dixon, David Kosower, and Radu Roiban, they looked at three loops, calculating an interaction of four gravitons, and the pattern continued. Four loops, and it was still going strong.

At around this time, I had just started grad school. My first project was a cumbersome numerical calculation. To keep me motivated, my advisor mentioned that the work I was doing would be good preparation for a much grander project: the calculation of whether the four-graviton interaction in N=8 supergravity diverges at seven loops. All I’d have to do was wait for Bern and collaborators to get there.

I named this blog “4 gravitons and a grad student”, and hoped I would get a chance to contribute.

And then something unexpected happened. They got stuck at five loops.

The method they were using, generalized unitarity, is an ansatz-based method. You start with a guess, then refine it. As such, the method is ultimately only as good as your guess.

Their guesses, in general, were pretty good. The trick they were using, squaring N=4 to get N=8, requires a certain type of guess: one in which the pieces they square have similar relationships to the different types of charge in Yang-Mills theory. There’s still an infinite number of guesses that can obey this, so they applied more restrictions, expectations based on other calculations, to get something more manageable. This worked at three loops, and worked (with a little extra thought) at four loops.

But at five loops they were stuck. They couldn’t find anything, with their restrictions, that gave the correct answer when “cut up” by generalized unitarity. And while they could drop some restrictions, if they dropped too many they’d end up with far too general a guess, something that could take months of computer time to solve.

So they stopped.

They did quite a bit of interesting work in the meantime. They found more theories they could square to get gravity theories, of more and more unusual types. They calculated infinities in other theories, and found surprises there too, other cases where infinities didn’t show up when they were “supposed” to. But for some time, the N=8 supergravity calculation was stalled.

And in the meantime, I went off in another direction, which long-time readers of this blog already know about.

Recently, though, they’ve broken the stall.

What they realized is that the condition on their guess, that the parts they square be related like Yang-Mills charges, wasn’t entirely necessary. Instead, they could start with a “bad” guess, and modify it, using the failure of those relations to fill in the missing pieces.

It looks like this is going to work.

We’re all at an amplitudes program right now in Santa Barbara. Walking through the halls of the KITP, I overhear conversations about five loops. They’re paring things down, honing their code, getting rid of the last few bugs, and checking their results.

They’re almost there, and it’s exciting. It looks like finally things are moving again, like the train to seven loops has once again left the station.

Increasingly, they’re beginning to understand the absent infinities, to see that they really are due to something unexpected and new.

N=8 supergravity isn’t going to be the next theory of everything. (For one, you can’t get chiral fermions out of it.) But if it really has no infinities at any loop, that tells us something about what a theory of quantum gravity is allowed to be, about the minimum necessary to at least make sense on a loop-by-loop level.

And that, I think, is worth being excited about.

# What Space Can Tell Us about Fundamental Physics

Back when LIGO announced its detection of gravitational waves, there was one question people kept asking me: “what does this say about quantum gravity?”

The answer, each time, was “nothing”. LIGO’s success told us nothing about quantum gravity, and very likely LIGO will never tell us anything about quantum gravity.

The sheer volume of questions made me think, though. Astronomy, astrophysics, and cosmology fascinate people. They capture the public’s imagination in a way that makes them expect breakthroughs about fundamental questions. Especially now, with the LHC so far seeing nothing new since the Higgs, people are turning to space for answers.

Is that a fair expectation? Well, yes and no.

Most astrophysicists aren’t concerned with finding new fundamental laws of nature. They’re interested in big systems like stars and galaxies, where we know most of the basic rules but can’t possibly calculate all their consequences. Like most physicists, they’re doing the vital work of “physics of decimals”.

At the same time, there’s a decent chunk of astrophysics and cosmology that does matter for fundamental physics. Just not all of it. Here are some of the key areas where space has something important to say about the fundamental rules that govern our world:

1. Dark Matter:

Galaxies rotate at different speeds than their stars would alone. Clusters of galaxies bend light that passes by, and do so more than their visible mass would suggest. And when scientists try to model the evolution of the universe, from early images to its current form, the models require an additional piece: extra matter that cannot interact with light. All of this suggests that there is some extra “dark” matter in the universe, not described by our standard model of particle physics.

If we want to understand this dark matter, we need to know more about its properties, and much of that can be learned from astronomy. If it turns out dark matter isn’t really matter after all, if it can be explained by a modification of gravity or better calculations of gravity’s effects, then it still will have important implications for fundamental physics, and astronomical evidence will still be key to finding those implications.

2. Dark Energy (/Cosmological Constant/Inflation/…):

The universe is expanding, and its expansion appears to be accelerating. It also seems more smooth and uniform than expected, suggesting that it had a period of much greater acceleration early on. Both of these suggest some extra quantity: a changing acceleration, a “dark energy”, the sort of thing that can often be explained by a new scalar field like the Higgs.

Again, the specifics: how (and perhaps if) the universe is expanding now, what kinds of early expansion (if any) the shape of the universe suggests, these will almost certainly have implications for fundamental physics.

3. Limits on stable stuff:

Let’s say you have a new proposal for particle physics. You’ve predicted a new particle, but it can’t interact with anything else, or interacts so weakly we’d never detect it. If your new particle is stable, then you can still say something about it, because its mass would have an effect on the early universe. Too many such particles and they would throw off cosmologists’ models, ruling them out.

Alternatively, you might predict something that could be detected, but hasn’t, like a magnetic monopole. Then cosmologists can tell you how many such particles would have been produced in the early universe, and thus how likely we would be to detect them today. If you predict too many particles and we don’t see them, then that becomes evidence against your proposal.

4. “Cosmological Collider Physics”:

A few years back, Nima Arkani-Hamed and Juan Maldacena suggested that the early universe could be viewed as an extremely high energy particle collider. While this collider performed only one experiment, the results from that experiment are spread across the sky, and observed patterns in the early universe should tell us something about the particles produced by the cosmic collider.

People are still teasing out the implications of this idea, but it looks promising, and could mean we have a lot more to learn from examining the structure of the universe.

5. Big Weird Space Stuff:

If you suspect we live in a multiverse, you might want to look for signs of other universes brushing up against our own. If your model of the early universe predicts vast cosmic strings, maybe a gravitational wave detector like LIGO will be able to see them.

6. Unexpected weirdness:

In all likelihood, nothing visibly “quantum” happens at the event horizons of astrophysical black holes. If you think there’s something to see though, the Event Horizon Telescope might be able to see it. There’s a grab bag of other predictions like this: situations where we probably won’t see anything, but where at least one person thinks there’s a question worth asking.

I’ve probably left something out here, but this should give you a general idea. There is a lot that fundamental physics can learn from astronomy, from the overall structure and origins of the universe to unexplained phenomena like dark matter. But not everything in astronomy has these sorts of implications: for the most part, astronomy is interesting not because it tells us something about the fundamental laws of nature, but because it tells us how the vast space above us actually happens to work.

# Popularization as News, Popularization as Signpost

Lubos Motl has responded to my post from last week about the recent Caltech short, Quantum is Calling. His response is pretty much exactly what you’d expect, including the cameos by Salma Hayek and Kaley Cuoco.

The only surprise was his lack of concern for accuracy. Quantum is Calling got the conjecture it was trying to popularize almost precisely backwards. I was expecting that to bother him, at least a little.

Should it bother you?

That depends on what you think Quantum is Calling is trying to do.

Science popularization, even good science popularization, tends to get things wrong. Some of that is inevitable, a result of translating complex concepts to a wider audience.

Sometimes, though, you can’t really chalk it up to translation. Interstellar had some extremely accurate visualizations of black holes, but it also had an extremely silly love-powered tesseract. That wasn’t their attempt to convey some subtle scientific truth, it was just meant to sound cool.

And the thing is, that’s not a bad thing to do. For a certain kind of piece, sounding cool really is the point.

Imagine being an explorer. You travel out into the wilderness and find a beautiful waterfall.

Example:

How do you tell people about it?

One option is the press. The news can cover your travels, so people can stay up to date with the latest in waterfall discoveries. In general, you’d prefer this sort of thing to be fairly accurate: the goal here is to inform people, to give them a better idea of the world around them.

Alternatively, you can advertise. You put signposts up around town pointing toward the waterfall, complete with vivid pictures. Here, accuracy matters a lot less: you’re trying to get people excited, knowing that as they get closer they can get more detailed information.

In science popularization, the “news” here isn’t just news. It’s also blog posts, press releases, and public lectures. It’s the part of science popularization that’s supposed to keep people informed, and it’s one that we hope is mostly accurate, at least as far as possible.

The “signposts”, meanwhile, are things like Interstellar. Their audience is as wide as it can possibly be, and we don’t expect them to get things right. They’re meant to excite people, to get them interested in science. The expectation is that a few students will find the imagery interesting enough to go further, at which point they can learn the full story and clear up any remaining misconceptions.

Quantum is Calling is pretty clearly meant to be a signpost. The inaccuracy is one way to tell, but it should be clear just from the context. We’re talking about a piece with Hollywood stars here. The relative star-dom of Zoe Saldana and Keanu Reeves doesn’t matter, the presence of any mainstream film stars whatsoever means they’re going for the broadest possible audience.

(Of course, the fact that it’s set up to look like an official tie-in to the Star Trek films doesn’t hurt matters either.)

They’re also quite explicit about their goals. The piece’s predecessor has Keanu Reeves send a message back in time, with the goal of inspiring a generation of young scientists to build a future paradise. They’re not subtle about this.

Ok, so what’s the problem? Signposts are allowed to be inaccurate, so the inaccuracy shouldn’t matter. Eventually people will climb up to the waterfall and see it for themselves, right?

What if the waterfall isn’t there?

Like so:

The evidence for ER=EPR (the conjecture that Quantum is Calling is popularizing) isn’t like seeing a waterfall. It’s more like finding it via surveying. By looking at the slope of nearby terrain and following the rivers, you can get fairly confident that there should be a waterfall there, even if you can’t yet see it over the next ridge. You can then start sending scouts, laying in supplies, and getting ready for a push to the waterfall. You can alert the news, telling journalists of the magnificent waterfall you expect to find, so the public can appreciate the majesty of your achievement.

What you probably shouldn’t do is put up a sign for tourists.

As I hope I made clear in my last post, ER=EPR has some decent evidence. It hasn’t shown that it can handle “foot traffic”, though. The number of researchers working on it is still small. (For a fun but not especially rigorous exercise, try typing “ER=EPR” and “AdS/CFT” into physics database INSPIRE.) Conjectures at this stage are frequently successful, but they often fail, and ER=EPR still has a decent chance of doing so. Tying your inspiring signpost to something that may well not be there risks sending tourists up to an empty waterfall. They won’t come down happy.

As such, I’m fine with “news-style” popularizations of ER=EPR. And I’m fine with “signposts” for conjectures that have shown they can handle some foot traffic. (A piece that sends Zoe Saldana to the holodeck to learn about holography could be fun, for example.) But making this sort of high-profile signpost for ER=EPR feels irresponsible and premature. There will be plenty of time for a Star Trek tie-in to ER=EPR once it’s clear the idea is here to stay.