Tag Archives: grad school

PSI Winter School

I’m at the Perimeter Scholars International Winter School this week. Perimeter Scholars International is Perimeter’s one-of-a-kind master’s program in theoretical physics, that jams the basics of theoretical physics into a one-year curriculum. We’ve got students from all over the world, including plenty of places that don’t get any snow at all. As such, it was decided that the students need to spend a week somewhere with even more snow than Waterloo: Musoka, Ontario.

IMG_20160127_152710

A place that occasionally manages to be this photogenic

This isn’t really a break for them, though, which is where I come in. The students have been organized into groups, and each group is working on a project. My group’s project is related to the work of integrability master Pedro Vieira. He and his collaborators came up with a way to calculate scattering amplitudes in N=4 super Yang-Mills without the usual process of loop-by-loop approximations. However, this method comes at a price: a new approximation, this time to low energy. This approximation is step-by-step, like loops, but in a different direction. It’s called the Pentagon Operator Product Expansion, or POPE for short.

IMG_20160127_123210

Approach the POPE, and receive a blessing

What we’re trying to do is go back and add up all of the step-by-step terms in the approximation, to see if we can match to the old expansion in loops. One of Pedro’s students recently managed to do this for the first approximation (“tree” diagrams), and the group here at the Winter School is trying to use her (still unpublished) work as a jumping-off point to get to the first loop. Time will tell whether we’ll succeed…but we’re making progress, and the students are learning a lot.

Using Effective Language

Physicists like to use silly names for things, but sometimes it’s best to just use an everyday word. It can trigger useful intuitions, and it makes remembering concepts easier. What gets confusing, though, is when the everyday word you use has a meaning that’s not quite the same as the colloquial one.

“Realism” is a pretty classic example, where Bell’s elegant use of the term in quantum mechanics doesn’t quite match its common usage, leading to inevitable confusion whenever it’s brought up. “Theory” is such a useful word that multiple branches of science use it…with different meanings! In both cases, the naive meaning of the word is the basis of how it gets used scientifically…just not the full story.

There are two things to be wary of here. First, those of us who communicate science must be sure to point out when a word we use doesn’t match its everyday meaning, to guide readers’ intuitions away from first impressions to understand how the term is used in our field. Second, as a reader, you need to be on the look-out for hidden technical terms, especially when you’re reading technical work.

I remember making a particularly silly mistake along these lines. It was early on in grad school, back when I knew almost nothing about quantum field theory. One of our classes was a seminar, structured so that each student would give a talk on some topic that could be understood by the whole group. Unfortunately, some grad students with deeper backgrounds in theoretical physics hadn’t quite gotten the memo.

It was a particular phrase that set me off: “This theory isn’t an effective theory”.

My immediate response was to raise my hand. “What’s wrong with it? What about this theory makes it ineffective?”

The presenter boggled for a moment before responding. “Well, it’s complete up to high energies…it has no ultraviolet divergences…”

“Then shouldn’t that make it even more effective?”

After a bit more of this back-and-forth, we finally cleared things up. As it turns out, “effective field theory” is a technical term! An “effective field theory” is only “effectively” true, describing physics at low energies but not at high energies. As you can see, the word “effective” here is definitely pulling its weight, helping to make the concept understandable…but if you don’t recognize it as a technical term and interpret it literally, you’re going to leave everyone confused!

Over time, I’ve gotten better at identifying when something is a technical term. It really is a skill you can learn: there are different tones people use when speaking, different cadences when writing, a sense of uneasiness that can clue you in to a word being used in something other than its literal sense. Without that skill, you end up worried about mathematicians’ motives for their evil schemes. With it, you’re one step closer to what may be the most important skill in science: the ability to recognize something you don’t know yet.

Who Plagiarizes an Acknowledgements Section?

I’ve got plagiarists on the brain.

Maybe it was running into this interesting discussion about a plagiarized application for the National Science Foundation’s prestigious Graduate Research Fellowship Program. Maybe it’s due to the talk Paul Ginsparg, founder of arXiv, gave this week about, among other things, detecting plagiarism.

Using arXiv’s repository of every paper someone in physics thought was worth posting, Ginsparg has been using statistical techniques to sift out cases of plagiarism. Probably the funniest cases involved people copying a chunk of their thesis acknowledgements section, as excerpted here. Compare:

“I cannot describe how indebted I am to my wonderful girlfriend, Amanda, whose love and encouragement will always motivate me to achieve all that I can. I could not have written this thesis without her support; in particular, my peculiar working hours and erratic behaviour towards the end could not have been easy to deal with!”

“I cannot describe how indebted I am to my wonderful wife, Renata, whose love and encouragement will always motivate me to achieve all that I can. I could not have written this thesis without her support; in particular, my peculiar working hours and erratic behaviour towards the end could not have been easy to deal with!”

Why would someone do this? Copying the scientific part of a thesis makes sense, in a twisted way: science is hard! But why would someone copy the fluff at the end, the easy part that’s supposed to be a genuine take on your emotions?

The thing is, the acknowledgements section of a thesis isn’t exactly genuine. It’s very formal: a required section of the thesis, with tacit expectations about what’s appropriate to include and what isn’t. It’s also the sort of thing you only write once in your life: while published papers also have acknowledgements sections, they’re typically much shorter, and have different conventions.

If you ever were forced to write thank-you notes as a kid, you know where I’m going with this.

It’s not that you don’t feel grateful, you do! But when you feel grateful, you express it by saying “thank you” and moving on. Writing a note about it isn’t very intuitive, it’s not a way you’re used to expressing gratitude, so the whole experience feels like you’re just following a template.

Literally in some cases.

That sort of situation: where it doesn’t matter how strongly you feel something, only whether you express it in the right way, is a breeding ground for plagiarism. Aunt Mildred isn’t going to care what you write in your thank-you note, and Amanda/Renata isn’t going to be moved by your acknowledgements section. It’s so easy to decide, in that kind of situation, that it’s better to just grab whatever appropriate text you can than to teach yourself a new style of writing.

In general, plagiarism happens because there’s a disconnect between incentives and what they’re meant to be for. In a world where very few beginning graduate students actually have a solid research plan, the NSF’s fellowship application feels like a demand for creative lying, not an honest way to judge scientific potential. In countries eager for highly-cited faculty but low on preexisting experts able to judge scientific merit, tenure becomes easier to get by faking a series of papers than by doing the actual work.

If we want to get rid of plagiarism, we need to make sure our incentives match our intent. We need a system in which people succeed when they do real work, get fellowships when they honestly have talent, and where we care about whether someone was grateful, not how they express it. If we can’t do that, then there will always be people trying to sneak through the cracks.

A Nobel for Blue LEDs, or, How Does That Count as Physics?

When I first heard about this year’s Nobel Prize in Physics, I didn’t feel the need to post on it. The prize went to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura, whose discoveries enabled blue LEDs. It’s a more impressive accomplishment than it might seem: while red LEDs have been around since the 60’s and 70’s, blue LEDs were only developed in the 90’s, and only with both can highly efficient, LED-based white light sources be made. Still, I didn’t consider posting on it because it’s pretty much entirely outside my field.

Shiny, though.

It took a conversation with another PI postdoc to point out one way I can comment on the Nobel, and it started when we tried to figure out what type of physicists Akasaki, Amano, and Nakamura are. After tossing around terms like “device physicist” and “condensed matter”, someone wondered whether the development of blue LEDs wasn’t really a matter of engineering.

At that point I realized, I’ve talked about something like this before.

Physicists work on lots of different things, and many of them don’t seem to have much to do with physics. They study geometry and topology, biological molecules and the nature of evolution, income inequality and, yes, engineering.

On the surface, these don’t have much to do with physics. A friend of mine used to quip that condensed matter physicists seem to just “pick whatever they want to research”.

There is something that ties all of these topics together, though. They’re all things that physicists are good at.

Physics grad school gives you a wide variety of tools with which to understand the world. Thermodynamics gives you a way to understand large, complicated systems with statistics, while quantum field theory lets you understand everything with quantum properties, not just fundamental particles but materials as well. This batch of tools can be applied to “traditional” topics, but they’re equally applicable if you’re researching something else entirely, as long as it obeys the right kinds of rules.

In the end, the best definition of physics is the most useful one. Physicists should be people who can benefit from being part of physics organizations, from reading physics journals, and especially from training (and having been) physics grad students. The whole reason we have scientific disciplines in the first place is to make it easier for people with common interests to work together. That’s why Akasaki, Amano, and Nakamura aren’t “just” engineers, and why I and my fellow string theorists aren’t “just” mathematicians. We use our knowledge of physics to do our jobs, and that, more than anything else, makes us physicists.


Edit: It has been pointed out to me that there’s a bit more to this story than the main accounts have let on. Apparently another researcher named Herbert Paul Maruska was quite close to getting a blue LED up and running back in the early 1970’s, getting far enough to have a working prototype. There’s a whole fascinating story about the quest for a blue LED, related here. Maruska seems to be on friendly terms with Akasaki, Amano, and Nakamura, and doesn’t begrudge them their recognition.

Stop! Impostor!

Ever felt like you don’t belong? Like you don’t deserve to be where you are, that you’re just faking competence you don’t really have?

If not, it may surprise you to learn that this is a very common feeling among successful young academics. It’s called impostor syndrome, and it happens to some very talented people.

It’s surprisingly easy to rationalize success as luck, to assume praise comes from people who don’t know the full story. In science, we’re surrounded by people who seem to come up with brilliant insights on a regular basis. We see others’ successes far more often than we see their failures, and often we forget that science is at its heart a process of throwing ideas against a wall until something sticks. Hyper-aware of our own failures, when we present ourselves as successful we can feel like we’re putting on a paper-thin disguise, constantly at risk that someone will see through it.

As paper-thin disguises go, I prefer the classics.

In my experience, theoretical physics is especially heavy on impostor syndrome, for a number of reasons.

First, there’s the fact that beginning grad students really don’t know all they need to. Theoretical physics requires a lot of specialized knowledge, and most grad students just have the bare bones basics of a physics undergrad degree. On the strength of those basics, you’re somehow supposed to convince a potential advisor, an established, successful scientist, that you’re worth paying attention to.

Throw in the fact that many people have a little more than the basics, whether from undergrad research projects or grad-level courses taken early, and you have a group where everyone is trying to seem more advanced than they are. There’s a very real element of fake it till you make it, of going to talks and picking up just enough of the lingo to bluff your way through a conversation.

And the thing is, even after you make it, you’ll probably still feel like you’re faking it.

As I’ve mentioned before, there’s an enormous amount of jury-rigging that goes into physics research. There are a huge number of side-disciplines that show up at one point or another, from numerical methods to programming to graphic design. We can’t hire a professional to handle these things, we have to learn them ourselves. As such, we become minor dabblers in a whole mess of different fields. Work on something enough and others will start looking to you for help. It won’t feel like you’re an expert, though, because you know in the back of your mind that the real experts know so much more.

In the end, the best approach I’ve found is simply to keep saying yes. Keep using what you know, going to talks and trying new things. The more you “pretend” to know what you’re doing, the more experience you’ll get, until you really do know what you’re doing. There’s always going to be more to learn, but chances are if you’re feeling impostor syndrome you’ve already learned a lot. Take others’ opinions of you at face value, and see just how far you can go.

The Many (Body) Problems of the Academic Lifestyle

I’m visiting Perimeter this week, searching for apartments in the area. This got me thinking about how often one has to move in academia. You move for college, you move for grad school, you move for each postdoc job, and again when you start as a professor. Even then, you may not get to stay where you are if you don’t manage to get tenure, and it may be healthier to resign yourself to moving every seven years rather than assuming you’re going to settle down.

Most of life isn’t built around the idea that people move across the country (or the world!) every 2-7 years, so naturally this causes a few problems for those on the academic path. Below are some well-known, and not-so-well-known, problems facing academics due to their frequent relocations:

The two-body problem:

Suppose you’re married, or in a committed relationship. Better hope your spouse has a flexible job, because in a few years you’re going to be moving to another city. This is even harder if your spouse is also an academic, as that requires two rare academic jobs to pop up in the same place. And woe betide you if you’re out of synch, and have to move at different times. Many couples end up having to resort to some sort of long-distance arrangement, which further complicates matters.

The N-body problem:

Like the two-body problem, but for polyamorous academics. Leads to poly-chains up and down the East Coast.

The 2+N-body problem:

Alternatively, add a time dimension to your two-body problem via the addition of children. Now your kids are busily being shuffled between incommensurate school systems. But you’re an academic, you can teach them anything they’re missing, right?

The warm body problem:

Of course, all this assumes you’re in a relationship. If you’re single, you instead have the problem of never really having a social circle beyond your department, having to tenuously rebuild your social life every few years. What sorts of clubs will the more socially awkward of you enter, just to have some form of human companionship?

The large body of water problem:

We live in an age where everything is connected, but that doesn’t make distance cheap. An ocean between you and your collaborators means you’ll rarely be awake at the same time. And good luck crossing that ocean again, not every job will be eager to pay relocation expenses.

The obnoxious governing body problem:

Of course, the various nations involved won’t make all this travel easy. Many countries have prestigious fellowships only granted on the condition that the winner returns to their home country for a set length of time. Since there’s no guarantee that anyone in your home country does anything similar to what you do, this sort of requirement can have people doing whatever research they can find, however tangentially related, or trying to avoid the incipient bureaucratic nightmare any way they can.

 

How do I get where you are?

I’ve mentioned before that this blog will be undergoing a redesign this summer, transitioning from 4gravitons.wordpress.com to just 4gravitons.wordpress.com. One part of that redesign will be the introduction of new categories to help people search for content, as well as new guides like the ones for N=4 super Yang-Mills and the (2,0) theory for some of those categories. Of those, one planned category/guide will discuss careers in physics, with an eye towards explaining some of the often-unstated assumptions behind the process.

I’ve already posted on being a graduate research assistant and on what a postdoc is. I haven’t said much yet about the process leading up to becoming a graduate student. In this post, I’m going to give an overview of a career in theoretical physics, with a focus on what happens before you find an advisor. This is going to be inherently biased, based as it will be on my experiences. In particular, each country’s education system is different, so much of this will only be relevant for students in the US.

Let’s start at the beginning.

A very good place to start.

If you want to become a theoretical physicist, you’d better start by taking physics and math courses in high school. Unfortunately, this is where socioeconomic status has a big effect. Some schools have Advanced Placement or International Baccalaureate courses that let you get a head-start on college, many don’t. Some schools don’t even have physics courses at all anymore. My only advice here is to get what you can, when you can. If you can take a physics course, do it. If you can take calculus, do it. If you can take classes that will give you university credit, take them.

After high school, you go to college for a Bachelor’s degree in physics. Getting into college these days is some sort of ridiculous popularity contest, and I don’t pretend to be able to give advice on that. What I can say is that once you’re in college, coursework is important, but research is more important. Graduate schools will look at how well you did in your courses and how advanced those courses were, but they will pay special attention to who you get recommendations from, and whether you did research with them. Whether or not your college has anyone who you can research with, you should consider doing summer research somewhere interesting. With programs like the NSF’s Research Experience for Undergraduates (or REU) you can apply to get hooked up with interesting projects and mentors. In addition to looking good on an application to grad school, doing research helps boost your self-confidence: knowing that you can do something real really helps you start feeling like a scientist. Research also teaches you specialized skills much faster than coursework can: I’ve learned much more about programming from having to use it on projects than from any actual programming course.

That said, coursework is also useful. You want courses that will familiarize you with basic tools of your field, physics courses on classical mechanics and quantum mechanics and electromagnetism and math courses on linear algebra and differential equations. You want to take a math course on group theory, but only if it’s taught by a physicist, as mathematicians focus on different aspects. More than any of that, though, you want to try to take at least a few graduate-level courses in while you’re still in college.

That’s important, because grad school in theoretical physics is kind of a mess. You’ll be there for around five years in total (I was in at the low end with four, some people take six or seven). However, you take most if not all of your courses in the first two years. In general, during that time you are paid as a Teaching Assistant. The school pays your tuition and a livable (if barely) wage, and in return you lead lab sections or grade papers. Teaching experience can be a positive thing, but you don’t want to keep doing it for too long, because the point of grad school isn’t teaching or courses, it’s research. Your goal is to find an advisor who is willing to pay you out of one of their (usually government) grants, so that you can transition from Teaching Assistant to Research Assistant. This is hard to do while you’re still taking courses: you won’t have time, and worse, you won’t know everything you need. Theoretical physics requires a lot of background, and much of it gets taught in grad school. Here at Stony Brook, you’d be taking graduate-level quantum mechanics, quantum field theory, and string theory. Until recently, each one of those was a one-year course, and the most logical way to take them was one after the other. Add that up, and that’s three years…kind of a problem when you want to start research after two. That’s why getting ahead in courses, however and whenever you can, is so important: not so much for the courses themselves, but so you can get past them and do research.

Research is what you do for the rest of your time in grad school. It’s what you do after you graduate, when you become a postdoc. It (and teaching) are what you do as a professor, what you are judged on when they decide whether or not you get tenure. Working through research is going to teach you more than any other experience you will have, so get as much of it as you can. And good luck!

The PhD Defense

Last Wednesday I completed the final stage of my PhD, the Defense. I booted up a projector and, in a room filled with esteemed physicists, eager grad students, and a three foot sub, I summarized the last two years of my work. A few questions later, people were shaking my hand and calling me “Doctor von Hippel”.

Now that I’m transitioning out of the grad student world, my blog will be transitioning too. I’ll be starting work as a Postdoctoral Fellow in the Fall at the Perimeter Institute for Theoretical Physics. Some time in between, probably in July, this blog will undergo a redesign, hopefully becoming easier to navigate. I’ll also be dropping the “and a grad student” from the title, switching to a new URL, 4gravitons.wordpress.com. Don’t worry, traffic from the old address will be forwarded, so infrequent readers won’t lose track. That said, if anyone with more experience has some advice about making the transition more seamless I’d love to hear it.

There are a lot of stereotypes about the PhD Defense, and mine broke almost all of them. My advisor hadn’t been directly involved in my work, my committee chair was one of the nicest, mellowest professors I’ve ever known, my experimentalist asked me a theoretical physics question, and my external member was NimafrigginArkani-Hamed.

That said, I’ve also seen several other PhD Defenses, and I have to say that the stereotypes are usually right on the money. And since I’m on a bit of a list-based comedy kick recently, let me introduce you to the four members of your PhD committee:

First, of course, is your advisor. If you two collaborate closely, you may find yourself presenting material that your advisor had a hand in. Naturally, the other committee members will ask questions about this material, and naturally you will answer them. Naturally, those answers will not be how your advisor would have explained it, so naturally your advisor will start explaining it themselves. (After all, it’s their work that’s being questioned!) Manage things well and the whole defense will be an argument between your advisor and the other committee members, and you won’t have to say anything at all!

Second is your committee chair. This is someone from your field, chosen for their general eminence and chair-ish-ness. They’ve done a lot of these before, and in their mind they’ve developed a special bond with the students, a bond forged by questions. See, if you have a typical committee chair, they will ask you the toughest, most nitpicky, most downright irrelevant lines of questions possible. The chair’s goal isn’t to keep things moving, it’s to make sure that you took their class and remember everything from it, no matter how much time that takes away from discussing your actual dissertation.

Third you must face your experimentalist. According to the ancient ideals of academia (ideals somehow unbreakably important for grad students and largely irrelevant for top-level university administrators), a dissertation must be judged not only by the yes-men of your own sub-field, but also by someone from the rest of your department. For a theoretical physicist, that means bringing in an experimental physicist. You may try to make things accessible to this person, but eventually you have to actually start talking about your work. This is healthy, as it will allow them much-needed sleep. Once they awake, they will bless you with a question that represents the most tenuous link they can draw between their own work and yours, generally asking after the mass of some subatomic particle. Once you have demonstrated your ignorance in some embarrassing fashion the experimentalist may return to sleep.

Finally, the defense brings in a special individual, the external member. Not only must you prove your worth to an experimentalist, but to someone from outside of your department altogether! For the lucky, this means someone who does similar work at a nearby university. For the terminally rural, this instead means finding the closest department and bringing in someone who will at least recognize some of the words in your talk. For us, this generally means a mathematician. Like the experimentalist, they will favor you with bewildered looks or snores, depending on temperament. Unlike the experimentalist, they are under no illusion that anything they do is relevant to anything you do, so their questions will be mercifully brief.

Grilled by these four, you then leave the room, allowing them to talk about the weather or their kids or something before they ask you back in to tell you that, of course, you’ve got your PhD. Because after all that, anything else would just be rude.

What’s in a Thesis?

As I’ve mentioned before, I’m graduating this spring, which means I need to write that most foreboding of documents, the thesis. As I work on it, I’ve been thinking about how the nature of the thesis varies from field to field.

If you don’t have much experience with academics, you probably think of a thesis as a single, overarching achievement that structures a grad student’s career. A student enters grad school, designs an experiment, performs it, collects data, analyzes the data, draws some conclusion, then writes a thesis about it and graduates.

In some fields, the thesis really does work that way. In biology for example, the process of planning an experiment, setting it up, and analyzing and writing up the data can be just the right size so that, a reasonable percentage of the time, it really can all be done over the course of a PhD.

Other fields tend more towards smaller, faster-paced projects. In theoretical physics, mathematics, and computer science, most projects don’t have the same sort of large experimental overhead that psychologists or biologists have to deal with. The projects I’ve worked on are large-scale for theoretical physics, and I’ll still likely have worked on three distinct things before I graduate. Others, with smaller projects, will often have covered more.

In this situation, a thesis isn’t one overarching idea. Rather, it’s a compilation of work from past projects, sewed together with a pretense of an overall theme. It’s a bit messy, but because it’s the way things are expected to be done in these fields, no-one minds particularly much.

The other end of the spectrum is potentially much harder to deal with. For those who work on especially big experiments, the payoff might take longer to arrive than any reasonable degree. Big machines like colliders and particle detectors can take well over a decade before they start producing data, while longitudinal studies that follow a population as they grow and age take a long time no matter how fast you work.

In cases like this, the challenge is to chop off a small enough part of the project to make it feel like a thesis. A thesis could be written about designing one component for the eventual machine, or analyzing one part of the vast sea of data it produces. Preliminary data from a longitudinal study could be analyzed, even when the final results are many years down the line.

People in these fields have to be flexible and creative when it comes to creating a thesis, but usually the thesis committee is reasonable. In the end, a thesis is what you need to graduate, whatever that actually is for you.

Talks, and what they’re good for

It’s an ill-kept secret that basically everyone in academia is a specialist. Nobody is just a “physicist”, or just a “high energy theorist”, or even just a “string theorist”. Even when I describe myself as something as specific as an “amplitudeologist”, I’m still over-generalizing: there’s a lot of amplitudes work out there that I would be hard-pressed to understand, and even harder-pressed to reproduce.

In the end, each of us is only going to understand a small subset of the vastness of our subject. This is problematic when it comes to attending talks.

Rarely, we get to attend talks about something we completely understand. Generally, we’re the ones giving those talks. The rest of the time, even at conferences for people of our particular specialty, we’re going to miss some fraction of the content, either because we don’t understand it or because we don’t find it interesting.

The question then becomes, why attend the talk in the first place? Why spend an hour of your time when you’re not getting an hour’s worth of content?

There are a couple reasons, of varying levels of plausibility.

One is that it’s always nice to know what other subfields are doing. It lets one feel connected to one’s compatriots, and it helps one navigate one’s career. That said, it’s unclear whether going to talks is really the best way of doing this. If you just want to know what other people are doing, you can always just watch to see what they publish. That doesn’t take an hour, unless you’re really dedicated to wasting time.

A more important benefit is increasing levels of familiarity. These days, I can productively pay attention to the first quarter of a talk, half if it’s particularly good. When I first got to grad school, I’d probably tune out after the first five minutes. The more talks you see on a subject, the more of the talk makes sense, and the more you get out of it. That’s part of why even fairly specialized people who are further along in their careers can talk on a wide range of subjects: often, they’ve intentionally kept themselves aware of what’s going on in other subfields, going to talks, reading papers, and engaging in conversation. This is a valuable end goal, since there is some truth to the hype about the benefits of interdisciplinarity in providing unconventional solutions to problems. That said, this is a gradual process. The benefit of one individual talk is tiny, and it doesn’t seem worth an hour of time. Much like exercise, it’s the habit that provides the benefit, not any individual session.

So in the end, talks are almost always unsatisfying. But we keep going to them, because they make us better scientists.