I’m still at the Galileo Galilei Institute this week, tutoring at the winter school.

At GGI’s winter school, each week is featuring a pair of lecturers. This week, the lectures alternate between Lance Dixon covering the basics of amplitudeology and Csaba Csaki, discussing ways in which the Higgs could be a composite made up of new fundamental particles.

Most of the students at this school are phenomenologists, physicists who make predictions for particle physics. I’m an amplitudeologist, I study the calculation tools behind those predictions. You’d think these would be very close areas, but it’s been interesting seeing how different our approaches really are.

Some of the difference is apparent just from watching the board. In Csaki’s lectures, the equations that show up are short, a few terms long at most. When amplitudes show up, it’s for their general properties: how many factors of the coupling constant, or the multipliers that show up with loops. There aren’t any long technical calculations, and in general they aren’t needed: he’s arguing about the kinds of physics that can show up, not the specifics of how they give rise to precise numbers.

In contrast, Lance’s board filled up with longer calculations, each with many moving parts. Even things that seem simple from our perspective take a decent amount of board space to derive, and involve no small amount of technical symbol-shuffling. For most of the students, working out an amplitude this complicated was an unfamiliar experience. There are a few applications for which you need the kind of power that amplitudeology provides, and a few students were working on them. For the rest, it was a bit like learning about a foreign culture, an exercise in understanding what other people are doing rather than picking up a new skill themselves. Still, they made a strong go at it, and it was enlightening to see the pieces that ended up mattering to them, and to hear the kinds of questions they asked.

### Like this:

Like Loading...

*Related*