Tag Archives: grad school

Talks, and what they’re good for

It’s an ill-kept secret that basically everyone in academia is a specialist. Nobody is just a “physicist”, or just a “high energy theorist”, or even just a “string theorist”. Even when I describe myself as something as specific as an “amplitudeologist”, I’m still over-generalizing: there’s a lot of amplitudes work out there that I would be hard-pressed to understand, and even harder-pressed to reproduce.

In the end, each of us is only going to understand a small subset of the vastness of our subject. This is problematic when it comes to attending talks.

Rarely, we get to attend talks about something we completely understand. Generally, we’re the ones giving those talks. The rest of the time, even at conferences for people of our particular specialty, we’re going to miss some fraction of the content, either because we don’t understand it or because we don’t find it interesting.

The question then becomes, why attend the talk in the first place? Why spend an hour of your time when you’re not getting an hour’s worth of content?

There are a couple reasons, of varying levels of plausibility.

One is that it’s always nice to know what other subfields are doing. It lets one feel connected to one’s compatriots, and it helps one navigate one’s career. That said, it’s unclear whether going to talks is really the best way of doing this. If you just want to know what other people are doing, you can always just watch to see what they publish. That doesn’t take an hour, unless you’re really dedicated to wasting time.

A more important benefit is increasing levels of familiarity. These days, I can productively pay attention to the first quarter of a talk, half if it’s particularly good. When I first got to grad school, I’d probably tune out after the first five minutes. The more talks you see on a subject, the more of the talk makes sense, and the more you get out of it. That’s part of why even fairly specialized people who are further along in their careers can talk on a wide range of subjects: often, they’ve intentionally kept themselves aware of what’s going on in other subfields, going to talks, reading papers, and engaging in conversation. This is a valuable end goal, since there is some truth to the hype about the benefits of interdisciplinarity in providing unconventional solutions to problems. That said, this is a gradual process. The benefit of one individual talk is tiny, and it doesn’t seem worth an hour of time. Much like exercise, it’s the habit that provides the benefit, not any individual session.

So in the end, talks are almost always unsatisfying. But we keep going to them, because they make us better scientists.

You get paid to learn. How bad can that be?

In my “who am I” post, I describe being a grad student as like being an apprentice. I’d like to elaborate on that.

Ph.D. programs in the sciences are different at every school, but they have a few basic features. Generally you enter them with a bachelor’s degree from another university. The program lasts for somewhere between four and six years, longer for particularly unfortunate cases. Sometimes you get a Master’s degree after the first two years, sometimes you don’t, but you don’t usually have to get it from another school. Generally the first two years mostly involve taking courses while the later years are mostly research, but this can vary as well. And in general, once you’re in the program, you get paid: either as a Teaching Assistant, in which case you help grade papers, lead lab sections, and sometimes give lectures, or as a Research Assistant, in which you are paid to do research.

This last is occasionally confusing to people. If a Ph.D. student learns by doing research, then why are they also paid to do research? That sounds like not just getting your education for free, but being paid for it, which sounds at the very least like a very good deal.

There are two ways to think about the situation. One, as I mentioned in my “who am I” post, is as an apprenticeship. An apprentice is expected to learn on the job, and provided they learn enough they are eventually certified to work on their own. Despite this, an apprenticeship is still very much a job. An apprentice is subservient to their master, and can generally be counted upon to work on the master’s projects and help the master in their job. In much the same way, a Ph.D. student is not certified to work on their own until they graduate from the program and obtain their Ph.D. In the meantime they are subservient to their advisor, and they have to take their advisor’s desires into account when choosing research projects. In general, most of a grad student’s research projects will be part of their advisor’s research in one way or another, furthering their advisor’s goals. Beyond the research itself, grad students will often have other duties, depending on the nature of their advisor’s work, especially if their advisor has a lab with complicated equipment that needs to be maintained.

The other thing to realize is that grad students are, ostensibly, part-time workers. The university pays me for 20 hours a week of work. The thing is, though, I don’t just work part-time. I work full-time. I also work at home, on the weekends…whenever I can make progress on my research (and I’m not doing some side project like this blog or taking a needed sanity break), I work. So if I work 40 hours a week and am paid for 20, that means I am effectively spending half my income on education.

Not so free, is it?

It’s not as if any of us could just work less and take on another part-time job, either. Apart from the fact that many grad students are international students on visas that don’t allow them to get other jobs, it is research itself: keeping up, making progress, working towards graduating, that takes up so much of our time. To get any education out of the process at all, we have to be involved as much as possible.  So we are, inevitably, paying for our education. And hopefully, we’re getting something out of it.

Sound Bite Management; or the Merits of Shock and Awe

First off, for the small demographic who haven’t seen it already (and aren’t reading this because of it), I wrote an article for Ars Technica. Go read it.

After the article went up, a professor from my department told me that he and several others were concerned about the title.

Now before I go on, I’d like to clarify that this isn’t going to be a story about the department trying to “shut me down” or anything paranoid like that. The professor in question was expressing a valid concern in a friendly way, and it deserves some thought.

The concern was the following: isn’t a title like Earning a PhD by studying a theory that we know is wrong” bad publicity for the field? Regardless of whether the article rebuts the idea that “wrong” is a meaningful descriptor for this sort of theory, doesn’t a title like that give fuel to the fire, sharpening the cleavers of the field’s detractors as one commenter put it? In other words, even if it’s a good article, isn’t it a bad sound bite?

It’s worryingly easy for a catchy sound bite to eclipse everything else about a piece. As one commenter pointed out, that’s roughly what happened with Palin’s fruit fly comment itself. And with that in mind, the claim that people are earning PhDs based on “false” theories definitely sounds like the sort of sound bite that could get out of hand in a hurry if the wrong community picked it up.

There is, at least, one major difference between my sound bite and Palin’s. In the political climate of 2008 it was easy to believe that Sarah Palin didn’t understand the concept of fruit fly research. On the other hand, it’s quite a bit less plausible that Ars would air a piece calling most work in theoretical physics useless.

In operation here is the old, powerful technique of using a shocking, dissonant headline to lure people in. A sufficiently out-of-character statement won’t be taken at face value; rather, it will inspire readers to dig in to the full article to figure out what they’re missing. This is the principle behind provocateurs in many fields, and while there are always risks, often this is the only way to get people to think about complex issues (Peter Singer often seems to exemplify the risks and rewards of this tactic, just to give an example).

What’s the alternative here? In referring to the theory I study as “wrong”, I’m attempting to bring readers face to face with a common misconception: the idea that every theory in physics is designed to approximate some part of the real world. For the physicists in the audience, this is the public perception that everything in theoretical physics is phenomenology. If we don’t bring this perception to light and challenge it, then we’re sweeping a substantial amount of theoretical physics under the rug for the sake of a simpler message. And that’s risky, because if people don’t understand what physics really is then they’re likely to balk when they glimpse what they think is “illegitimate” physics.

In my view, shocking people by describing my type of physics as not “true” is the best way to teach people about what physicists actually do. But it is risky, and it could easily give people the wrong impression. Only time will tell.

Who Am I?

I call myself a String Theorist, someone who describes the world in terms of subatomic lengths of string that move in ten dimensions (nine of space and one of time),

But in practice I’m more of a Particle Theorist, describing the world not in terms of short lengths of string but rather with particles that each occupy a single point in space,

More specifically, I’m an Amplitudeologist, part of a trendy new tribe including the likes of Zvi Bern, Lance Dixon, Nima Arkani-Hamed, John Joseph Carrasco (jjmc on twitter), and sometimes Sheldon Cooper,

In terms of my career, I’m a Graduate Student, less like a college student and more like an apprentice, learning not primarily through classes but rather through working to advance my advisor’s research,

And what do I work on? Things like this.