Tag Archives: amplitudes

Amplitudes 2022 Retrospective

I’m back from Amplitudes 2022 with more time to write, and (besides the several papers I’m working on) that means writing about the conference! Casual readers be warned, there’s no way around this being a technical post, I don’t have the space to explain everything!

I mostly said all I wanted about the way the conference was set up in last week’s post, but one thing I didn’t say much about was the conference dinner. Most conference dinners are the same aside from the occasional cool location or haggis speech. This one did have a cool location, and a cool performance by a blind pianist, but the thing I really wanted to comment on was the setup. Typically, the conference dinner at Amplitudes is a sit-down affair: people sit at tables in one big room, maybe getting up occasionally to pick up food, and eventually someone gives an after-dinner speech. This time the tables were standing tables, spread across several rooms. This was a bit tiring on a hot day, but it did have the advantage that it naturally mixed people around. Rather than mostly talking to “your table”, you’d wander, ending up at a new table every time you picked up new food or drinks. It was a good way to meet new people, a surprising number of which in my case apparently read this blog. It did make it harder to do an after-dinner speech, so instead Lance gave an after-conference speech, complete with the now-well-established running joke where Greta Thunberg tries to get us to fly less.

(In another semi-running joke, the organizers tried to figure out who had attended the most of the yearly Amplitudes conferences over the years. Weirdly, no-one has attended all twelve.)

In terms of the content, and things that stood out:

Nima is getting close to publishing his newest ‘hedron, the surfacehedron, and correspondingly was able to give a lot more technical detail about it. (For his first and most famous amplituhedron, see here.) He still didn’t have enough time to explain why he has to use category theory to do it, but at least he was concrete enough that it was reasonably clear where the category theory was showing up. (I wasn’t there for his eight-hour lecture at the school the week before, maybe the students who stuck around until 2am learned some category theory there.) Just from listening in on side discussions, I got the impression that some of the ideas here actually may have near-term applications to computing Feynman diagrams: this hasn’t been a feature of previous ‘hedra and it’s an encouraging development.

Alex Edison talked about progress towards this blog’s namesake problem, the question of whether N=8 supergravity diverges at seven loops. Currently they’re working at six loops on the N=4 super Yang-Mills side, not yet in a form it can be “double-copied” to supergravity. The tools they’re using are increasingly sophisticated, including various slick tricks from algebraic geometry. They are looking to the future: if they’re hoping their methods will reach seven loops, the same methods have to make six loops a breeze.

Xi Yin approached a puzzle with methods from String Field Theory, prompting the heretical-for-us title “on-shell bad, off-shell good”. A colleague reminded me of a local tradition for dealing with heretics.

While Nima was talking about a new ‘hedron, other talks focused on the original amplituhedron. Paul Heslop found that the amplituhedron is not literally a positive geometry, despite slogans to the contrary, but what it is is nonetheless an interesting generalization of the concept. Livia Ferro has made more progress on her group’s momentum amplituhedron: previously only valid at tree level, they now have a picture that can accomodate loops. I wasn’t sure this would be possible, there are a lot of things that work at tree level and not for loops, so I’m quite encouraged that this one made the leap successfully.

Sebastian Mizera, Andrew McLeod, and Hofie Hannesdottir all had talks that could be roughly summarized as “deep principles made surprisingly useful”. Each took topics that were explored in the 60’s and translated them into concrete techniques that could be applied to modern problems. There were surprisingly few talks on the completely concrete end, on direct applications to collider physics. I think Simone Zoia’s was the only one to actually feature collider data with error bars, which might explain why I singled him out to ask about those error bars later.

Likewise, Matthias Wilhelm’s talk was the only one on functions beyond polylogarithms, the elliptic functions I’ve also worked on recently. I wonder if the under-representation of some of these topics is due to the existence of independent conferences: in a year when in-person conferences are packed in after being postponed across the pandemic, when there are already dedicated conferences for elliptics and practical collider calculations, maybe people are just a bit too tired to go to Amplitudes as well.

Talks on gravitational waves seem to have stabilized at roughly a day’s worth, which seems reasonable. While the subfield’s capabilities continue to be impressive, it’s also interesting how often new conceptual challenges appear. It seems like every time a challenge to their results or methods is resolved, a new one shows up. I don’t know whether the field will ever get to a stage of “business as usual”, or whether it will be novel qualitative questions “all the way up”.

I haven’t said much about the variety of talks bounding EFTs and investigating their structure, though this continues to be an important topic. And I haven’t mentioned Lance Dixon’s talk on antipodal duality, largely because I’m planning a post on it later: Quanta Magazine had a good article on it, but there are some aspects even Quanta struggled to cover, and I think I might have a good way to do it.

Classicality Has Consequences

Last week, I mentioned some interesting new results in my corner of physics. I’ve now finally read the two papers and watched the recorded talk, so I can satisfy my frustrated commenters.

Quantum mechanics is a very cool topic and I am much less qualified than you would expect to talk about it. I use quantum field theory, which is based on quantum mechanics, so in some sense I use quantum mechanics every day. However, most of the “cool” implications of quantum mechanics don’t come up in my work. All the debates about whether measurement “collapses the wavefunction” are irrelevant when the particles you measure get absorbed in a particle detector, never to be seen again. And while there are deep questions about how a classical world emerges from quantum probabilities, they don’t matter so much when all you do is calculate those probabilities.

They’ve started to matter, though. That’s because quantum field theorists like me have recently started working on a very different kind of problem: trying to predict the output of gravitational wave telescopes like LIGO. It turns out you can do almost the same kind of calculation we’re used to: pretend two black holes or neutron stars are sub-atomic particles, and see what happens when they collide. This trick has grown into a sub-field in its own right, one I’ve dabbled in a bit myself. And it’s gotten my kind of physicists to pay more attention to the boundary between classical and quantum physics.

The thing is, the waves that LIGO sees really are classical. Any quantum gravity effects there are tiny, undetectably tiny. And while this doesn’t have the implications an expert might expect (we still need loop diagrams), it does mean that we need to take our calculations to a classical limit.

Figuring out how to do this has been surprisingly delicate, and full of unexpected insight. A recent example involves two papers, one by Andrea Cristofoli, Riccardo Gonzo, Nathan Moynihan, Donal O’Connell, Alasdair Ross, Matteo Sergola, and Chris White, and one by Ruth Britto, Riccardo Gonzo, and Guy Jehu. At first I thought these were two groups happening on the same idea, but then I noticed Riccardo Gonzo on both lists, and realized the papers were covering different aspects of a shared story. There is another group who happened upon the same story: Paolo Di Vecchia, Carlo Heissenberg, Rodolfo Russo and Gabriele Veneziano. They haven’t published yet, so I’m basing this on the Gonzo et al papers.

The key question each group asked was, what does it take for gravitational waves to be classical? One way to ask the question is to pick something you can observe, like the strength of the field, and calculate its uncertainty. Classical physics is deterministic: if you know the initial conditions exactly, you know the final conditions exactly. Quantum physics is not. What should happen is that if you calculate a quantum uncertainty and then take the classical limit, that uncertainty should vanish: the observation should become certain.

Another way to ask is to think about the wave as made up of gravitons, particles of gravity. Then you can ask how many gravitons are in the wave, and how they are distributed. It turns out that you expect them to be in a coherent state, like a laser, one with a very specific distribution called a Poisson distribution: a distribution in some sense right at the border between classical and quantum physics.

The results of both types of questions were as expected: the gravitational waves are indeed classical. To make this work, though, the quantum field theory calculation needs to have some surprising properties.

If two black holes collide and emit a gravitational wave, you could depict it like this:

All pictures from arXiv:2112.07556

where the straight lines are black holes, and the squiggly line is a graviton. But since gravitational waves are made up of multiple gravitons, you might ask, why not depict it with two gravitons, like this?

It turns out that diagrams like that are a problem: they mean your two gravitons are correlated, which is not allowed in a Poisson distribution. In the uncertainty picture, they also would give you non-zero uncertainty. Somehow, in the classical limit, diagrams like that need to go away.

And at first, it didn’t look like they do. You can try to count how many powers of Planck’s constant show up in each diagram. The authors do that, and it certainly doesn’t look like it goes away:

An example from the paper with Planck’s constants sprinkled around

Luckily, these quantum field theory calculations have a knack for surprising us. Calculate each individual diagram, and things look hopeless. But add them all together, and they miraculously cancel. In the classical limit, everything combines to give a classical result.

You can do this same trick for diagrams with more graviton particles, as many as you like, and each time it ought to keep working. You get an infinite set of relationships between different diagrams, relationships that have to hold to get sensible classical physics. From thinking about how the quantum and classical are related, you’ve learned something about calculations in quantum field theory.

That’s why these papers caught my eye. A chunk of my sub-field is needing to learn more and more about the relationship between quantum and classical physics, and it may have implications for the rest of us too. In the future, I might get a bit more qualified to talk about some of the very cool implications of quantum mechanics.

Amplitudes 2021 Retrospective

Phew!

The conference photo

Now that I’ve rested up after this year’s Amplitudes, I’ll give a few of my impressions.

Overall, I think the conference went pretty well. People seemed amused by the digital Niels Bohr, even if he looked a bit like a puppet (Lance compared him to Yoda in his final speech, which was…apt). We used Gather.town, originally just for the poster session and a “virtual reception”, but later we also encouraged people to meet up in it during breaks. That in particular was a big hit: I think people really liked the ability to just move around and chat in impromptu groups, and while nobody seemed to use the “virtual bar”, the “virtual beach” had a lively crowd. Time zones were inevitably rough, but I think we ended up with a good compromise where everyone could still see a meaningful chunk of the conference.

A few things didn’t work as well. For those planning conferences, I would strongly suggest not making a brand new gmail account to send out conference announcements: for a lot of people the emails went straight to spam. Zulip was a bust: I’m not sure if people found it more confusing than last year’s Slack or didn’t notice it due to the spam issue, but almost no-one posted in it. YouTube was complicated: the stream went down a few times and I could never figure out exactly why, it may have just been internet issues here at the Niels Bohr Institute (we did have a power outage one night and had to scramble to get internet access back the next morning). As far as I could tell YouTube wouldn’t let me re-open the previous stream so each time I had to post a new link, which probably was frustrating for those following along there.

That said, this was less of a problem than it might have been, because attendance/”viewership” as a whole was lower than expected. Zoomplitudes last year had massive numbers of people join in both on Zoom and via YouTube. We had a lot fewer: out of over 500 registered participants, we had fewer than 200 on Zoom at any one time, and at most 30 or so on YouTube. Confusion around the conference email might have played a role here, but I suspect part of the difference is simple fatigue: after over a year of this pandemic, online conferences no longer feel like an exciting new experience.

The actual content of the conference ranged pretty widely. Some people reviewed earlier work, others presented recent papers or even work-in-progress. As in recent years, a meaningful chunk of the conference focused on applications of amplitudes techniques to gravitational wave physics. This included a talk by Thibault Damour, who has by now mostly made his peace with the field after his early doubts were sorted out. He still suspected that the mismatch of scales (weak coupling on the one hand, classical scattering on the other) would cause problems in future, but after his work with Laporta and Mastrolia even he had to acknowledge that amplitudes techniques were useful.

In the past I would have put the double-copy and gravitational wave researchers under the same heading, but this year they were quite distinct. While a few of the gravitational wave talks mentioned the double-copy, most of those who brought it up were doing something quite a bit more abstract than gravitational wave physics. Indeed, several people were pushing the boundaries of what it means to double-copy. There were modified KLT kernels, different versions of color-kinematics duality, and explorations of what kinds of massive particles can and (arguably more interestingly) cannot be compatible with a double-copy framework. The sheer range of different generalizations had me briefly wondering whether the double-copy could be “too flexible to be meaningful”, whether the right definitions would let you double-copy anything out of anything. I was reassured by the points where each talk argued that certain things didn’t work: it suggests that wherever this mysterious structure comes from, its powers are limited enough to make it meaningful.

A fair number of talks dealt with what has always been our main application, collider physics. There the context shifted, but the message stayed consistent: for a “clean” enough process two or three-loop calculations can make a big difference, taking a prediction that would be completely off from experiment and bringing it into line. These are more useful the more that can be varied about the calculation: functions are more useful than numbers, for example. I was gratified to hear confirmation that a particular kind of process, where two massless particles like quarks become three massive particles like W or Z bosons, is one of these “clean enough” examples: it means someone will need to compute my “tardigrade” diagram eventually.

If collider physics is our main application, N=4 super Yang-Mills has always been our main toy model. Jaroslav Trnka gave us the details behind Nima’s exciting talk from last year, and Nima had a whole new exciting talk this year with promised connections to category theory (connections he didn’t quite reach after speaking for two and a half hours). Anastasia Volovich presented two distinct methods for predicting square-root symbol letters, while my colleague Chi Zhang showed some exciting progress with the elliptic double-box, realizing the several-year dream of representing it in a useful basis of integrals and showcasing several interesting properties. Anne Spiering came over from the integrability side to show us just how special the “planar” version of the theory really is: by increasing the number of colors of gluons, she showed that one could smoothly go between an “integrability-esque” spectrum and a “chaotic” spectrum. Finally, Lance Dixon mentioned his progress with form-factors in his talk at the end of the conference, showing off some statistics of coefficients of different functions and speculating that machine learning might be able to predict them.

On the more mathematical side, Francis Brown showed us a new way to get numbers out of graphs, one distinct but related to our usual interpretation in terms of Feynman diagrams. I’m still unsure what it will be used for, but the fact that it maps every graph to something finite probably has some interesting implications. Albrecht Klemm and Claude Duhr talked about two sides of the same story, their recent work on integrals involving Calabi-Yau manifolds. They focused on a particular nice set of integrals, and time will tell whether the methods work more broadly, but there are some exciting suggestions that at least parts will.

There’s been a resurgence of the old dream of the S-matrix community, constraining amplitudes via “general constraints” alone, and several talks dealt with those ideas. Sebastian Mizera went the other direction, and tried to test one of those “general constraints”, seeing under which circumstances he could prove that you can swap a particle going in with an antiparticle going out. Others went out to infinity, trying to understand amplitudes from the perspective of the so-called “celestial sphere” where they appear to be governed by conformal field theories of some sort. A few talks dealt with amplitudes in string theory itself: Yvonne Geyer built them out of field-theory amplitudes, while Ashoke Sen explained how to include D-instantons in them.

We also had three “special talks” in the evenings. I’ve mentioned Nima’s already. Zvi Bern gave a retrospective talk that I somewhat cheesily describe as “good for the soul”: a look to the early days of the field that reminded us of why we are who we are. Lance Dixon closed the conference with a light-hearted summary and a look to the future. That future includes next year’s Amplitudes, which after a hasty discussion during this year’s conference has now localized to Prague. Let’s hope it’s in person!

Reality as an Algebra of Observables

Listen to a physicist talk about quantum mechanics, and you’ll hear the word “observable”. Observables are, intuitively enough, things that can be observed. They’re properties that, in principle, one could measure in an experiment, like the position of a particle or its momentum. They’re the kinds of things linked by uncertainty principles, where the better you know one, the worse you know the other.

Some physicists get frustrated by this focus on measurements alone. They think we ought to treat quantum mechanics, not like a black box that produces results, but as information about some underlying reality. Instead of just observables, they want us to look for “beables“: not just things that can be observed, but things that something can be. From their perspective, the way other physicists focus on observables feels like giving up, like those physicists are abandoning their sacred duty to understand the world. Others, like the Quantum Bayesians or QBists, disagree, arguing that quantum mechanics really is, and ought to be, a theory of how individuals get evidence about the world.

I’m not really going to weigh in on that debate, I still don’t feel like I know enough to even write a decent summary. But I do think that one of the instincts on the “beables” side is wrong. If we focus on observables in quantum mechanics, I don’t think we’re doing anything all that unusual. Even in other parts of physics, we can think about reality purely in terms of observations. Doing so isn’t a dereliction of duty: often, it’s the most useful way to understand the world.

When we try to comprehend the world, we always start alone. From our time in the womb, we have only our senses and emotions to go on. With a combination of instinct and inference we start assembling a consistent picture of reality. Philosophers called phenomenologists (not to be confused with the physicists called phenomenologists) study this process in detail, trying to characterize how different things present themselves to an individual consciousness.

For my point here, these details don’t matter so much. That’s because in practice, we aren’t alone in understanding the world. Based on what others say about the world, we conclude they perceive much like we do, and we learn by their observations just as we learn by our own. We can make things abstract: instead of the specifics of how individuals perceive, we think about groups of scientists making measurements. At the end of this train lie observables: things that we as a community could in principle learn, and share with each other, ignoring the details of how exactly we measure them.

If each of these observables was unrelated, just scattered points of data, then we couldn’t learn much. Luckily, they are related. In quantum mechanics, some of these relationships are the uncertainty principles I mentioned earlier. Others relate measurements at different places, or at different times. The fancy way to refer to all these relationships is as an algebra: loosely, it’s something you can “do algebra with”, like you did with numbers and variables in high school. When physicists and mathematicians want to do quantum mechanics or quantum field theory seriously, they often talk about an “algebra of observables”, a formal way of thinking about all of these relationships.

Focusing on those two things, observables and how they are related, isn’t just useful in the quantum world. It’s an important way to think in other areas of physics too. If you’ve heard people talk about relativity, the focus on measurement screams out, in thought experiments full of abstract clocks and abstract yardsticks. Without this discipline, you find paradoxes, only to resolve them when you carefully track what each person can observe. More recently, physicists in my field have had success computing the chance particles collide by focusing on the end result, the actual measurements people can make, ignoring what might happen in between to cause that measurement. We can then break measurements down into simpler measurements, or use the structure of simpler measurements to guess more complicated ones. While we typically have done this in quantum theories, that’s not really a limitation: the same techniques make sense for problems in classical physics, like computing the gravitational waves emitted by colliding black holes.

With this in mind, we really can think of reality in those terms: not as a set of beable objects, but as a set of observable facts, linked together in an algebra of observables. Paring things down to what we can know in this way is more honest, and it’s also more powerful and useful. Far from a betrayal of physics, it’s the best advantage we physicists have in our quest to understand the world.

QCD Meets Gravity 2020, Retrospective

I was at a Zoomference last week, called QCD Meets Gravity, about the many ways gravity can be thought of as the “square” of other fundamental forces. I didn’t have time to write much about the actual content of the conference, so I figured I’d say a bit more this week.

A big theme of this conference, as in the past few years, was gravitational waves. From LIGO’s first announcement of a successful detection, amplitudeologists have been developing new methods to make predictions for gravitational waves more efficient. It’s a field I’ve dabbled in a bit myself. Last year’s QCD Meets Gravity left me impressed by how much progress had been made, with amplitudeologists already solidly part of the conversation and able to produce competitive results. This year felt like another milestone, in that the amplitudeologists weren’t just catching up with other gravitational wave researchers on the same kinds of problems. Instead, they found new questions that amplitudes are especially well-suited to answer. These included combining two pieces of these calculations (“potential” and “radiation”) that the older community typically has to calculate separately, using an old quantum field theory trick, finding the gravitational wave directly from amplitudes, and finding a few nice calculations that can be used to “generate” the rest.

A large chunk of the talks focused on different “squaring” tricks (or as we actually call them, double-copies). There were double-copies for cosmology and conformal field theory, for the celestial sphere, and even some version of M theory. There were new perspectives on the double-copy, new building blocks and algebraic structures that lie behind it. There were talks on the so-called classical double-copy for space-times, where there have been some strange discoveries (an extra dimension made an appearance) but also a more rigorous picture of where the whole thing comes from, using twistor space. There were not one, but two talks linking the double-copy to the Navier-Stokes equation describing fluids, from two different groups. (I’m really curious whether these perspectives are actually useful for practical calculations about fluids, or just fun to think about.) Finally, while there wasn’t a talk scheduled on this paper, the authors were roped in by popular demand to talk about their work. They claim to have made progress on a longstanding puzzle, how to show that double-copy works at the level of the Lagrangian, and the community was eager to dig into the details.

From there, a grab-bag of talks covered other advancements. There were talks from string theorists and ambitwistor string theorists, from Effective Field Theorists working on gravity and the Standard Model, from calculations in N=4 super Yang-Mills, QCD, and scalar theories. Simon Caron-Huot delved into how causality constrains the theories we can write down, showing an interesting case where the common assumption that all parameters are close to one is actually justified. Nima Arkani-Hamed began his talk by saying he’d surprise us, which he certainly did (and not by keeping on time). It’s tricky to explain why his talk was exciting. Comparing to his earlier discovery of the Amplituhedron, which worked for a toy model, this is a toy calculation in a toy model. While the Amplituhedron wasn’t based on Feynman diagrams, this can’t even be compared with Feynman diagrams. Instead of expanding in a small coupling constant, this expands in a parameter that by all rights should be equal to one. And instead of positivity conditions, there are negativity conditions. All I can say is that with all of that in mind, it looks like real progress on an important and difficult problem from a totally unanticipated direction. In a speech summing up the conference, Zvi Bern mentioned a few exciting words from Nima’s talk: “nonplanar”, “integrated”, “nonperturbative”. I’d add “differential equations” and “infinite sums of ladder diagrams”. Nima and collaborators are trying to figure out what happens when you sum up all of the Feynman diagrams in a theory. I’ve made progress in the past for diagrams with one “direction”, a ladder that grows as you add more loops, but I didn’t know how to add “another direction” to the ladder. In very rough terms, Nima and collaborators figured out how to add that direction.

I’ve probably left things out here, it was a packed conference! It’s been really fun seeing what the community has cooked up, and I can’t wait to see what happens next.

QCD Meets Gravity 2020

I’m at another Zoom conference this week, QCD Meets Gravity. This year it’s hosted by Northwestern.

The view of the campus from wonder.me

QCD Meets Gravity is a conference series focused on the often-surprising links between quantum chromodynamics on the one hand and gravity on the other. By thinking of gravity as the “square” of forces like the strong nuclear force, researchers have unlocked new calculation techniques and deep insights.

Last year’s conference was very focused on one particular topic, trying to predict the gravitational waves observed by LIGO and VIRGO. That’s still a core topic of the conference, but it feels like there is a bit more diversity in topics this year. We’ve seen a variety of talks on different “squares”: new theories that square to other theories, and new calculations that benefit from “squaring” (even surprising applications to the Navier-Stokes equation!) There are talks on subjects from String Theory to Effective Field Theory, and even a talk on a very different way that “QCD meets gravity”, in collisions of neutron stars.

With still a few more talks to go, expect me to say a bit more next week, probably discussing a few in more detail. (Several people presented exciting work in progress!) Until then, I should get back to watching!

Zoomplitudes Retrospective

During Zoomplitudes (my field’s big yearly conference, this year on Zoom) I didn’t have time to write a long blog post. I said a bit about the format, but didn’t get a chance to talk about the science. I figured this week I’d go back and give a few more of my impressions. As always, conference posts are a bit more technical than my usual posts, so regulars be warned!

The conference opened with a talk by Gavin Salam, there as an ambassador for LHC physics. Salam pointed out that, while a decent proportion of speakers at Amplitudes mention the LHC in their papers, that fraction has fallen over the years. (Another speaker jokingly wondered which of those mentions were just in the paper’s introduction.) He argued that there is still useful work for us, LHC measurements that will require serious amplitudes calculations to understand. He also brought up what seems like the most credible argument for a new, higher-energy collider: that there are important properties of the Higgs, in particular its interactions, that we still have not observed.

The next few talks hopefully warmed Salam’s heart, as they featured calculations for real-world particle physics. Nathaniel Craig and Yael Shadmi in particular covered the link between amplitudes and Standard Model Effective Field Theory (SMEFT), a method to systematically characterize corrections beyond the Standard Model. Shadmi’s talk struck me because the kind of work she described (building the SMEFT “amplitudes-style”, directly from observable information rather than more complicated proxies) is something I’d seen people speculate about for a while, but which hadn’t been done until quite recently. Now, several groups have managed it, and look like they’ve gotten essentially “all the way there”, rather than just partial results that only manage to replicate part of the SMEFT. Overall it’s much faster progress than I would have expected.

After Shadmi’s talk was a brace of talks on N=4 super Yang-Mills, featuring cosmic Galois theory and an impressively groan-worthy “origin story” joke. The final talk of the day, by Hofie Hannesdottir, covered work with some of my colleagues at the NBI. Due to coronavirus I hadn’t gotten to hear about this in person, so it was good to hear a talk on it, a blend of old methods and new priorities to better understand some old discoveries.

The next day focused on a topic that has grown in importance in our community, calculations for gravitational wave telescopes like LIGO. Several speakers focused on new methods for collisions of spinning objects, where a few different approaches are making good progress (Radu Roiban’s proposal to use higher-spin field theory was particularly interesting) but things still aren’t quite “production-ready”. The older, post-Newtonian method is still very much production-ready, as evidenced by Michele Levi’s talk that covered, among other topics, our recent collaboration. Julio Parra-Martinez discussed some interesting behavior shared by both supersymmetric and non-supersymmetric gravity theories. Thibault Damour had previously expressed doubts about use of amplitudes methods to answer this kind of question, and part of Parra-Martinez’s aim was to confirm the calculation with methods Damour would consider more reliable. Damour (who was actually in the audience, which I suspect would not have happened at an in-person conference) had already recanted some related doubts, but it’s not clear to me whether that extended to the results Parra-Martinez discussed (or whether Damour has stated the problem with his old analysis).

There were a few talks that day that didn’t relate to gravitational waves, though this might have been an accident, since both speakers also work on that topic. Zvi Bern’s talk linked to the previous day’s SMEFT discussion, with a calculation using amplitudes methods of direct relevance to SMEFT researchers. Clifford Cheung’s talk proposed a rather strange/fun idea, conformal symmetry in negative dimensions!

Wednesday was “amplituhedron day”, with a variety of talks on positive geometries and cluster algebras. Featured in several talks was “tropicalization“, a mathematical procedure that can simplify complicated geometries while still preserving essential features. Here, it was used to trim down infinite “alphabets” conjectured for some calculations into a finite set, and in doing so understand the origin of “square root letters”. The day ended with a talk by Nima Arkani-Hamed, who despite offering to bet that he could finish his talk within the half-hour slot took almost twice that. The organizers seemed to have planned for this, since there was one fewer talk that day, and as such the day ended at roughly the usual time regardless.

We also took probably the most unique conference photo I will ever appear in.

For lack of a better name, I’ll call Thursday’s theme “celestial”. The day included talks by cosmologists (including approaches using amplitudes-ish methods from Daniel Baumann and Charlotte Sleight, and a curiously un-amplitudes-related talk from Daniel Green), talks on “celestial amplitudes” (amplitudes viewed from the surface of an infinitely distant sphere), and various talks with some link to string theory. I’m including in that last category intersection theory, which has really become its own thing. This included a talk by Simon Caron-Huot about using intersection theory more directly in understanding Feynman integrals, and a talk by Sebastian Mizera using intersection theory to investigate how gravity is Yang-Mills squared. Both gave me a much better idea of the speakers’ goals. In Mizera’s case he’s aiming for something very ambitious. He wants to use intersection theory to figure out when and how one can “double-copy” theories, and might figure out why the procedure “got stuck” at five loops. The day ended with a talk by Pedro Vieira, who gave an extremely lucid and well-presented “blackboard-style” talk on bootstrapping amplitudes.

Friday was a grab-bag of topics. Samuel Abreu discussed an interesting calculation using the numerical unitarity method. It was notable in part because renormalization played a bigger role than it does in most amplitudes work, and in part because they now have a cool logo for their group’s software, Caravel. Claude Duhr and Ruth Britto gave a two-part talk on their work on a Feynman integral coaction. I’d had doubts about the diagrammatic coaction they had worked on in the past because it felt a bit ad-hoc. Now, they’re using intersection theory, and have a clean story that seems to tie everything together. Andrew McLeod talked about our work on a Feynman diagram Calabi-Yau “bestiary”, while Cristian Vergu had a more rigorous understanding of our “traintrack” integrals.

There are two key elements of a conference that are tricky to do on Zoom. You can’t do a conference dinner, so you can’t do the traditional joke-filled conference dinner speech. The end of the conference is also tricky: traditionally, this is when everyone applauds the organizers and the secretaries are given flowers. As chair for the last session, Lance Dixon stepped up to fill both gaps, with a closing speech that was both a touching tribute to the hard work of organizing the conference and a hilarious pile of in-jokes, including a participation award to Arkani-Hamed for his (unprecedented, as far as I’m aware) perfect attendance.

4gravitons, Spinning Up

I had a new paper out last week, with Michèle Levi and Andrew McLeod. But to explain it, I’ll need to clarify something about our last paper.

Two weeks ago, I told you that Andrew and Michèle and I had written a paper, predicting what gravitational wave telescopes like LIGO see when black holes collide. You may remember that LIGO doesn’t just see colliding black holes: it sees colliding neutron stars too. So why didn’t we predict what happens when neutron stars collide?

Actually, we did. Our calculation doesn’t just apply to black holes. It applies to neutron stars too. And not just neutron stars: it applies to anything of roughly the right size and shape. Black holes, neutron stars, very large grapefruits…

LIGO’s next big discovery

That’s the magic of Effective Field Theory, the “zoom lens” of particle physics. Zoom out far enough, and any big, round object starts looking like a particle. Black holes, neutron stars, grapefruits, we can describe them all using the same math.

Ok, so we can describe both black holes and neutron stars. Can we tell the difference between them?

In our last calculation, no. In this one, yes!

Effective Field Theory isn’t just a zoom lens, it’s a controlled approximation. That means that when we “zoom out” we don’t just throw out anything “too small to see”. Instead, we approximate it, estimating how big of an effect it can have. Depending on how precise we want to be, we can include more and more of these approximated effects. If our estimates are good, we’ll include everything that matters, and get a good approximation for what we’re trying to observe.

At the precision of our last calculation, a black hole and a neutron star still look exactly the same. Our new calculation aims for a bit higher precision though. (For the experts: we’re at a higher order in spin.) The higher precision means that we can actually see the difference: our result changes for two colliding black holes versus two colliding grapefruits.

So does that mean I can tell you what happens when two neutron stars collide, according to our calculation? Actually, no. That’s not because we screwed up the calculation: it’s because some of the properties of neutron stars are unknown.

The Effective Field Theory of neutron stars has what we call “free parameters”, unknown variables. People have tried to estimate some of these (called “Love numbers” after the mathematician A. E. H. Love), but they depend on the details of how neutron stars work: what stuff they contain, how that stuff is shaped, and how it can move. To find them out, we probably can’t just calculate: we’ll have to measure, observe an actual neutron star collision and see what the numbers actually are.

That’s one of the purposes of gravitational wave telescopes. It’s not (as far as I know) something LIGO can measure. But future telescopes, with more precision, should be able to. By watching two colliding neutron stars and comparing to a high-precision calculation, physicists will better understand what those neutron stars are made of. In order to do that, they will need someone to do that high-precision calculation. And that’s why people like me are involved.

4gravitons Exchanges a Graviton

I had a new paper up last Friday with Michèle Levi and Andrew McLeod, on a topic I hadn’t worked on before: colliding black holes.

I am an “amplitudeologist”. I work on particle physics calculations, computing “scattering amplitudes” to find the probability that fundamental particles bounce off each other. This sounds like the farthest thing possible from black holes. Nevertheless, the two are tightly linked, through the magic of something called Effective Field Theory.

Effective Field Theory is a kind of “zoom knob” for particle physics. You “zoom out” to some chosen scale, and write down a theory that describes physics at that scale. Your theory won’t be a complete description: you’re ignoring everything that’s “too small to see”. It will, however, be an effective description: one that, at the scale you’re interested in, is effectively true.

Particle physicists usually use Effective Field Theory to go between different theories of particle physics, to zoom out from strings to quarks to protons and neutrons. But you can zoom out even further, all the way out to astronomical distances. Zoom out far enough, and even something as massive as a black hole looks like just another particle.

Just click the “zoom X10” button fifteen times, and you’re there!

In this picture, the force of gravity between black holes looks like particles (specifically, gravitons) going back and forth. With this picture, physicists can calculate what happens when two black holes collide with each other, making predictions that can be checked with new gravitational wave telescopes like LIGO.

Researchers have pushed this technique quite far. As the calculations get more and more precise (more and more “loops”), they have gotten more and more challenging. This is particularly true when the black holes are spinning, an extra wrinkle in the calculation that adds a surprising amount of complexity.

That’s where I came in. I can’t compete with the experts on black holes, but I certainly know a thing or two about complicated particle physics calculations. Amplitudeologists, like Andrew McLeod and me, have a grab-bag of tricks that make these kinds of calculations a lot easier. With Michèle Levi’s expertise working with spinning black holes in Effective Field Theory, we were able to combine our knowledge to push beyond the state of the art, to a new level of precision.

This project has been quite exciting for me, for a number of reasons. For one, it’s my first time working with gravitons: despite this blog’s name, I’d never published a paper on gravity before. For another, as my brother quipped when he heard about it, this is by far the most “applied” paper I’ve ever written. I mostly work with a theory called N=4 super Yang-Mills, a toy model we use to develop new techniques. This paper isn’t a toy model: the calculation we did should describe black holes out there in the sky, in the real world. There’s a decent chance someone will use this calculation to compare with actual data, from LIGO or a future telescope. That, in particular, is an absurdly exciting prospect.

Because this was such an applied calculation, it was an opportunity to explore the more applied part of my own field. We ended up using well-known techniques from that corner, but I look forward to doing something more inventive in future.

QCD Meets Gravity 2019

I’m at UCLA this week for QCD Meets Gravity, a conference about the surprising ways that gravity is “QCD squared”.

When I attended this conference two years ago, the community was branching out into a new direction: using tools from particle physics to understand the gravitational waves observed at LIGO.

At this year’s conference, gravitational waves have grown from a promising new direction to a large fraction of the talks. While there were still the usual talks about quantum field theory and string theory (everything from bootstrap methods to a surprising application of double field theory), gravitational waves have clearly become a major focus of this community.

This was highlighted before the first talk, when Zvi Bern brought up a recent paper by Thibault Damour. Bern and collaborators had recently used particle physics methods to push beyond the state of the art in gravitational wave calculations. Damour, an expert in the older methods, claims that Bern et al’s result is wrong, and in doing so also questions an earlier result by Amati, Ciafaloni, and Veneziano. More than that, Damour argued that the whole approach of using these kinds of particle physics tools for gravitational waves is misguided.

There was a lot of good-natured ribbing of Damour in the rest of the conference, as well as some serious attempts to confront his points. Damour’s argument so far is somewhat indirect, so there is hope that a more direct calculation (which Damour is currently pursuing) will resolve the matter. In the meantime, Julio Parra-Martinez described a reproduction of the older Amati/Ciafaloni/Veneziano result with more Damour-approved techniques, as well as additional indirect arguments that Bern et al got things right.

Before the QCD Meets Gravity community worked on gravitational waves, other groups had already built a strong track record in the area. One encouraging thing about this conference was how much the two communities are talking to each other. Several speakers came from the older community, and there were a lot of references in both groups’ talks to the other group’s work. This, more than even the content of the talks, felt like the strongest sign that something productive is happening here.

Many talks began by trying to motivate these gravitational calculations, usually to address the mysteries of astrophysics. Two talks were more direct, with Ramy Brustein and Pierre Vanhove speculating about new fundamental physics that could be uncovered by these calculations. I’m not the kind of physicist who does this kind of speculation, and I confess both talks struck me as rather strange. Vanhove in particular explicitly rejects the popular criterion of “naturalness”, making me wonder if his work is the kind of thing critics of naturalness have in mind.