More Travel

I’m visiting the Niels Bohr Institute this week, on my way back from Amplitudes.

IMG_20170719_152906

You might recognize the place from old conference photos.

Amplitudes itself was nice. There weren’t any surprising new developments, but a lot of little “aha” moments when one of the speakers explained something I’d heard vague rumors about. I figured I’d mention a few of the things that stood out. Be warned, this is going to be long and comparatively jargon-heavy.

The conference organizers were rather daring in scheduling Nima Arkani-Hamed for the first talk, as Nima has a tendency to arrive at the last minute and talk for twice as long as you ask him to. Miraculously, though, things worked out, if only barely: Nima arrived at the wrong campus and ran most of the way back, showing up within five minutes of the start of the conference. He also stuck to his allotted time, possibly out of courtesy to his student, Yuntao Bai, who was speaking next.

Between the two of them, Nima and Yuntao covered an interesting development, tying the Amplituhedron together with the string theory-esque picture of scattering amplitudes pioneered by Freddy Cachazo, Song He, and Ellis Ye Yuan (or CHY). There’s a simpler (and older) Amplituhedron-like object called the associahedron that can be thought of as what the Amplituhedron looks like on the surface of a string, and CHY’s setup can be thought of as a sophisticated map that takes this object and turns it into the Amplituhedron. It was nice to hear from both Nima and his student on this topic, because Nima’s talks are often high on motivation but low on detail, so it was great that Yuntao was up next to fill in the blanks.

Anastasia Volovich talked about Landau singularities, a topic I’ve mentioned before. What I hadn’t appreciated was how much they can do with them at this point. Originally, Juan Maldacena had suggested that these singularities, mathematical points that determine the behavior of amplitudes first investigated by Landau in the 60’s, might explain some of the simplicity we’ve observed in N=4 super Yang-Mills. They ended up not being enough by themselves, but what Volovich and collaborators are discovering is that with a bit of help from the Amplithedron they explain quite a lot. In particular, if they start with the Amplituhedron and do a procedure similar to Landau’s, they can find the simpler set of singularities allowed by N=4 super Yang-Mills, at least for the examples they’ve calculated. It’s still a bit unclear how this links to their previous investigations of these things in terms of cluster algebras, but it sounds like they’re making progress.

Dmitry Chicherin gave me one of those minor “aha” moments. One big useful fact about scattering amplitudes in N=4 super Yang-Mills is that they’re “dual” to different mathematical objects called Wilson loops, a fact which allows us to compare to the “POPE” approach of Basso, Sever, and Vieira. Chicherin asks the question: “What if you’re not calculating a scattering amplitude or a Wilson loop, but something halfway in between?” Interestingly, this has an answer, with the “halfway between” objects having a similar duality among themselves.

Yorgos Papathansiou talked about work I’ve been involved with. I’ll probably cover it in detail in another post, so now I’ll just mention that we’re up to six loops!

Andy Strominger talked about soft theorems. It’s always interesting seeing people who don’t traditionally work on amplitudes giving talks at Amplitudes. There’s a range of responses, from integrability people (who are basically welcomed like family) to work on fairly unrelated areas that have some “amplitudes” connection (met with yawns except from the few people interested in the connection). The response to Strominger was neither welcome nor boredom, but lively debate. He’s clearly doing something interesting, but many specialists worried he was ignorant of important no-go results in the field that could hamstring some of his bolder conjectures.

The second day focused on methods for more practical calculations, and had the overall effect of making me really want to clean up my code. Tiziano Peraro’s finite field methods in particular look like they could be quite useful. There were two competing bases of integrals on display, Von Manteuffel’s finite integrals and Rutger Boels’s uniform transcendental integrals later in the conference. Both seem to have their own virtues, and I ended up asking Rob Schabinger if it was possible to combine the two, with the result that he’s apparently now looking into it.

The more practical talks that day had a clear focus on calculations with two loops, which are becoming increasingly viable for LHC-relevant calculations. From talking to people who work on this, I get the impression that the goal of these calculations isn’t so much to find new physics as to confirm and investigate new physics found via other methods. Things are complicated enough at two loops that for the moment it isn’t feasible to describe what all the possible new particles might do at that order, and instead the goal is to understand the standard model well enough that if new physics is noticed (likely based on one-loop calculations) then the details can be pinned down by two-loop data. But this picture could conceivably change as methods improve.

Wednesday was math-focused. We had a talk by Francis Brown on his conjecture of a cosmic Galois group. This is a topic I knew a bit about already, since it’s involved in something I’ve been working on. Brown’s talk cleared up some things, but also shed light on the vagueness of the proposal. As with Yorgos’s talk, I’ll probably cover more about this in a future post, so I’ll skip the details for now.

There was also a talk by Samuel Abreu on a much more physical picture of the “symbols” we calculate with. This is something I’ve seen presented before by Ruth Britto, and it’s a setup I haven’t looked into as much as I ought to. It does seem at the moment that they’re limited to one loop, which is a definite downside. Other talks discussed elliptic integrals, the bogeyman that we still can’t deal with by our favored means but that people are at least understanding better.

The last talk on Wednesday before the hike was by David Broadhurst, who’s quite a character in his own right. Broadhurst sat in the front row and asked a question after nearly every talk, usually bringing up papers at least fifty years old, if not one hundred and fifty. At the conference dinner he was exactly the right person to read the Address to the Haggis, resurrecting a thick Scottish accent from his youth. Broadhurst’s techniques for handling high-loop elliptic integrals are quite impressively powerful, leaving me wondering if the approach can be generalized.

Thursday focused on gravity. Radu Roiban gave a better idea of where he and his collaborators are on the road to seven-loop supergravity and what the next bottlenecks are along the way. Oliver Schlotterer’s talk was another one of those “aha” moments, helping me understand a key difference between two senses in which gravity is Yang-Mills squared ( the Kawai-Lewellen-Tye relations and BCJ). In particular, the latter is much more dependent on specifics of how you write the scattering amplitude, so to the extent that you can prove something more like the former at higher loops (the original was only for trees, unlike BCJ) it’s quite valuable. Schlotterer has managed to do this at one loop, using the “Q-cut” method I’ve (briefly) mentioned before. The next day’s talk by Emil Bjerrum-Bohr focused more heavily on these Q-cuts, including a more detailed example at two loops than I’d seen that group present before.

There was also a talk by Walter Goldberger about using amplitudes methods for classical gravity, a subject I’ve looked into before. It was nice to see a more thorough presentation of those ideas, including a more honest appraisal of which amplitudes techniques are really helpful there.

There were other interesting topics, but I’m already way over my usual post length, so I’ll sign off for now. Videos from all but a few of the talks are now online, so if you’re interested you should watch them on the conference page.

3 thoughts on “More Travel

  1. Mark Weitzman

    I no little about the subject area, but in physics it seems like no-go theorems are usually circumvented and in the process of doing so leads to new discoveries.

    Like

    Reply
    1. Lubos Motl

      The word “usually” is exaggerated. Some no-go theorems – probably a small minority – are ultimately circumvented. The fraction of particulate attempts to circumvent no-go theorems is even smaller. Even if people try to circumvent a no-go theorem that ultimately may be avoided, they are still very likely to do it in a wrong way that cannot work.

      I am just saying this thing because your comment indicates that physics is complete anarchy where one should ignore all the previous knowledge. I actually think that this is exactly what the laymen are being led to believe and it’s completely wrong.

      Like

      Reply

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s