Tag Archives: amplitudes

Amplitudes 2025 This Week

Summer is conference season for academics, and this week held my old sub-field’s big yearly conference, called Amplitudes. This year, it was in Seoul at Seoul National University, the first time the conference has been in Asia.

(I wasn’t there, I don’t go to these anymore. But I’ve been skimming slides in my free time, to give you folks the updates you crave. Be forewarned that conference posts like these get technical fast, I’ll be back to my usual accessible self next week.)

There isn’t a huge amplitudes community in Korea, but it’s bigger than it was back when I got started in the field. Of the organizers, Kanghoon Lee of the Asia Pacific Center for Theoretical Physics and Sangmin Lee of Seoul National University have what I think of as “core amplitudes interests”, like recursion relations and the double-copy. The other Korean organizers are from adjacent areas, work that overlaps with amplitudes but doesn’t show up at the conference each year. There was also a sizeable group of organizers from Taiwan, where there has been a significant amplitudes presence for some time now. I do wonder if Korea was chosen as a compromise between a conference hosted in Taiwan or in mainland China, where there is also quite a substantial amplitudes community.

One thing that impresses me every year is how big, and how sophisticated, the gravitational-wave community in amplitudes has grown. Federico Buccioni’s talk began with a plot that illustrates this well (though that wasn’t his goal):

At the conference Amplitudes, dedicated to the topic of scattering amplitudes, there were almost as many talks with the phrase “black hole” in the title as there were with “scattering” or “amplitudes”! This is for a topic that did not even exist in the subfield when I got my PhD eleven years ago.

With that said, gravitational wave astronomy wasn’t quite as dominant at the conference as Buccioni’s bar chart suggests. There were a few talks each day on the topic: I counted seven in total, excluding any short talks on the subject in the gong show. Spinning black holes were a significant focus, central to Jung-Wook Kim’s, Andres Luna’s and Mao Zeng’s talks (the latter two showing some interesting links between the amplitudes story and classic ideas in classical mechanics) and relevant in several others, with Riccardo Gonzo, Miguel Correia, Ira Rothstein, and Enrico Herrmann’s talks showing not just a wide range of approaches, but an increasing depth of research in this area.

Herrmann’s talk in particular dealt with detector event shapes, a framework that lets physicists think more directly about what a specific particle detector or observer can see. He applied the idea not just to gravitational waves but to quantum gravity and collider physics as well. The latter is historically where this idea has been applied the most thoroughly, as highlighted in Hua Xing Zhu’s talk, where he used them to pick out particular phenomena of interest in QCD.

QCD is, of course, always of interest in the amplitudes field. Buccioni’s talk dealt with the theory’s behavior at high-energies, with a nice example of the “maximal transcendentality principle” where some quantities in QCD are identical to quantities in N=4 super Yang-Mills in the “most transcendental” pieces (loosely, those with the highest powers of pi). Andrea Guerreri’s talk also dealt with high-energy behavior in QCD, trying to address an experimental puzzle where QCD results appeared to violate a fundamental bound all sensible theories were expected to obey. By using S-matrix bootstrap techniques, they clarify the nature of the bound, finding that QCD still obeys it once correctly understood, and conjecture a weird theory that should be possible to frame right on the edge of the bound. The S-matrix bootstrap was also used by Alexandre Homrich, who talked about getting the framework to work for multi-particle scattering.

Heribertus Bayu Hartanto is another recent addition to Korea’s amplitudes community. He talked about a concrete calculation, two-loop five-particle scattering including top quarks, a tricky case that includes elliptic curves.

When amplitudes lead to integrals involving elliptic curves, many standard methods fail. Jake Bourjaily’s talk raised a question he has brought up again and again: what does it mean to do an integral for a new type of function? One possible answer is that it depends on what kind of numerics you can do, and since more general numerical methods can be cumbersome one often needs to understand the new type of function in more detail. In light of that, Stephen Jones’ talk was interesting in taking a common problem often cited with generic approaches (that they have trouble with the complex numbers introduced by Minkowski space) and finding a more natural way in a particular generic approach (sector decomposition) to take them into account. Giulio Salvatori talked about a much less conventional numerical method, linked to the latest trend in Nima-ology, surfaceology. One of the big selling points of the surface integral framework promoted by people like Salvatori and Nima Arkani-Hamed is that it’s supposed to give a clear integral to do for each scattering amplitude, one which should be amenable to a numerical treatment recently developed by Michael Borinsky. Salvatori can currently apply the method only to a toy model (up to ten loops!), but he has some ideas for how to generalize it, which will require handling divergences and numerators.

Other approaches to the “problem of integration” included Anna-Laura Sattelberger’s talk that presented a method to find differential equations for the kind of integrals that show up in amplitudes using the mathematical software Macaulay2, including presenting a package. Matthias Wilhelm talked about the work I did with him, using machine learning to find better methods for solving integrals with integration-by-parts, an area where two other groups have now also published. Pierpaolo Mastrolia talked about integration-by-parts’ up-and-coming contender, intersection theory, a method which appears to be delving into more mathematical tools in an effort to catch up with its competitor.

Sometimes, one is more specifically interested in the singularities of integrals than their numerics more generally. Felix Tellander talked about a geometric method to pin these down which largely went over my head, but he did have a very nice short description of the approach: “Describe the singularities of the integrand. Find a map representing integration. Map the singularities of the integrand onto the singularities of the integral.”

While QCD and gravity are the applications of choice, amplitudes methods germinate in N=4 super Yang-Mills. Ruth Britto’s talk opened the conference with an overview of progress along those lines before going into her own recent work with one-loop integrals and interesting implications of ideas from cluster algebras. Cluster algebras made appearances in several other talks, including Anastasia Volovich’s talk which discussed how ideas from that corner called flag cluster algebras may give insights into QCD amplitudes, though some symbol letters still seem to be hard to track down. Matteo Parisi covered another idea, cluster promotion maps, which he thinks may help pin down algebraic symbol letters.

The link between cluster algebras and symbol letters is an ongoing mystery where the field is seeing progress. Another symbol letter mystery is antipodal duality, where flipping an amplitude like a palindrome somehow gives another valid amplitude. Lance Dixon has made progress in understanding where this duality comes from, finding a toy model where it can be understood and proved.

Others pushed the boundaries of methods specific to N=4 super Yang-Mills, looking for novel structures. Song He’s talk pushes an older approach by Bourjaily and collaborators up to twelve loops, finding new patterns and connections to other theories and observables. Qinglin Yang bootstraps Wilson loops with a Lagrangian insertion, adding a side to the polygon used in previous efforts and finding that, much like when you add particles to amplitudes in a bootstrap, the method gets stricter and more powerful. Jaroslav Trnka talked about work he has been doing with “negative geometries”, an odd method descended from the amplituhedron that looks at amplitudes from a totally different perspective, probing a bit of their non-perturbative data. He’s finding more parts of that setup that can be accessed and re-summed, finding interestingly that multiple-zeta-values show up in quantities where we know they ultimately cancel out. Livia Ferro also talked about a descendant of the amplituhedron, this time for cosmology, getting differential equations for cosmological observables in a particular theory from a combinatorial approach.

Outside of everybody’s favorite theories, some speakers talked about more general approaches to understanding the differences between theories. Andreas Helset covered work on the geometry of the space of quantum fields in a theory, applying the method to a general framework for characterizing deviations from the standard model called the SMEFT. Jasper Roosmale Nepveu also talked about a general space of theories, thinking about how positivity (a trait linked to fundamental constraints like causality and unitarity) gets tangled up with loop effects, and the implications this has for renormalization.

Soft theorems, universal behavior of amplitudes when a particle has low energy, continue to be a trendy topic, with Silvia Nagy showing how the story continues to higher orders and Sangmin Choi investigating loop effects. Callum Jones talks about one of the more powerful results from the soft limit, Weinberg’s theorem showing the uniqueness of gravity. Weinberg’s proof was set up in Minkowski space, but we may ultimately live in curved, de Sitter space. Jones showed how the ideas Weinberg explored generalize in de Sitter, using some tools from the soft-theorem-inspired field of dS/CFT. Julio Parra-Martinez, meanwhile, tied soft theorems to another trendy topic, higher symmetries, a more general notion of the usual types of symmetries that physicists have explored in the past. Lucia Cordova reported work that was not particularly connected to soft theorems but was connected to these higher symmetries, showing how they interact with crossing symmetry and the S-matrix bootstrap.

Finally, a surprisingly large number of talks linked to Kevin Costello and Natalie Paquette’s work with self-dual gauge theories, where they found exact solutions from a fairly mathy angle. Paquette gave an update on her work on the topic, while Alfredo Guevara talked about applications to black holes, comparing the power of expanding around a self-dual gauge theory to that of working with supersymmetry. Atul Sharma looked at scattering in self-dual backgrounds in work that merges older twistor space ideas with the new approach, while Roland Bittelson talked about calculating around an instanton background.


Also, I had another piece up this week at FirstPrinciples, based on an interview with the (outgoing) president of the Sloan Foundation. I won’t have a “bonus info” post for this one, as most of what I learned went into the piece. But if you don’t know what the Sloan Foundation does, take a look! I hadn’t known they funded Jupyter notebooks and Hidden Figures, or that they introduced Kahneman and Tversky.

Amplitudes 2024, Continued

I’ve now had time to look over the rest of the slides from the Amplitudes 2024 conference, so I can say something about Thursday and Friday’s talks.

Thursday was gravity-focused. Zvi Bern’s review talk was actually a review, a tour of the state of the art in using amplitudes techniques to make predictions for gravitational wave physics. Bern emphasized that future experiments will require much more precision: two more orders of magnitude, which in our lingo amounts to two more “loops”. The current state of the art is three loops, but they’ve been hacking away at four, doing things piece by piece in a way that cleverly also yields publications (for example, they can do just the integrals needed for supergravity, which are simpler). Four loops here is the first time that the Feynman diagrams involve Calabi-Yau manifolds, so they will likely need techniques from some of the folks I talked about last week. Once they have four loops, they’ll want to go to five, since that is the level of precision you need to learn something about the material in neutron stars. The talk covered a variety of other developments, some of which were talked about later on Thursday and some of which were only mentioned here.

Of that day’s other speakers, Stefano De Angelis, Lucile Cangemi, Mikhail Ivanov, and Alessandra Buonanno also focused on gravitational waves. De Angelis talked about the subtleties that show up when you try to calculate gravitational waveforms directly with amplitudes methods, showcasing various improvements to the pipeline there. Cangemi talked about a recurring question with its own list of subtleties, namely how the Kerr metric for spinning black holes emerges from the math of amplitudes of spinning particles. Gravitational waves were the focus of only the second half of Ivanov’s talk, where he talked about how amplitudes methods can clear up some of the subtler effects people try to take into account. The first half was about another gravitational application, that of using amplitudes methods to compute the correlations of galaxy structures in the sky, a field where it looks like a lot of progress can be made. Finally, Buonanno gave the kind of talk she’s given a few times at these conferences, a talk that puts these methods in context, explaining how amplitudes results are packaged with other types of calculations into the Effective-One-Body framework which then is more directly used at LIGO. This year’s talk went into more detail about what the predictions are actually used for, which I appreciated. I hadn’t realized that there have been a handful of black hole collisions discovered by other groups from LIGO’s data, a win for open science! Her slides had a nice diagram explaining what data from the gravitational wave is used to infer what black hole properties, quite a bit more organized than the statistical template-matching I was imagining. She explained the logic behind Bern’s statement that gravitational wave telescopes will need two more orders of magnitude, pointing out that that kind of precision is necessary to be sure that something that might appear to be a deviation from Einstein’s theory of gravity is not actually a subtle effect of known physics. Her method typically is adjusted to fit numerical simulations, but she shows that even without that adjustment they now fit the numerics quite well, thanks in part to contributions from amplitudes calculations.

Of the other talks that day, David Kosower’s was the only one that didn’t explicitly involve gravity. Instead, his talk focused on a more general question, namely how to find a well-defined basis of integrals for Feynman diagrams, which turns out to involve some rather subtle mathematics and geometry. This is a topic that my former boss Jake Bourjaily worked on in a different context for some time, and I’m curious whether there is any connection between the two approaches. Oliver Schlotterer gave the day’s second review talk, once again of the “actually a review” kind, covering a variety of recent developments in string theory amplitudes. These include some new pictures of how string theory amplitudes that correspond to Yang-Mills theories “square” to amplitudes involving gravity at higher loops and progress towards going past two loops, the current state of the art for most string amplitude calculations. (For the experts: this does not involve taking the final integral over the moduli space, which is still a big unsolved problem.) He also talked about progress by Sebastian Mizera and collaborators in understanding how the integrals that show up in string theory make sense in the complex plane. This is a problem that people had mostly managed to avoid dealing with because of certain simplifications in the calculations people typically did (no moduli space integration, expansion in the string length), but taking things seriously means confronting it, and Mizera and collaborators found a novel solution to the problem that has already passed a lot of checks. Finally, Tobias Hansen’s talk also related to string theory, specifically in anti-de-Sitter space, where the duality between string theory and N=4 super Yang-Mills lets him and his collaborators do Yang-Mills calculations and see markedly stringy-looking behavior.

Friday began with Kevin Costello, whose not-really-a-review talk dealt with his work with Natalie Paquette showing that one can use an exactly-solvable system to learn something about QCD. This only works for certain rather specific combinations of particles: for example, in order to have three colors of quarks, they need to do the calculation for nine flavors. Still, they managed to do a calculation with this method that had not previously been done with more traditional means, and to me it’s impressive that anything like this works for a theory without supersymmetry. Mina Himwich and Diksha Jain both had talks related to a topic of current interest, “celestial” conformal field theory, a picture that tries to apply ideas from holography in which a theory on the boundary of a space fully describes the interior, to the “boundary” of flat space, infinitely far away. Himwich talked about a symmetry observed in that research program, and how that symmetry can be seen using more normal methods, which also lead to some suggestions of how the idea might be generalized. Jain likewise covered a different approach, one in which one sets artificial boundaries in flat space and sees what happens when those boundaries move.

Yifei He described progress in the modern S-matrix bootstrap approach. Previously, this approach had gotten quite general constraints on amplitudes. She tries to do something more specific, and predict the S-matrix for scattering of pions in the real world. By imposing compatibility with knowledge from low energies and high energies, she was able to find a much more restricted space of consistent S-matrices, and these turn out to actually match pretty well to experimental results. Mathieu Giroux addresses an important question for a variety of parts of amplitudes research, how to predict the singularities of Feynman diagrams. He explored a recursive approach to solving Landau’s equations for these singularities, one which seems impressively powerful, in one case being able to find a solution that in text form is approximately the length of Harry Potter. Finally, Juan Maldacena closed the conference by talking about some progress he’s made towards an old idea, that of defining M theory in terms of a theory involving actual matrices. This is a very challenging thing to do, but he is at least able to tackle the simplest possible case, involving correlations between three observations. This had a known answer, so his work serves mostly as a confirmation that the original idea makes sense at at least this level.

At Quanta This Week, and Some Bonus Material

When I moved back to Denmark, I mentioned that I was planning to do more science journalism work. The first fruit of that plan is up this week: I have a piece at Quanta Magazine about a perennially trendy topic in physics, the S-matrix.

It’s been great working with Quanta again. They’ve been thorough, attentive to the science, and patient with my still-uncertain life situation. I’m quite likely to have more pieces there in future, and I’ve got ideas cooking with other outlets as well, so stay tuned!

My piece with Quanta is relatively short, the kind of thing they used to label a “blog” rather than say a “feature”. Since the S-matrix is a pretty broad topic, there were a few things I couldn’t cover there, so I thought it would be nice to discuss them here. You can think of this as a kind of “bonus material” section for the piece. So before reading on, read my piece at Quanta first!

Welcome back!

At Quanta I wrote a kind of cartoon of the S-matrix, asking you to think about it as a matrix of probabilities, with rows for input particles and columns for output particles. There are a couple different simplifications I snuck in there, the pop physicist’s “lies to children“. One, I already flag in the piece: the entries aren’t really probabilities, they’re complex numbers, probability amplitudes.

There’s another simplification that I didn’t have space to flag. The rows and columns aren’t just lists of particles, they’re lists of particles in particular states.

What do I mean by states? A state is a complete description of a particle. A particle’s state includes its energy and momentum, including the direction it’s traveling in. It includes its spin, and the direction of its spin: for example, clockwise or counterclockwise? It also includes any charges, from the familiar electric charge to the color of a quark.

This makes the matrix even bigger than you might have thought. I was already describing an infinite matrix, one where you can have as many columns and rows as you can imagine numbers of colliding particles. But the number of rows and columns isn’t just infinite, but uncountable, as many rows and columns as there are different numbers you can use for energy and momentum.

For some of you, an uncountably infinite matrix doesn’t sound much like a matrix. But for mathematicians familiar with vector spaces, this is totally reasonable. Even if your matrix is infinite, or even uncountably infinite, it can still be useful to think about it as a matrix.

Another subtlety, which I’m sure physicists will be howling at me about: the Higgs boson is not supposed to be in the S-matrix!

In the article, I alluded to the idea that the S-matrix lets you “hide” particles that only exist momentarily inside of a particle collision. The Higgs is precisely that sort of particle, an unstable particle. And normally, the S-matrix is supposed to only describe interactions between stable particles, particles that can survive all the way to infinity.

In my defense, if you want a nice table of probabilities to put in an article, you need an unstable particle: interactions between stable particles depend on their energy and momentum, sometimes in complicated ways, while a single unstable particle will decay into a reliable set of options.

More technically, there are also contexts in which it’s totally fine to think about an S-matrix between unstable particles, even if it’s not usually how we use the idea.

My piece also didn’t have a lot of room to discuss new developments. I thought at minimum I’d say a bit more about the work of the young people I mentioned. You can think of this as an appetizer: there are a lot of people working on different aspects of this subject these days.

Part of the initial inspiration for the piece was when an editor at Quanta noticed a recent paper by Christian Copetti, Lucía Cordova, and Shota Komatsu. The paper shows an interesting case, where one of the “logical” conditions imposed in the original S-matrix bootstrap doesn’t actually apply. It ended up being too technical for the Quanta piece, but I thought I could say a bit about it, and related questions, here.

Some of the conditions imposed by the original bootstrappers seem unavoidable. Quantum mechanics makes no sense if doesn’t compute probabilities, and probabilities can’t be negative, or larger than one, so we’d better have an S-matrix that obeys those rules. Causality is another big one: we probably shouldn’t have an S-matrix that lets us send messages back in time and change the past.

Other conditions came from a mixture of intuition and observation. Crossing is a big one here. Crossing tells you that you can take an S-matrix entry with in-coming particles, and relate it to a different S-matrix entry with out-going anti-particles, using techniques from the calculus of complex numbers.

Crossing may seem quite obscure, but after some experience with S-matrices it feels obvious and intuitive. That’s why for an expert, results like the paper by Copetti, Cordova, and Komatsu seem so surprising. What they found was that a particularly exotic type of symmetry, called a non-invertible symmetry, was incompatible with crossing symmetry. They could find consistent S-matrices for theories with these strange non-invertible symmetries, but only if they threw out one of the basic assumptions of the bootstrap.

This was weird, but upon reflection not too weird. In theories with non-invertible symmetries, the behaviors of different particles are correlated together. One can’t treat far away particles as separate, the way one usually does with the S-matrix. So trying to “cross” a particle from one side of a process to another changes more than it usually would, and you need a more sophisticated approach to keep track of it. When I talked to Cordova and Komatsu, they related this to another concept called soft theorems, aspects of which have been getting a lot of attention and funding of late.

In the meantime, others have been trying to figure out where the crossing rules come from in the first place.

There were attempts in the 1970’s to understand crossing in terms of other fundamental principles. They slowed in part because, as the original S-matrix bootstrap was overtaken by QCD, there was less motivation to do this type of work anymore. But they also ran into a weird puzzle. When they tried to use the rules of crossing more broadly, only some of the things they found looked like S-matrices. Others looked like stranger, meaningless calculations.

A recent paper by Simon Caron-Huot, Mathieu Giroux, Holmfridur Hannesdottir, and Sebastian Mizera revisited these meaningless calculations, and showed that they aren’t so meaningless after all. In particular, some of them match well to the kinds of calculations people wanted to do to predict gravitational waves from colliding black holes.

Imagine a pair of black holes passing close to each other, then scattering away in different directions. Unlike particles in a collider, we have no hope of catching the black holes themselves. They’re big classical objects, and they will continue far away from us. We do catch gravitational waves, emitted from the interaction of the black holes.

This different setup turns out to give the problem a very different character. It ends up meaning that instead of the S-matrix, you want a subtly different mathematical object, one related to the original S-matrix by crossing relations. Using crossing, Caron-Huot, Giroux, Hannesdottir and Mizera found many different quantities one could observe in different situations, linked by the same rules that the original S-matrix bootstrappers used to relate S-matrix entries.

The work of these two groups is just some of the work done in the new S-matrix program, but it’s typical of where the focus is going. People are trying to understand the general rules found in the past. They want to know where they came from, and as a consequence, when they can go wrong. They have a lot to learn from the older papers, and a lot of new insights come from diligent reading. But they also have a lot of new insights to discover, based on the new tools and perspectives of the modern day. For the most part, they don’t expect to find a new unified theory of physics from bootstrapping alone. But by learning how S-matrices work in general, they expect to find valuable knowledge no matter how the future goes.

Amplitudes 2023 Retrospective

I’m back from CERN this week, with a bit more time to write, so I thought I’d share some thoughts about last week’s Amplitudes conference.

One thing I got wrong in last week’s post: I’ve now been told only 213 people actually showed up in person, as opposed to the 250-ish estimate I had last week. This may seem fewer than Amplitudes in Prague had, but it seems likely they had a few fewer show up than appeared on the website. Overall, the field is at least holding steady from year to year, and definitely has grown since the pandemic (when 2019’s 175 was already a very big attendance).

It was cool having a conference in CERN proper, surrounded by the history of European particle physics. The lecture hall had an abstract particle collision carved into the wood, and the visitor center would in principle have had Standard Model coffee mugs were they not sold out until next May. (There was still enough other particle physics swag, Swiss chocolate, and Swiss chocolate that was also particle physics swag.) I’d planned to stay on-site at the CERN hostel, but I ended up appreciated not doing that: the folks who did seemed to end up a bit cooped up by the end of the conference, even with the conference dinner as a chance to get out.

Past Amplitudes conferences have had associated public lectures. This time we had a not-supposed-to-be-public lecture, a discussion between Nima Arkani-Hamed and Beate Heinemann about the future of particle physics. Nima, prominent as an amplitudeologist, also has a long track record of reasoning about what might lie beyond the Standard Model. Beate Heinemann is an experimentalist, one who has risen through the ranks of a variety of different particle physics experiments, ending up well-positioned to take a broad view of all of them.

It would have been fun if the discussion erupted into an argument, but despite some attempts at provocative questions from the audience that was not going to happen, as Beate and Nima have been friends for a long time. Instead, they exchanged perspectives: on what’s coming up experimentally, and what theories could explain it. Both argued that it was best to have many different directions, a variety of experiments covering a variety of approaches. (There wasn’t any evangelism for particular experiments, besides a joking sotto voce mention of a muon collider.) Nima in particular advocated that, whether theorist or experimentalist, you have to have some belief that what you’re doing could lead to a huge breakthrough. If you think of yourself as just a “foot soldier”, covering one set of checks among many, then you’ll lose motivation. I think Nima would agree that this optimism is irrational, but necessary, sort of like how one hears (maybe inaccurately) that most new businesses fail, but someone still needs to start businesses.

Michelangelo Mangano’s talk on Thursday covered similar ground, but with different emphasis. He agrees that there are still things out there worth discovering: that our current model of the Higgs, for instance, is in some ways just a guess: a simplest-possible answer that doesn’t explain as much as we’d like. But he also emphasized that Standard Model physics can be “new physics” too. Just because we know the model doesn’t mean we can calculate its consequences, and there are a wealth of results from the LHC that improve our models of protons, nuclei, and the types of physical situations they partake in, without changing the Standard Model.

We saw an impressive example of this in Gregory Korchemsky’s talk on Wednesday. He presented an experimental mystery, an odd behavior in the correlation of energies of jets of particles at the LHC. These jets can include a very large number of particles, enough to make it very hard to understand them from first principles. Instead, Korchemsky tried out our field’s favorite toy model, where such calculations are easier. By modeling the situation in the limit of a very large number of particles, he was able to reproduce the behavior of the experiment. The result was a reminder of what particle physics was like before the Standard Model, and what it might become again: partial models to explain odd observations, a quest to use the tools of physics to understand things we can’t just a priori compute.

On the other hand, amplitudes does do a priori computations pretty well as well. Fabrizio Caola’s talk opened the conference by reminding us just how much our precise calculations can do. He pointed out that the LHC has only gathered 5% of its planned data, and already it is able to rule out certain types of new physics to fairly high energies (by ruling out indirect effects, that would show up in high-precision calculations). One of those precise calculations featured in the next talk, by Guilio Gambuti. (A FORM user, his diagrams were the basis for the header image of my Quanta article last winter.) Tiziano Peraro followed up with a technique meant to speed up these kinds of calculations, a trick to simplify one of the more computationally intensive steps in intersection theory.

The rest of Monday was more mathematical, with talks by Zeno Capatti, Jaroslav Trnka, Chia-Kai Kuo, Anastasia Volovich, Francis Brown, Michael Borinsky, and Anna-Laura Sattelberger. Borinksy’s talk felt the most practical, a refinement of his numerical methods complete with some actual claims about computational efficiency. Francis Brown discussed an impressively powerful result, a set of formulas that manages to unite a variety of invariants of Feynman diagrams under a shared explanation.

Tuesday began with what I might call “visitors”: people from adjacent fields with an interest in amplitudes. Alday described how the duality between string theory in AdS space and super Yang-Mills on the boundary can be used to get quite concrete information about string theory, calculating how the theory’s amplitudes are corrected by the curvature of AdS space using a kind of “bootstrap” method that felt nicely familiar. Tim Cohen talked about a kind of geometric picture of theories that extend the Standard Model, including an interesting discussion of whether it’s really “geometric”. Marko Simonovic explained how the integration techniques we develop in scattering amplitudes can also be relevant in cosmology, especially for the next generation of “sky mappers” like the Euclid telescope. This talk was especially interesting to me since this sort of cosmology has a significant presence at CEA Paris-Saclay. Along those lines an interesting paper, “Cosmology meets cohomology”, showed up during the conference. I haven’t had a chance to read it yet!

Just before lunch, we had David Broadhurst give one of his inimitable talks, complete with number theory, extremely precise numerics, and literary and historical references (apparently, Källén died flying his own plane). He also remedied a gap in our whimsically biological diagram naming conventions, renaming the pedestrian “double-box” as a (in this context, Orwellian) lobster. Karol Kampf described unusual structures in a particular Effective Field Theory, while Henriette Elvang’s talk addressed what would become a meaningful subtheme of the conference, where methods from the mathematical field of optimization help amplitudes researchers constrain the space of possible theories. Giulia Isabella covered another topic on this theme later in the day, though one of her group’s selling points is managing to avoid quite so heavy-duty computations.

The other three talks on Tuesday dealt with amplitudes techniques for gravitational wave calculations, as did the first talk on Wednesday. Several of the calculations only dealt with scattering black holes, instead of colliding ones. While some of the results can be used indirectly to understand the colliding case too, a method to directly calculate behavior of colliding black holes came up again and again as an important missing piece.

The talks on Wednesday had to start late, owing to a rather bizarre power outage (the lights in the room worked fine, but not the projector). Since Wednesday was the free afternoon (home of quickly sold-out CERN tours), this meant there were only three talks: Veneziano’s talk on gravitational scattering, Korchemsky’s talk, and Nima’s talk. Nima famously never finishes on time, and this time attempted to control his timing via the surprising method of presenting, rather than one topic, five “abstracts” on recent work that he had not yet published. Even more surprisingly, this almost worked, and he didn’t run too ridiculously over time, while still managing to hint at a variety of ways that the combinatorial lessons behind the amplituhedron are gradually yielding useful perspectives on more general realistic theories.

Thursday, Andrea Puhm began with a survey of celestial amplitudes, a topic that tries to build the same sort of powerful duality used in AdS/CFT but for flat space instead. They’re gradually tackling the weird, sort-of-theory they find on the boundary of flat space. The two next talks, by Lorenz Eberhardt and Hofie Hannesdottir, shared a collaborator in common, namely Sebastian Mizera. They also shared a common theme, taking a problem most people would have assumed was solved and showing that approaching it carefully reveals extensive structure and new insights.

Cristian Vergu, in turn, delved deep into the literature to build up a novel and unusual integration method. We’ve chatted quite a bit about it at the Niels Bohr Institute, so it was nice to see it get some attention on the big stage. We then had an afternoon of trips beyond polylogarithms, with talks by Anne Spiering, Christoph Nega, and Martijn Hidding, each pushing the boundaries of what we can do with our hardest-to-understand integrals. Einan Gardi and Ruth Britto finished the day, with a deeper understanding of the behavior of high-energy particles and a new more mathematically compatible way of thinking about “cut” diagrams, respectively.

On Friday, João Penedones gave us an update on a technique with some links to the effective field theory-optimization ideas that came up earlier, one that “bootstraps” whole non-perturbative amplitudes. Shota Komatsu talked about an intriguing variant of the “planar” limit, one involving large numbers of particles and a slick re-writing of infinite sums of Feynman diagrams. Grant Remmen and Cliff Cheung gave a two-parter on a bewildering variety of things that are both surprisingly like, and surprisingly unlike, string theory: important progress towards answering the question “is string theory unique?”

Friday afternoon brought the last three talks of the conference. James Drummond had more progress trying to understand the symbol letters of supersymmetric Yang-Mills, while Callum Jones showed how Feynman diagrams can apply to yet another unfamiliar field, the study of vortices and their dynamics. Lance Dixon closed the conference without any Greta Thunberg references, but with a result that explains last year’s mystery of antipodal duality. The explanation involves an even more mysterious property called antipodal self-duality, so we’re not out of work yet!

Amplitudes 2022 Retrospective

I’m back from Amplitudes 2022 with more time to write, and (besides the several papers I’m working on) that means writing about the conference! Casual readers be warned, there’s no way around this being a technical post, I don’t have the space to explain everything!

I mostly said all I wanted about the way the conference was set up in last week’s post, but one thing I didn’t say much about was the conference dinner. Most conference dinners are the same aside from the occasional cool location or haggis speech. This one did have a cool location, and a cool performance by a blind pianist, but the thing I really wanted to comment on was the setup. Typically, the conference dinner at Amplitudes is a sit-down affair: people sit at tables in one big room, maybe getting up occasionally to pick up food, and eventually someone gives an after-dinner speech. This time the tables were standing tables, spread across several rooms. This was a bit tiring on a hot day, but it did have the advantage that it naturally mixed people around. Rather than mostly talking to “your table”, you’d wander, ending up at a new table every time you picked up new food or drinks. It was a good way to meet new people, a surprising number of which in my case apparently read this blog. It did make it harder to do an after-dinner speech, so instead Lance gave an after-conference speech, complete with the now-well-established running joke where Greta Thunberg tries to get us to fly less.

(In another semi-running joke, the organizers tried to figure out who had attended the most of the yearly Amplitudes conferences over the years. Weirdly, no-one has attended all twelve.)

In terms of the content, and things that stood out:

Nima is getting close to publishing his newest ‘hedron, the surfacehedron, and correspondingly was able to give a lot more technical detail about it. (For his first and most famous amplituhedron, see here.) He still didn’t have enough time to explain why he has to use category theory to do it, but at least he was concrete enough that it was reasonably clear where the category theory was showing up. (I wasn’t there for his eight-hour lecture at the school the week before, maybe the students who stuck around until 2am learned some category theory there.) Just from listening in on side discussions, I got the impression that some of the ideas here actually may have near-term applications to computing Feynman diagrams: this hasn’t been a feature of previous ‘hedra and it’s an encouraging development.

Alex Edison talked about progress towards this blog’s namesake problem, the question of whether N=8 supergravity diverges at seven loops. Currently they’re working at six loops on the N=4 super Yang-Mills side, not yet in a form it can be “double-copied” to supergravity. The tools they’re using are increasingly sophisticated, including various slick tricks from algebraic geometry. They are looking to the future: if they’re hoping their methods will reach seven loops, the same methods have to make six loops a breeze.

Xi Yin approached a puzzle with methods from String Field Theory, prompting the heretical-for-us title “on-shell bad, off-shell good”. A colleague reminded me of a local tradition for dealing with heretics.

While Nima was talking about a new ‘hedron, other talks focused on the original amplituhedron. Paul Heslop found that the amplituhedron is not literally a positive geometry, despite slogans to the contrary, but what it is is nonetheless an interesting generalization of the concept. Livia Ferro has made more progress on her group’s momentum amplituhedron: previously only valid at tree level, they now have a picture that can accomodate loops. I wasn’t sure this would be possible, there are a lot of things that work at tree level and not for loops, so I’m quite encouraged that this one made the leap successfully.

Sebastian Mizera, Andrew McLeod, and Hofie Hannesdottir all had talks that could be roughly summarized as “deep principles made surprisingly useful”. Each took topics that were explored in the 60’s and translated them into concrete techniques that could be applied to modern problems. There were surprisingly few talks on the completely concrete end, on direct applications to collider physics. I think Simone Zoia’s was the only one to actually feature collider data with error bars, which might explain why I singled him out to ask about those error bars later.

Likewise, Matthias Wilhelm’s talk was the only one on functions beyond polylogarithms, the elliptic functions I’ve also worked on recently. I wonder if the under-representation of some of these topics is due to the existence of independent conferences: in a year when in-person conferences are packed in after being postponed across the pandemic, when there are already dedicated conferences for elliptics and practical collider calculations, maybe people are just a bit too tired to go to Amplitudes as well.

Talks on gravitational waves seem to have stabilized at roughly a day’s worth, which seems reasonable. While the subfield’s capabilities continue to be impressive, it’s also interesting how often new conceptual challenges appear. It seems like every time a challenge to their results or methods is resolved, a new one shows up. I don’t know whether the field will ever get to a stage of “business as usual”, or whether it will be novel qualitative questions “all the way up”.

I haven’t said much about the variety of talks bounding EFTs and investigating their structure, though this continues to be an important topic. And I haven’t mentioned Lance Dixon’s talk on antipodal duality, largely because I’m planning a post on it later: Quanta Magazine had a good article on it, but there are some aspects even Quanta struggled to cover, and I think I might have a good way to do it.

Classicality Has Consequences

Last week, I mentioned some interesting new results in my corner of physics. I’ve now finally read the two papers and watched the recorded talk, so I can satisfy my frustrated commenters.

Quantum mechanics is a very cool topic and I am much less qualified than you would expect to talk about it. I use quantum field theory, which is based on quantum mechanics, so in some sense I use quantum mechanics every day. However, most of the “cool” implications of quantum mechanics don’t come up in my work. All the debates about whether measurement “collapses the wavefunction” are irrelevant when the particles you measure get absorbed in a particle detector, never to be seen again. And while there are deep questions about how a classical world emerges from quantum probabilities, they don’t matter so much when all you do is calculate those probabilities.

They’ve started to matter, though. That’s because quantum field theorists like me have recently started working on a very different kind of problem: trying to predict the output of gravitational wave telescopes like LIGO. It turns out you can do almost the same kind of calculation we’re used to: pretend two black holes or neutron stars are sub-atomic particles, and see what happens when they collide. This trick has grown into a sub-field in its own right, one I’ve dabbled in a bit myself. And it’s gotten my kind of physicists to pay more attention to the boundary between classical and quantum physics.

The thing is, the waves that LIGO sees really are classical. Any quantum gravity effects there are tiny, undetectably tiny. And while this doesn’t have the implications an expert might expect (we still need loop diagrams), it does mean that we need to take our calculations to a classical limit.

Figuring out how to do this has been surprisingly delicate, and full of unexpected insight. A recent example involves two papers, one by Andrea Cristofoli, Riccardo Gonzo, Nathan Moynihan, Donal O’Connell, Alasdair Ross, Matteo Sergola, and Chris White, and one by Ruth Britto, Riccardo Gonzo, and Guy Jehu. At first I thought these were two groups happening on the same idea, but then I noticed Riccardo Gonzo on both lists, and realized the papers were covering different aspects of a shared story. There is another group who happened upon the same story: Paolo Di Vecchia, Carlo Heissenberg, Rodolfo Russo and Gabriele Veneziano. They haven’t published yet, so I’m basing this on the Gonzo et al papers.

The key question each group asked was, what does it take for gravitational waves to be classical? One way to ask the question is to pick something you can observe, like the strength of the field, and calculate its uncertainty. Classical physics is deterministic: if you know the initial conditions exactly, you know the final conditions exactly. Quantum physics is not. What should happen is that if you calculate a quantum uncertainty and then take the classical limit, that uncertainty should vanish: the observation should become certain.

Another way to ask is to think about the wave as made up of gravitons, particles of gravity. Then you can ask how many gravitons are in the wave, and how they are distributed. It turns out that you expect them to be in a coherent state, like a laser, one with a very specific distribution called a Poisson distribution: a distribution in some sense right at the border between classical and quantum physics.

The results of both types of questions were as expected: the gravitational waves are indeed classical. To make this work, though, the quantum field theory calculation needs to have some surprising properties.

If two black holes collide and emit a gravitational wave, you could depict it like this:

All pictures from arXiv:2112.07556

where the straight lines are black holes, and the squiggly line is a graviton. But since gravitational waves are made up of multiple gravitons, you might ask, why not depict it with two gravitons, like this?

It turns out that diagrams like that are a problem: they mean your two gravitons are correlated, which is not allowed in a Poisson distribution. In the uncertainty picture, they also would give you non-zero uncertainty. Somehow, in the classical limit, diagrams like that need to go away.

And at first, it didn’t look like they do. You can try to count how many powers of Planck’s constant show up in each diagram. The authors do that, and it certainly doesn’t look like it goes away:

An example from the paper with Planck’s constants sprinkled around

Luckily, these quantum field theory calculations have a knack for surprising us. Calculate each individual diagram, and things look hopeless. But add them all together, and they miraculously cancel. In the classical limit, everything combines to give a classical result.

You can do this same trick for diagrams with more graviton particles, as many as you like, and each time it ought to keep working. You get an infinite set of relationships between different diagrams, relationships that have to hold to get sensible classical physics. From thinking about how the quantum and classical are related, you’ve learned something about calculations in quantum field theory.

That’s why these papers caught my eye. A chunk of my sub-field is needing to learn more and more about the relationship between quantum and classical physics, and it may have implications for the rest of us too. In the future, I might get a bit more qualified to talk about some of the very cool implications of quantum mechanics.

Amplitudes 2021 Retrospective

Phew!

The conference photo

Now that I’ve rested up after this year’s Amplitudes, I’ll give a few of my impressions.

Overall, I think the conference went pretty well. People seemed amused by the digital Niels Bohr, even if he looked a bit like a puppet (Lance compared him to Yoda in his final speech, which was…apt). We used Gather.town, originally just for the poster session and a “virtual reception”, but later we also encouraged people to meet up in it during breaks. That in particular was a big hit: I think people really liked the ability to just move around and chat in impromptu groups, and while nobody seemed to use the “virtual bar”, the “virtual beach” had a lively crowd. Time zones were inevitably rough, but I think we ended up with a good compromise where everyone could still see a meaningful chunk of the conference.

A few things didn’t work as well. For those planning conferences, I would strongly suggest not making a brand new gmail account to send out conference announcements: for a lot of people the emails went straight to spam. Zulip was a bust: I’m not sure if people found it more confusing than last year’s Slack or didn’t notice it due to the spam issue, but almost no-one posted in it. YouTube was complicated: the stream went down a few times and I could never figure out exactly why, it may have just been internet issues here at the Niels Bohr Institute (we did have a power outage one night and had to scramble to get internet access back the next morning). As far as I could tell YouTube wouldn’t let me re-open the previous stream so each time I had to post a new link, which probably was frustrating for those following along there.

That said, this was less of a problem than it might have been, because attendance/”viewership” as a whole was lower than expected. Zoomplitudes last year had massive numbers of people join in both on Zoom and via YouTube. We had a lot fewer: out of over 500 registered participants, we had fewer than 200 on Zoom at any one time, and at most 30 or so on YouTube. Confusion around the conference email might have played a role here, but I suspect part of the difference is simple fatigue: after over a year of this pandemic, online conferences no longer feel like an exciting new experience.

The actual content of the conference ranged pretty widely. Some people reviewed earlier work, others presented recent papers or even work-in-progress. As in recent years, a meaningful chunk of the conference focused on applications of amplitudes techniques to gravitational wave physics. This included a talk by Thibault Damour, who has by now mostly made his peace with the field after his early doubts were sorted out. He still suspected that the mismatch of scales (weak coupling on the one hand, classical scattering on the other) would cause problems in future, but after his work with Laporta and Mastrolia even he had to acknowledge that amplitudes techniques were useful.

In the past I would have put the double-copy and gravitational wave researchers under the same heading, but this year they were quite distinct. While a few of the gravitational wave talks mentioned the double-copy, most of those who brought it up were doing something quite a bit more abstract than gravitational wave physics. Indeed, several people were pushing the boundaries of what it means to double-copy. There were modified KLT kernels, different versions of color-kinematics duality, and explorations of what kinds of massive particles can and (arguably more interestingly) cannot be compatible with a double-copy framework. The sheer range of different generalizations had me briefly wondering whether the double-copy could be “too flexible to be meaningful”, whether the right definitions would let you double-copy anything out of anything. I was reassured by the points where each talk argued that certain things didn’t work: it suggests that wherever this mysterious structure comes from, its powers are limited enough to make it meaningful.

A fair number of talks dealt with what has always been our main application, collider physics. There the context shifted, but the message stayed consistent: for a “clean” enough process two or three-loop calculations can make a big difference, taking a prediction that would be completely off from experiment and bringing it into line. These are more useful the more that can be varied about the calculation: functions are more useful than numbers, for example. I was gratified to hear confirmation that a particular kind of process, where two massless particles like quarks become three massive particles like W or Z bosons, is one of these “clean enough” examples: it means someone will need to compute my “tardigrade” diagram eventually.

If collider physics is our main application, N=4 super Yang-Mills has always been our main toy model. Jaroslav Trnka gave us the details behind Nima’s exciting talk from last year, and Nima had a whole new exciting talk this year with promised connections to category theory (connections he didn’t quite reach after speaking for two and a half hours). Anastasia Volovich presented two distinct methods for predicting square-root symbol letters, while my colleague Chi Zhang showed some exciting progress with the elliptic double-box, realizing the several-year dream of representing it in a useful basis of integrals and showcasing several interesting properties. Anne Spiering came over from the integrability side to show us just how special the “planar” version of the theory really is: by increasing the number of colors of gluons, she showed that one could smoothly go between an “integrability-esque” spectrum and a “chaotic” spectrum. Finally, Lance Dixon mentioned his progress with form-factors in his talk at the end of the conference, showing off some statistics of coefficients of different functions and speculating that machine learning might be able to predict them.

On the more mathematical side, Francis Brown showed us a new way to get numbers out of graphs, one distinct but related to our usual interpretation in terms of Feynman diagrams. I’m still unsure what it will be used for, but the fact that it maps every graph to something finite probably has some interesting implications. Albrecht Klemm and Claude Duhr talked about two sides of the same story, their recent work on integrals involving Calabi-Yau manifolds. They focused on a particular nice set of integrals, and time will tell whether the methods work more broadly, but there are some exciting suggestions that at least parts will.

There’s been a resurgence of the old dream of the S-matrix community, constraining amplitudes via “general constraints” alone, and several talks dealt with those ideas. Sebastian Mizera went the other direction, and tried to test one of those “general constraints”, seeing under which circumstances he could prove that you can swap a particle going in with an antiparticle going out. Others went out to infinity, trying to understand amplitudes from the perspective of the so-called “celestial sphere” where they appear to be governed by conformal field theories of some sort. A few talks dealt with amplitudes in string theory itself: Yvonne Geyer built them out of field-theory amplitudes, while Ashoke Sen explained how to include D-instantons in them.

We also had three “special talks” in the evenings. I’ve mentioned Nima’s already. Zvi Bern gave a retrospective talk that I somewhat cheesily describe as “good for the soul”: a look to the early days of the field that reminded us of why we are who we are. Lance Dixon closed the conference with a light-hearted summary and a look to the future. That future includes next year’s Amplitudes, which after a hasty discussion during this year’s conference has now localized to Prague. Let’s hope it’s in person!

Reality as an Algebra of Observables

Listen to a physicist talk about quantum mechanics, and you’ll hear the word “observable”. Observables are, intuitively enough, things that can be observed. They’re properties that, in principle, one could measure in an experiment, like the position of a particle or its momentum. They’re the kinds of things linked by uncertainty principles, where the better you know one, the worse you know the other.

Some physicists get frustrated by this focus on measurements alone. They think we ought to treat quantum mechanics, not like a black box that produces results, but as information about some underlying reality. Instead of just observables, they want us to look for “beables“: not just things that can be observed, but things that something can be. From their perspective, the way other physicists focus on observables feels like giving up, like those physicists are abandoning their sacred duty to understand the world. Others, like the Quantum Bayesians or QBists, disagree, arguing that quantum mechanics really is, and ought to be, a theory of how individuals get evidence about the world.

I’m not really going to weigh in on that debate, I still don’t feel like I know enough to even write a decent summary. But I do think that one of the instincts on the “beables” side is wrong. If we focus on observables in quantum mechanics, I don’t think we’re doing anything all that unusual. Even in other parts of physics, we can think about reality purely in terms of observations. Doing so isn’t a dereliction of duty: often, it’s the most useful way to understand the world.

When we try to comprehend the world, we always start alone. From our time in the womb, we have only our senses and emotions to go on. With a combination of instinct and inference we start assembling a consistent picture of reality. Philosophers called phenomenologists (not to be confused with the physicists called phenomenologists) study this process in detail, trying to characterize how different things present themselves to an individual consciousness.

For my point here, these details don’t matter so much. That’s because in practice, we aren’t alone in understanding the world. Based on what others say about the world, we conclude they perceive much like we do, and we learn by their observations just as we learn by our own. We can make things abstract: instead of the specifics of how individuals perceive, we think about groups of scientists making measurements. At the end of this train lie observables: things that we as a community could in principle learn, and share with each other, ignoring the details of how exactly we measure them.

If each of these observables was unrelated, just scattered points of data, then we couldn’t learn much. Luckily, they are related. In quantum mechanics, some of these relationships are the uncertainty principles I mentioned earlier. Others relate measurements at different places, or at different times. The fancy way to refer to all these relationships is as an algebra: loosely, it’s something you can “do algebra with”, like you did with numbers and variables in high school. When physicists and mathematicians want to do quantum mechanics or quantum field theory seriously, they often talk about an “algebra of observables”, a formal way of thinking about all of these relationships.

Focusing on those two things, observables and how they are related, isn’t just useful in the quantum world. It’s an important way to think in other areas of physics too. If you’ve heard people talk about relativity, the focus on measurement screams out, in thought experiments full of abstract clocks and abstract yardsticks. Without this discipline, you find paradoxes, only to resolve them when you carefully track what each person can observe. More recently, physicists in my field have had success computing the chance particles collide by focusing on the end result, the actual measurements people can make, ignoring what might happen in between to cause that measurement. We can then break measurements down into simpler measurements, or use the structure of simpler measurements to guess more complicated ones. While we typically have done this in quantum theories, that’s not really a limitation: the same techniques make sense for problems in classical physics, like computing the gravitational waves emitted by colliding black holes.

With this in mind, we really can think of reality in those terms: not as a set of beable objects, but as a set of observable facts, linked together in an algebra of observables. Paring things down to what we can know in this way is more honest, and it’s also more powerful and useful. Far from a betrayal of physics, it’s the best advantage we physicists have in our quest to understand the world.

QCD Meets Gravity 2020, Retrospective

I was at a Zoomference last week, called QCD Meets Gravity, about the many ways gravity can be thought of as the “square” of other fundamental forces. I didn’t have time to write much about the actual content of the conference, so I figured I’d say a bit more this week.

A big theme of this conference, as in the past few years, was gravitational waves. From LIGO’s first announcement of a successful detection, amplitudeologists have been developing new methods to make predictions for gravitational waves more efficient. It’s a field I’ve dabbled in a bit myself. Last year’s QCD Meets Gravity left me impressed by how much progress had been made, with amplitudeologists already solidly part of the conversation and able to produce competitive results. This year felt like another milestone, in that the amplitudeologists weren’t just catching up with other gravitational wave researchers on the same kinds of problems. Instead, they found new questions that amplitudes are especially well-suited to answer. These included combining two pieces of these calculations (“potential” and “radiation”) that the older community typically has to calculate separately, using an old quantum field theory trick, finding the gravitational wave directly from amplitudes, and finding a few nice calculations that can be used to “generate” the rest.

A large chunk of the talks focused on different “squaring” tricks (or as we actually call them, double-copies). There were double-copies for cosmology and conformal field theory, for the celestial sphere, and even some version of M theory. There were new perspectives on the double-copy, new building blocks and algebraic structures that lie behind it. There were talks on the so-called classical double-copy for space-times, where there have been some strange discoveries (an extra dimension made an appearance) but also a more rigorous picture of where the whole thing comes from, using twistor space. There were not one, but two talks linking the double-copy to the Navier-Stokes equation describing fluids, from two different groups. (I’m really curious whether these perspectives are actually useful for practical calculations about fluids, or just fun to think about.) Finally, while there wasn’t a talk scheduled on this paper, the authors were roped in by popular demand to talk about their work. They claim to have made progress on a longstanding puzzle, how to show that double-copy works at the level of the Lagrangian, and the community was eager to dig into the details.

From there, a grab-bag of talks covered other advancements. There were talks from string theorists and ambitwistor string theorists, from Effective Field Theorists working on gravity and the Standard Model, from calculations in N=4 super Yang-Mills, QCD, and scalar theories. Simon Caron-Huot delved into how causality constrains the theories we can write down, showing an interesting case where the common assumption that all parameters are close to one is actually justified. Nima Arkani-Hamed began his talk by saying he’d surprise us, which he certainly did (and not by keeping on time). It’s tricky to explain why his talk was exciting. Comparing to his earlier discovery of the Amplituhedron, which worked for a toy model, this is a toy calculation in a toy model. While the Amplituhedron wasn’t based on Feynman diagrams, this can’t even be compared with Feynman diagrams. Instead of expanding in a small coupling constant, this expands in a parameter that by all rights should be equal to one. And instead of positivity conditions, there are negativity conditions. All I can say is that with all of that in mind, it looks like real progress on an important and difficult problem from a totally unanticipated direction. In a speech summing up the conference, Zvi Bern mentioned a few exciting words from Nima’s talk: “nonplanar”, “integrated”, “nonperturbative”. I’d add “differential equations” and “infinite sums of ladder diagrams”. Nima and collaborators are trying to figure out what happens when you sum up all of the Feynman diagrams in a theory. I’ve made progress in the past for diagrams with one “direction”, a ladder that grows as you add more loops, but I didn’t know how to add “another direction” to the ladder. In very rough terms, Nima and collaborators figured out how to add that direction.

I’ve probably left things out here, it was a packed conference! It’s been really fun seeing what the community has cooked up, and I can’t wait to see what happens next.

QCD Meets Gravity 2020

I’m at another Zoom conference this week, QCD Meets Gravity. This year it’s hosted by Northwestern.

The view of the campus from wonder.me

QCD Meets Gravity is a conference series focused on the often-surprising links between quantum chromodynamics on the one hand and gravity on the other. By thinking of gravity as the “square” of forces like the strong nuclear force, researchers have unlocked new calculation techniques and deep insights.

Last year’s conference was very focused on one particular topic, trying to predict the gravitational waves observed by LIGO and VIRGO. That’s still a core topic of the conference, but it feels like there is a bit more diversity in topics this year. We’ve seen a variety of talks on different “squares”: new theories that square to other theories, and new calculations that benefit from “squaring” (even surprising applications to the Navier-Stokes equation!) There are talks on subjects from String Theory to Effective Field Theory, and even a talk on a very different way that “QCD meets gravity”, in collisions of neutron stars.

With still a few more talks to go, expect me to say a bit more next week, probably discussing a few in more detail. (Several people presented exciting work in progress!) Until then, I should get back to watching!