Merging quantum mechanics and gravity is a famously hard physics problem. Explaining why merging quantum mechanics and gravity is hard is, in turn, a very hard science communication problem. The more popular descriptions tend to lead to misunderstandings, and I’ve posted many times over the years to chip away at those misunderstandings.
Merging quantum mechanics and gravity is hard…but despite that, there are proposed solutions. String Theory is supposed to be a theory of quantum gravity. Loop Quantum Gravity is supposed to be a theory of quantum gravity. Asymptotic Safety is supposed to be a theory of quantum gravity.
One of the great virtues of science and math is that we are, eventually, supposed to agree. Philosophers and theologians might argue to the end of time, but in math we can write down a proof, and in science we can do an experiment. If we don’t yet have the proof or the experiment, then we should reserve judgement. Either way, there’s no reason to get into an unproductive argument.
Despite that, string theorists and loop quantum gravity theorists and asymptotic safety theorists, famously, like to argue! There have been bitter, vicious, public arguments about the merits of these different theories, and decades of research doesn’t seem to have resolved them. To an outside observer, this makes quantum gravity seem much more like philosophy or theology than like science or math.
Why is there still controversy in quantum gravity? We can’t do quantum gravity experiments, sure, but if that were the problem physicists could just write down the possibilities and leave it at that. Why argue?
Some of the arguments are for silly aesthetic reasons, or motivated by academic politics. Some are arguments about which approaches are likely to succeed in future, which as always is something we can’t actually reliably judge. But the more justified arguments, the strongest and most durable ones, are about a technical challenge. They’re about something called non-perturbative physics.
Most of the time, when physicists use a theory, they’re working with an approximation. Instead of the full theory, they’re making an assumption that makes the theory easier to use. For example, if you assume that the velocity of an object is small, you can use Newtonian physics instead of special relativity. Often, physicists can systematically relax these assumptions, including more and more of the behavior of the full theory and getting a better and better approximation to the truth. This process is called perturbation theory.
Other times, this doesn’t work well. The full theory has some trait that isn’t captured by the approximations, something that hides away from these systematic tools. The theory has some important aspect that is non-perturbative.
Every proposed quantum gravity theory uses approximations like this. The theory’s proponents try to avoid these approximations when they can, but often they have to approximate and hope they don’t miss too much. The opponents, in turn, argue that the theory’s proponents are missing something important, some non-perturbative fact that would doom the theory altogether.
Asymptotic Safety is built on top of an approximation, one different from what other quantum gravity theorists typically use. To its proponents, work using their approximation suggests that gravity works without any special modifications, that the theory of quantum gravity is easier to find than it seems. Its opponents aren’t convinced, and think that the approximation is missing something important which shows that gravity needs to be modified.
In Loop Quantum Gravity, the critics think their approximation misses space-time itself. Proponents of Loop Quantum Gravity have been unable to prove that their theory, if you take all the non-perturbative corrections into account, doesn’t just roll up all of space and time into a tiny spiky ball. They expect that their theory should allow for a smooth space-time like we experience, but the critics aren’t convinced, and without being able to calculate the non-perturbative physics neither side can convince the other.
String Theory was founded and originally motivated by perturbative approximations. Later, String Theorists figured out how to calculate some things non-perturbatively, often using other simplifications like supersymmetry. But core questions, like whether or not the theory allows a positive cosmological constant, seem to depend on non-perturbative calculations that the theory gives no instructions for how to do. Some critics don’t think there is a consistent non-perturbative theory at all, that the approximations String Theorists use don’t actually approximate to anything. Even within String Theory, there are worries that the theory might try to resist approximation in odd ways, becoming more complicated whenever a parameter is small enough that you could use it to approximate something.
All of this would be less of a problem with real-world evidence. Many fields of science are happy to use approximations that aren’t completely rigorous, as long as those approximations have a good track record in the real world. In general though, we don’t expect evidence relevant to quantum gravity any time soon. Maybe we’ll get lucky, and studies of cosmology will reveal something, or an experiment on Earth will have a particularly strange result. But nature has no obligation to help us out.
Without evidence, though, we can still make mathematical progress. You could imagine someone proving that the various perturbative approaches to String Theory become inconsistent when stitched together into a full non-perturbative theory. Alternatively, you could imagine someone proving that a theory like String Theory is unique, that no other theory can do some key thing that it does. Either of these seems unlikely to come any time soon, and most researchers in these fields aren’t pursuing questions like that. But the fact the debate could be resolved means that it isn’t just about philosophy or theology. There’s a real scientific, mathematical controversy, one rooted in our inability to understand these theories beyond the perturbative methods their proponents use. And while I don’t expect it to be resolved any time soon, one can always hold out hope for a surprise.