Category Archives: General QFT

Congratulations to John Clarke, Michel Devoret, and John Martinis!

The 2025 Physics Nobel Prize was announced this week, awarded to John Clarke, Michel Devoret, and John Martinis for building an electrical circuit that exhibited quantum effects like tunneling and energy quantization on a macroscopic scale.

Press coverage of this prize tends to focus on two aspects: the idea that these three “scaled up” quantum effects to medium-sized objects (the technical account quotes a description that calls it “big enough to get one’s grubby fingers on”), and that the work paved the way for some of the fundamental technologies people are exploring for quantum computing.

That’s a fine enough story, but it leaves out what made these folks’ work unique, why it differs from other Nobel laureates working with other quantum systems. It’s a bit more technical of a story, but I don’t think it’s that technical. I’ll try to tell it here.

To start, have you heard of Bose-Einstein Condensates?

Bose-Einstein Condensates are macroscopic quantum states that have already won Nobel prizes. First theorized based on ideas developed by Einstein and Bose (the namesake of bosons), they involve a large number of particles moving together, each in the same state. While the first gas that obeyed Einstein’s equations for a Bose-Einstein Condensate was created in the 1990’s, after Clarke, Devoret, and Martinis’s work, other things based on essentially the same principles were created much earlier. A laser works on the same principles as a Bose-Einstein condensate, as do phenomena like superconductivity and superfluidity.

This means that lasers, superfluids, and superconductors had been showing off quantum mechanics on grubby finger scales well before Clarke, Devoret, and Martinis’s work. But the science rewarded by this year’s Nobel turns out to be something quite different.

Because the different photons in laser light are independently in identical quantum states, lasers are surprisingly robust. You can disrupt the state of one photon, and it won’t interfere with the other states. You’ll have weakened the laser’s consistency a little bit, but the disruption won’t spread much, if at all.

That’s very different from the way quantum systems usually work. Schrodinger’s cat is the classic example. You have a box with a radioactive atom, and if that atom decays, it releases poison, killing the cat. You don’t know if the atom has decayed or not, and you don’t know if the cat is alive or not. We say the atom’s state is a superposition of decayed and not decayed, and the cat’s state is a superposition of alive and dead.

But unlike photons in a laser, the atom and the cat in Schrodinger’s cat are not independent: if the atom has decayed, the cat is dead, if the atom has not, the cat is alive. We say the states of atom and cat are entangled.

That makes these so-called “Schrodinger’s cat” states much more delicate. The state of the cat depends on the state of the atom, and those dependencies quickly “leak” to the outside world. If you haven’t sealed the box well, the smell of the room is now also entangled with the cat…which, if you have a sense of smell, means that you are entangled with the cat. That’s the same as saying that you have measured the cat, so you can’t treat it as quantum any more.

What Clarke, Devoret, and Martinis did was to build a circuit that could exhibit, not a state like a laser, but a “cat state”: delicately entangled, at risk of total collapse if measured.

That’s why they deserved a Nobel, even in a world where there are many other Nobels for different types of quantum states. Lasers, superconductors, even Bose-Einstein condensates were in a sense “easy mode”, robust quantum states that didn’t need all that much protection. This year’s physics laureates, in contrast, showed it was possible to make circuits that could make use of quantum mechanics’ most delicate properties.

That’s also why their circuits, in particular, are being heralded as a predecessor for modern attempts at quantum computers. Quantum computers do tricks with entanglement, they need “cat states”, not Bose-Einstein Condensates. And Clarke, Devoret, and Martinis’s work in the 1980’s was the first clear proof that this was a feasible thing to do.

Bonus Info on the LHC and Beyond

Three of my science journalism pieces went up last week!

(This is a total coincidence. One piece was a general explainer “held in reserve” for a nice slot in the schedule, one was a piece I drafted in February, while the third I worked on in May. In journalism, things take as long as they take.)

The shortest piece, at Quanta Magazine, was an explainer about the two types of particles in physics: bosons, and fermions.

I don’t have a ton of bonus info here, because of how tidy the topic is, so just two quick observations.

First, I have the vague impression that Bose, bosons’ namesake, is “claimed” by both modern-day Bangladesh and India. I had friends in grad school who were proud of their fellow physicist from Bangladesh, but while he did his most famous work in Dhaka, he was born and died in Calcutta. Since both were under British India for most of his life, these things likely get complicated.

Second, at the end of the piece I mention a “world on a wire” where fermions and bosons are the same. One example of such a “wire” is a string, like in string theory. One thing all young string theorists learn is “bosonization”: the idea that, in a 1+1-dimensional world like a string, you can re-write any theory with fermions as a theory with bosons, as well as vice versa. This has important implications for how string theory is set up.

Next, in Ars Technica, I had a piece about how LHC physicists are using machine learning to untangle the implications of quantum interference.

As a journalist, it’s really easy to fall into a trap where you give the main person you interview too much credit: after all, you’re approaching the story from their perspective. I tried to be cautious about this, only to be stymied when literally everyone else I interviewed praised Aishik Ghosh to the skies and credited him with being the core motivating force behind the project. So I shrugged my shoulders and followed suit. My understanding is that he has been appropriately rewarded and will soon be a professor at Georgia Tech.

I didn’t list the inventors of the NSBI method that Ghosh and co. used, but names like Kyle Cranmer and Johann Brehmer tend to get bandied about. It’s a method that was originally explored for a more general goal, trying to characterize what the Standard Model might be missing, while the work I talk about in the piece takes it in a new direction, closer to the typical things the ATLAS collaboration looks for.

I also did not say nearly as much as I was tempted to about how the ATLAS collaboration publishes papers, which was honestly one of the most intriguing parts of the story for me. There is a huge amount of review that goes on inside ATLAS before one of their papers reaches the outside world, way more than there ever is in a journal’s peer review process. This is especially true for “physics papers”, where ATLAS is announcing a new conclusion about the physical world, as ATLAS’s reputation stands on those conclusions being reliable. That means starting with an “internal note” that’s hundreds of pages long (and sometimes over a thousand), an editorial board that manages the editing process, disseminating the paper to the entire collaboration for comment, and getting specific experts and institute groups within the collaboration to read through the paper in detail. The process is a bit less onerous for “technical papers”, which describe a new method, not a new conclusion about the world. Still, it’s cumbersome enough that for those papers, often scientists don’t publish them “within ATLAS” at all, instead releasing them independently. The results I reported on are special because they involved a physics paper and a technical paper, both within the ATLAS collaboration process. Instead of just working with partial or simplified data, they wanted to demonstrate the method on a “full analysis”, with all the computation and human coordination that requires. Normally, ATLAS wouldn’t go through the whole process of publishing a physics paper without basing it on new data, but this was different: the method had the potential to be so powerful that the more precise results would be worth stating as physics results alone.

(Also, for the people in the comments worried about training a model on old data: that’s not what they did. In physics, they don’t try to train a neural network model to predict the results of colliders, such a model wouldn’t tell us anything useful. They run colliders to tell us whether what they see matches the analytic, Standard, model. The neural network is trained to predict not what the experiment will say, but what the Standard Model will say, as we can usually only figure that out through time-consuming simulations. So it’s trained on (new) simulations, not on experimental data.)

Finally, on Friday I had a piece in Physics Today about the European Strategy for Particle Physics (or ESPP), and in particular, plans for the next big collider.

Before I even started working on this piece, I saw a thread by Patrick Koppenburg on some of the 263 documents submitted for the ESPP update. While my piece ended up mostly focused on the big circular collider plan that most of the field is converging on (the future circular collider, or FCC), Koppenburg’s thread was more wide-ranging, meant to illustrate the breadth of ideas under discussion. Some of that discussion is about the LHC’s current plans, like its “high-luminosity” upgrade that will see it gather data at much higher rates up until 2040. Some of it is assessing broader concerns, which it may surprise some of you to learn includes sustainability: yes, there are more or less sustainable ways to build giant colliders.

The most fun part of the discussion, though, concerns all of the other collider proposals.

Some report progress on new technologies. Muon colliders are the most famous of these, but there are other proposals that would specifically help with a linear collider. I never did end up understanding what Cooled Copper Colliders are all about, beyond that they let you get more energy in a smaller machine without super-cooling. If you know about them, chime in in the comments! Meanwhile, plasma wakefield acceleration could accelerate electrons on a wave of plasma. This has the disadvantage that you want to collide electrons and positrons, and if you try to stick a positron in plasma it will happily annihilate with the first electron it meets. So what do you do? You go half-and-half, with the HALHF project: speed up the electron with a plasma wakefield, accelerate the positron normally, and have them meet in the middle.

Others are backup plans, or “budget options”, where CERN could get a bit better measurements on some parameters if they can’t stir up the funding to measure the things they really want. They could put electrons and positrons into the LHC tunnel instead of building a new one, for a weaker machine that could still study the Higgs boson to some extent. They could use a similar experiment to produce Z bosons instead, which could serve as a bridge to a different collider project. Or, they could collider the LHC’s proton beam with an electron beam, for an experiment that mixes advantages and disadvantages of some of the other approaches.

While working on the piece, one resource I found invaluable was this colloquium talk by Tristan du Pree, where he goes through the 263 submissions and digs up a lot of interesting numbers and commentary. Read the slides for quotes from the different national inputs and “solo inputs” with comments from particular senior scientists. I used that talk to get a broad impression of what the community was feeling, and it was interesting how well it was reflected in the people I interviewed. The physicist based in Switzerland felt the most urgency for the FCC plan, while the Dutch sources were more cautious, with other Europeans firmly in the middle.

Going over the FCC report itself, one thing I decided to leave out of the discussion was the cost-benefit analysis. There’s the potential for a cute sound-bite there, “see, the collider is net positive!”, but I’m pretty skeptical of the kind of analysis they’re doing there, even if it is standard practice for government projects. Between the biggest benefits listed being industrial benefits to suppliers and early-career researcher training (is a collider unusually good for either of those things, compared to other ways we spend money?) and the fact that about 10% of the benefit is the science itself (where could one possibly get a number like that?), it feels like whatever reasoning is behind this is probably the kind of thing that makes rigor-minded economists wince. I wasn’t able to track down the full calculation though, so I really don’t know, maybe this makes more sense than it looks.

I think a stronger argument than anything along those lines is a much more basic point, about expertise. Right now, we have a community of people trying to do something that is not merely difficult, but fundamental. This isn’t like sending people to space, where many of the engineering concerns will go away when we can send robots instead. This is fundamental engineering progress in how to manipulate the forces of nature (extremely powerful magnets, high voltages) and process huge streams of data. Pushing those technologies to the limit seems like it’s going to be relevant, almost no matter what we end up doing. That’s still not putting the science first and foremost, but it feels a bit closer to an honest appraisal of what good projects like this do for the world.

Why Solving the Muon Puzzle Doesn’t Solve the Puzzle

You may have heard that the muon g-2 problem has been solved.

Muons are electrons’ heavier cousins. As spinning charged particles, they are magnetic, the strength of that magnetism characterized by a number denoted “g”. If you were to guess this number from classical physics alone, you’d conclude it should be 2, but quantum mechanics tweaks it. The leftover part, “g-2”, can be measured, and predicted, with extraordinary precision, which ought to make it an ideal test: if our current understanding of the particle physics, called the Standard Model, is subtly wrong, the difference might be noticeable there.

And for a while, it looked like such a difference was indeed noticeable. Extremely precise experiments over the last thirty years have consistently found a number slightly different from the extremely precise calculations, different enough that it seemed quite unlikely to be due to chance.

Now, the headlines are singing a different tune.

What changed?

That headline might make you think the change was an experimental result, a new measurement that changed the story. It wasn’t, though. There is a new, more precise measurement, but it agrees with the old measurements.

So the change has to be in the calculations, right? They did a new calculation, corrected a mistake or just pushed up their precision, and found that the Standard Model matches the experiment after all?

…sort of, but again, not really. The group of theoretical physicists associated with the experiment did release new, more accurate calculations. But it wasn’t the new calculations, by themselves, that made a difference. Instead, it was a shift in what kind of calculations they used…or even more specifically, what kind of calculations they trusted.

Parts of the calculation of g-2 can be done with Feynman diagrams, those photogenic squiggles you see on physicists’ blackboards. That part is very precise, and not especially controversial. However, Feynman diagrams only work well when forces between particles are comparatively weak. They’re great for electromagnetism, even better for the weak nuclear force. But for the strong nuclear force, the one that holds protons and neutrons together, you often need a different method.

For g-2, that used to be done via a “data-driven” method. Physicists measured different things, particles affected by the strong nuclear force in different ways, and used that to infer how the strong force would affect g-2. By getting a consistent picture from different experiments, they were reasonably confident that they had the right numbers.

Back in 2020, though, a challenger came to the scene, with another method. Called lattice QCD, this method involves building gigantic computer simulations of the effect of the strong force. People have been doing lattice QCD since the 1970’s, and the simulations have been getting better and better, until in 2020, a group managed to calculate the piece of the g-2 calculation that had until then been done by the data-driven method.

The lattice group found a very different result than what had been found previously. Instead of a wild disagreement with experiment, their calculation agreed. According to them, everything was fine, the muon g-2 was behaving exactly as the Standard Model predicted.

For some of us, that’s where the mystery ended. Clearly, something must be wrong with the data-driven method, not with the Standard Model. No more muon puzzle.

But the data-driven method wasn’t just a guess, it was being used for a reason. A significant group of physicists found the arguments behind it convincing. Now, there was a new puzzle: figuring out why the data-driven method and lattice QCD disagree.

Five years later, has that mystery been solved? Is that, finally, what the headlines are about?

Again, not really, no.

The theorists associated with the experiment have decided to trust lattice QCD, not the data-driven method. But they don’t know what went wrong, exactly.

Instead, they’ve highlighted cracks in the data-driven method. The way the data-driven method works, it brings together different experiments to try to get a shared picture. But that shared picture has started to fall apart. A new measurement by a different experiment doesn’t fit into the system: the data-driven method now “has tensions”, as physicists say. It’s no longer possible to combine all experiments into a shared picture they way they used to. Meanwhile, lattice QCD has gotten even better, reaching even higher precision. From the perspective of the theorists associated with the muon g-2 experiment, switching methods is now clearly the right call.

But does that mean they solved the puzzle?

If you were confident that lattice QCD is the right approach, then the puzzle was already solved in 2020. All that changed was the official collaboration finally acknowledging that.

And if you were confident that the data-driven method was the right approach, then the puzzle is even worse. Now, there are tensions within the method itself…but still no explanation of what went wrong! If you had good reasons to think the method should work, you still have those good reasons. Now you’re just…more puzzled.

I am reminded of another mystery, a few years back, when an old experiment announced a dramatically different measurement for the mass of the W boson. Then, I argued the big mystery was not how the W boson’s mass had changed (it hadn’t), but how they came to be so confident in a result so different from what others, also confidently, had found. In physics, our confidence is encoded in numbers, estimated and measured and tested and computed. If we’re not estimating that confidence correctly…then that’s the real mystery, the real puzzle. One much more important to solve.


Also, I had two more pieces out this week! In Quanta I have a short explainer about bosons and fermions, while at Ars Technica I have a piece about machine learning at the LHC. I may have a “bonus info” post on the latter at some point, I have to think about whether I have enough material for it.

In Scientific American, With a Piece on Vacuum Decay

I had a piece in Scientific American last week. It’s paywalled, but if you’re a subscriber there you can see it, or you can buy the print magazine.

(I also had two pieces out in other outlets this week. I’ll be saying more about them…in a couple weeks.)

The Scientific American piece is about an apocalyptic particle physics scenario called vacuum decay. It’s a topic I covered last year in Quanta Magazine, an unlikely event where the Higgs field which gives fundamental particles their mass changes value, suddenly making all other particles much more massive and changing physics as we know it. It’s a change that physicists think would start as a small bubble and spread at (almost) the speed of light, covering the universe.

What I wrote for Quanta was a short news piece covering a small adjustment to the calculation, one that made the chance of vacuum decay slightly more likely. (But still mind-bogglingly small, to be clear.)

Scientific American asked for a longer piece, and that gave me space to dig deeper. I was able to say more about how vacuum decay works, with a few metaphors that I think should make it a lot easier to understand. I also got to learn about some new developments, in particular, an interesting story about how tiny primordial black holes could make vacuum decay dramatically more likely.

One thing that was a bit too complicated to talk about were the puzzles involved in trying to calculate these chances. In the article, I mention a calculation of the chance of vacuum decay by a team including Matthew Schwartz. That calculation wasn’t the first to estimate the chance of vacuum decay, and it’s not the most recent update either. Instead, I picked it because Schwartz’s team approached the question in what struck me as a more reliable way, trying to cut through confusion by asking the most basic question you can in a quantum theory: given that now you observe X, what’s the chance that later you observe Y? Figuring out how to turn vacuum decay into that kind of question correctly is tricky (for example, you need to include the possibility that vacuum decay happens, then reverses, then happens again).

The calculations of black holes speeding things up didn’t work things out in quite as much detail. I like to think I’ve made a small contribution by motivating them to look at Schwartz’s work, which might spawn a more rigorous calculation in future. When I talked to Schwartz, he wasn’t even sure whether the picture of a bubble forming in one place and spreading at light speed is correct: he’d calculated the chance of the initial decay, but hadn’t found a similarly rigorous way to think about the aftermath. So even more than the uncertainty I talk about in the piece, the questions about new physics and probability, there is even some doubt about whether the whole picture really works the way we’ve been imagining it.

That makes for a murky topic! But it’s also a flashy one, a compelling story for science fiction and the public imagination, and yeah, another motivation to get high-precision measurements of the Higgs and top quark from future colliders! (If maybe not quite the way this guy said it.)

Antimatter Isn’t Magic

You’ve heard of antimatter, right?

For each type of particle, there is a rare kind of evil twin with the opposite charge, called an anti-particle. When an anti-proton meets a proton, they annihilate each other in a giant blast of energy.

I see a lot of questions online about antimatter. One recurring theme is people asking a very general question: how does antimatter work?

If you’ve just heard the pop physics explanation, antimatter probably sounds like magic. What about antimatter lets it destroy normal matter? Does it need to touch? How long does it take? And what about neutral particles like neutrons?

You find surprisingly few good explanations of this online, but I can explain why. Physicists like me don’t expect antimatter to be confusing in this way, because to us, antimatter isn’t doing anything all that special. When a particle and an antiparticle annihilate, they’re doing the same thing that any other pair of particles do when they do…basically anything else.

Instead of matter and antimatter, let’s talk about one of the oldest pieces of evidence for quantum mechanics, the photoelectric effect. Scientists shone light at a metal, and found that if the wavelength of the light was short enough, electrons would spring free, causing an electric current. If the wavelength was too long, the metal wouldn’t emit any electrons, no matter how much light they shone. Einstein won his Nobel prize for the explanation: the light hitting the metal comes in particle-sized pieces, called photons, whose energy is determined by the wavelength of the light. If the individual photons don’t have enough energy to get an electron to leave the metal, then no electron will move, no matter how many photons you use.

What happens to the photons after they hit the metal?

They go away. We say they are absorbed, an electron absorbs a photon and speeds up, increasing its kinetic energy so it can escape.

But we could just as easily say the photon is annihilated, if we wanted to.

In the photoelectric effect, you start with one electron and one photon, they come together, and you end up with one electron and no photon. In proton-antiproton annihilation, you start with a proton and an antiproton, they come together, and you end up with no protons or antiprotons, but instead “energy”…which in practice, usually means two photons.

That’s all that happens, deep down at the root of things. The laws of physics are rules about inputs and outputs. Start with these particles, they come together, you end up with these other particles. Sometimes one of the particles stays the same. Sometimes particles seem to transform, and different kinds of particles show up. Sometimes some of the particles are photons, and you think of them as “just energy”, and easy to absorb. But particles are particles, and nothing is “just energy”. Each thing, absorption, decay, annihilation, each one is just another type of what we call interactions.

What makes annihilation of matter and antimatter seem unique comes down to charges. Interactions have to obey the laws of physics: they conserve energy, they conserve momentum, and they conserve charge.

So why can an antiproton and a proton annihilate to pure photons, while two protons can’t? A proton and an antiproton have opposite charge, a photon has zero charge. You could combine two protons to make something else, but it would have to have the same charge as two protons.

What about neutrons? A neutron has no electric charge, so you might think it wouldn’t need antimatter. But a neutron has another type of charge, called baryon number. In order to annihilate one, you’d need an anti-neutron, which would still have zero electric charge but would have the opposite baryon number. (By the way, physicists have been making anti-neutrons since 1956.)

On the other hand, photons actually have no charge. So do Higgs bosons. So one Higgs boson can become two photons, without annihilating with anything else. Each of these particles can be called its own antiparticle: a photon is also an antiphoton, a Higgs is also an anti-Higgs.

Because particle-antiparticle annihilation follows the same rules as other interactions between particles, it also takes place via the same forces. When a proton and an antiproton annihilate each other, they typically do this via the electromagnetic force. This is why you end up with light, which is an electromagnetic wave. Like everything in the quantum world, this annihilation isn’t certain. Is has a chance to happen, proportional to the strength of the interaction force involved.

What about neutrinos? They also appear to have a kind of charge, called lepton number. That might not really be a conserved charge, and neutrinos might be their own antiparticles, like photons. However, they are much less likely to be annihilated than protons and antiprotons, because they don’t have electric charge, and thus their interaction doesn’t depend on the electromagnetic force, but on the much weaker weak nuclear force. A weaker force means a less likely interaction.

Antimatter might seem like the stuff of science fiction. But it’s not really harder to understand than anything else in particle physics.

(I know, that’s a low bar!)

It’s just interactions. Particles go in, particles go out. If it follows the rules, it can happen, if it doesn’t, it can’t. Antimatter is no different.

Hot Things Are Less Useful

Did you know that particle colliders have to cool down their particle beams before they collide?

You might have learned in school that temperature is secretly energy. With a number called Boltzmann’s constant, you can convert a temperature of a gas in Kelvin to the average energy of a molecule in the gas. If that’s what you remember about temperature, it might seem weird that someone would cool down the particles in a particle collider. The whole point of a particle collider is to accelerate particles, giving them lots of energy, before colliding them together. Since those particles have a lot of energy, they must be very hot, right?

Well, no. Here’s the thing: temperature is not just the average energy. It’s the average random energy. It’s energy that might be used to make a particle move forward or backwards, up or down, a random different motion for each particle. It doesn’t include motion that’s the same for each particle, like the movement of a particle beam.

Cooling down a particle beam then, doesn’t mean slowing it down. Rather, it means making it more consistent, getting the different particles moving in the same direction rather than randomly spreading apart. You want the particles to go somewhere specific, speeding up and slamming into the other beam. You don’t want them to move randomly, running into the walls and destroying your collider. So you can have something with high energy that is comparatively cool.

In general, the best way I’ve found to think about temperature and heat is in terms of usefulness and uselessness. Cool things are useful, they do what you expect and not much more. Hot things are less useful, they use energy to do random things you don’t want. Sometimes, by chance, this random energy will still do something useful, and if you have a cold thing to pair with the hot thing, you can take advantage of this in a consistent way. But hot things by themselves are less useful, and that’s why particle colliders try to cool down their beams.

Some FAQ for Microsoft’s Majorana 1 Chip

Recently, Microsoft announced a fancy new quantum computing chip called Majorana 1. I’ve noticed quite a bit of confusion about what they actually announced, and while there’s a great FAQ page about it on the quantum computing blog Shtetl Optimized, the post there aims at a higher level, assuming you already know the basics. You can think of this post as a complement to that one, that tries to cover some basic things Shtetl Optimized took for granted.

Q: In the announcement, Microsoft said:

“It leverages the world’s first topoconductor, a breakthrough type of material which can observe and control Majorana particles to produce more reliable and scalable qubits, which are the building blocks for quantum computers.”

That sounds wild! Are they really using particles in a computer?

A: All computers use particles. Electrons are particles!

Q: You know what I mean!

A: You’re asking if these are “particle physics” particles, like the weird types they try to observe at the LHC?

No, they’re not.

Particle physicists use a mathematical framework called quantum field theory, where particles are ripples in things called quantum fields that describe properties of the universe. But they aren’t the only people to use that framework. Instead of studying properties of the universe you can study properties of materials, weird alloys and layers of metal and crystal that do weird and useful things. The properties of these materials can be approximately described with the same math, with quantum fields. Just as the properties of the universe ripple to produce particles, these properties of materials ripple to produce what are called quasiparticles. Ultimately, these quasiparticles come down to movements of ordinary matter, usually electrons in the original material. They’re just described with a kind of math that makes them look like their own particles.

Q: So, what are these Majorana particles supposed to be?

A: In quantum field theory, most particles come with an antimatter partner. Electrons, for example, have partners called positrons, with a positive electric charge instead of a negative one. These antimatter partners have to exist due to the math of quantum field theory, but there is a way out: some particles are their own antimatter partner, letting one particle cover both roles. This happens for some “particle physics particles”, but all the examples we’ve found are a type of particle called a “boson”, particles related to forces. In 1937, the physicist Ettore Majorana figured out the math you would need to make a particle like this that was a fermion instead, the other main type of particle that includes electrons and protons. So far, we haven’t found one of these Majorana fermions in nature, though some people think the elusive neutrino particles could be an example. Others, though, have tried instead to find a material described by Majorana’s theory. This should in principle be easier, you can build a lot of different materials after all. But it’s proven quite hard for people to do. Back in 2018, Microsoft claimed they’d managed this, but had to retract the claim. This time, they seem more confident, though the scientific community is still not convinced.

Q: And what’s this topoconductor they’re talking about?

A: Topoconductor is short for topological superconductor. Superconductors are materials that conduct electricity much better than ordinary metals.

Q: And, topological means? Something about donuts, right?

A: If you’ve heard anything about topology, you’ve heard that it’s a type of mathematics where donuts are equivalent to coffee cups. You might have seen an animation of a coffee cup being squished and mushed around until the ring of the handle becomes the ring of a donut.

This isn’t actually the important part of topology. The important part is that, in topology, a ball is not equivalent to a donut.

Topology is the study of which things can change smoothly into one another. If you want to change a donut into a ball, you have to slice through the donut’s ring or break the surface inside. You can’t smoothly change one to another. Topologists study shapes of different kinds of things, figuring out which ones can be changed into each other smoothly and which can’t.

Q: What does any of that have to do with quantum computers?

A: The shapes topologists study aren’t always as simple as donuts and coffee cups. They can also study the shape of quantum fields, figuring out which types of quantum fields can change smoothly into each other and which can’t.

The idea of topological quantum computation is to use those rules about what can change into each other to encode information. You can imagine a ball encoding zero, and a donut encoding one. A coffee cup would then also encode one, because it can change smoothly into a donut, while a box would encode zero because you can squash the corners to make it a ball. This helps, because it means that you don’t screw up your information by making smooth changes. If you accidentally drop your box that encodes zero and squish a corner, it will still encode zero.

This matters in quantum computing because it is very easy to screw up quantum information. Quantum computers are very delicate, and making them work reliably has been immensely challenging, requiring people to build much bigger quantum computers so they can do each calculation with many redundant backups. The hope is that topological superconductors would make this easier, by encoding information in a way that is hard to accidentally change.

Q: Cool. So does that mean Microsoft has the best quantum computer now?

A: The machine Microsoft just announced has only a single qubit, the quantum equivalent of just a single bit of computer memory. At this point, it can’t do any calculations. It can just be read, giving one or zero. The hope is that the power of the new method will let Microsoft catch up with companies that have computers with hundred of qubits, and help them arrive faster at the millions of qubits that will be needed to do anything useful.

Q: Ah, ok. But it sounds like they accomplished some crazy Majorana stuff at least, right?

A: Umm…

Read the Shtetl-Optimized FAQ if you want more details. The short answer is that this is still controversial. So far, the evidence they’ve made public isn’t enough to show that they found these Majorana quasiparticles, or that they made a topological superconductor. They say they have more recent evidence that they haven’t published yet. We’ll see.

Bonus Material for “How Hans Bethe Stumbled Upon Perfect Quantum Theories”

I had an article last week in Quanta Magazine. It’s a piece about something called the Bethe ansatz, a method in mathematical physics that was discovered by Hans Bethe in the 1930’s, but which only really started being understood and appreciated around the 1960’s. Since then it’s become a key tool, used in theoretical investigations in areas from condensed matter to quantum gravity. In this post, I thought I’d say a bit about the story behind the piece and give some bonus material that didn’t fit.

When I first decided to do the piece I reached out to Jules Lamers. We were briefly office-mates when I worked in France, where he was giving a short course on the Bethe ansatz and the methods that sprung from it. It turned out he had also been thinking about writing a piece on the subject, and we considered co-writing for a bit, but that didn’t work for Quanta. He helped me a huge amount with understanding the history of the subject and tracking down the right sources. If you’re a physicist who wants to learn about these things, I recommend his lecture notes. And if you’re a non-physicist who wants to know more, I hope he gets a chance to write a longer popular-audience piece on the topic!

If you clicked through to Jules’s lecture notes, you’d see the word “Bethe ansatz” doesn’t appear in the title. Instead, you’d see the phrase “quantum integrability”. In classical physics, an “integrable” system is one where you can calculate what will happen by doing an integral, essentially letting you “solve” any problem completely. Systems you can describe with the Bethe ansatz are solvable in a more complicated quantum sense, so they get called “quantum integrable”. There’s a whole research field that studies these quantum integrable systems.

My piece ended up rushing through the history of the field. After talking about Bethe’s original discovery, I jumped ahead to ice. The Bethe ansatz was first used to think about ice in the 1960’s, but the developments I mentioned leading up to it, where experimenters noticed extra variability and theorists explained it with the positions of hydrogen atoms, happened earlier, in the 1930’s. (Thanks to the commenter who pointed out that this was confusing!) Baxter gets a starring role in this section and had an important role in tying things together, but other people (Lieb and Sutherland) were involved earlier, showing that the Bethe ansatz indeed could be used with thin sheets of ice. This era had a bunch of other big names that I didn’t have space to talk about: C. N. Yang makes an appearance, and while Faddeev comes up later, I didn’t mention that he had a starring role in the 1970’s in understanding the connection to classical integrability and proposing a mathematical structure to understand what links all these different integrable theories together.

I vaguely gestured at black holes and quantum gravity, but didn’t have space for more than that. The connection there is to a topic you might have heard of before if you’ve read about string theory, called AdS/CFT, a connection between two kinds of world that are secretly the same: a toy model of gravity called Anti-de Sitter space (AdS) and a theory without gravity that looks the same at any scale (called a Conformal Field Theory, or CFT). It turns out that in the most prominent example of this, the theory without gravity is integrable! In fact, it’s a theory I spent a lot of time working with back in my research days, called N=4 super Yang-Mills. This theory is kind of like QCD, and in some sense it has integrability for similar reasons to those that Feynman hoped for and Korchemsky and Faddeev found. But it actually goes much farther, outside of the high-energy approximation where Korchemsky and Faddeev’s result works, and in principle seems to include everything you might want to know about the theory. Nowadays, people are using it to investigate the toy model of quantum gravity, hoping to get insights about quantum gravity in general.

One thing I didn’t get a chance to mention at all is the connection to quantum computing. People are trying to build a quantum computer with carefully-cooled atoms. It’s important to test whether the quantum computer functions well enough, or if the quantum states aren’t as perfect as they need to be. One way people have been testing this is with the Bethe ansatz: because it lets you calculate the behavior of special systems perfectly, you can set up your quantum computer to model a Bethe ansatz, and then check how close to the prediction your results are. You know that the theoretical result is complete, so any failure has to be due to an imperfection in your experiment.

I gave a quick teaser to a very active field, one that has fascinated a lot of prominent physicists and been applied in a wide variety of areas. I hope I’ve inspired you to learn more!

How Small Scales Can Matter for Large Scales

For a certain type of physicist, nothing matters more than finding the ultimate laws of nature for its tiniest building-blocks, the rules that govern quantum gravity and tell us where the other laws of physics come from. But because they know very little about those laws at this point, they can predict almost nothing about observations on the larger distance scales we can actually measure.

“Almost nothing” isn’t nothing, though. Theoretical physicists don’t know nature’s ultimate laws. But some things about them can be reasonably guessed. The ultimate laws should include a theory of quantum gravity. They should explain at least some of what we see in particle physics now, explaining why different particles have different masses in terms of a simpler theory. And they should “make sense”, respecting cause and effect, the laws of probability, and Einstein’s overall picture of space and time.

All of these are assumptions, of course. Further assumptions are needed to derive any testable consequences from them. But a few communities in theoretical physics are willing to take the plunge, and see what consequences their assumptions have.

First, there’s the Swampland. String theorists posit that the world has extra dimensions, which can be curled up in a variety of ways to hide from view, with different observable consequences depending on how the dimensions are curled up. This list of different observable consequences is referred to as the Landscape of possibilities. Based on that, some string theorists coined the term “Swampland” to represent an area outside the Landscape, containing observations that are incompatible with quantum gravity altogether, and tried to figure out what those observations would be.

In principle, the Swampland includes the work of all the other communities on this list, since a theory of quantum gravity ought to be consistent with other principles as well. In practice, people who use the term focus on consequences of gravity in particular. The earliest such ideas argued from thought experiments with black holes, finding results that seemed to demand that gravity be the weakest force for at least one type of particle. Later researchers would more frequently use string theory as an example, looking at what kinds of constructions people had been able to make in the Landscape to guess what might lie outside of it. They’ve used this to argue that dark energy might be temporary, and to try to figure out what traits new particles might have.

Second, I should mention naturalness. When talking about naturalness, people often use the analogy of a pen balanced on its tip. While possible in principle, it must have been set up almost perfectly, since any small imbalance would cause it to topple, and that perfection demands an explanation. Similarly, in particle physics, things like the mass of the Higgs boson and the strength of dark energy seem to be carefully balanced, so that a small change in how they were set up would lead to a much heavier Higgs boson or much stronger dark energy. The need for an explanation for the Higgs’ careful balance is why many physicists expected the Large Hadron Collider to discover additional new particles.

As I’ve argued before, this kind of argument rests on assumptions about the fundamental laws of physics. It assumes that the fundamental laws explain the mass of the Higgs, not merely by giving it an arbitrary number but by showing how that number comes from a non-arbitrary physical process. It also assumes that we understand well how physical processes like that work, and what kinds of numbers they can give. That’s why I think of naturalness as a type of argument, much like the Swampland, that uses the smallest scales to constrain larger ones.

Third is a host of constraints that usually go together: causality, unitarity, and positivity. Causality comes from cause and effect in a relativistic universe. Because two distant events can appear to happen in different orders depending on how fast you’re going, any way to send signals faster than light is also a way to send signals back in time, causing all of the paradoxes familiar from science fiction. Unitarity comes from quantum mechanics. If quantum calculations are supposed to give the probability of things happening, those probabilities should make sense as probabilities: for example, they should never go above one.

You might guess that almost any theory would satisfy these constraints. But if you extend a theory to the smallest scales, some theories that otherwise seem sensible end up failing this test. Actually linking things up takes other conjectures about the mathematical form theories can have, conjectures that seem more solid than the ones underlying Swampland and naturalness constraints but that still can’t be conclusively proven. If you trust the conjectures, you can derive restrictions, often called positivity constraints when they demand that some set of observations is positive. There has been a renaissance in this kind of research over the last few years, including arguments that certain speculative theories of gravity can’t actually work.

A Tale of Two Experiments

Before I begin, two small announcements:

First: I am now on bluesky! Instead of having a separate link in the top menu for each social media account, I’ve changed the format so now there are social media buttons in the right-hand sidebar, right under the “Follow” button. Currently, they cover tumblr, twitter, and bluesky, but there may be more in future.

Second, I’ve put a bit more technical advice on my “Open Source Grant Proposal” post, so people interested in proposing similar research can have some ideas about how best to pitch it.

Now, on to the post:


Gravitational wave telescopes are possibly the most exciting research program in physics right now. Big, expensive machines with more on the way in the coming decades, gravitational wave telescopes need both precise theoretical predictions and high-quality data analysis. For some, gravitational wave telescopes have the potential to reveal genuinely new physics, to probe deviations from general relativity that might be related to phenomena like dark matter, though so far no such deviations have been conclusively observed. In the meantime, they’re teaching us new consequences of known physics. For example, the unusual population of black holes observed by LIGO has motivated those who model star clusters to consider processes in which the motion of three stars or black holes is related to each other, discovering that these processes are more important than expected.

Particle colliders are probably still exciting to the general public, but for many there is a growing sense of fatigue and disillusionment. Current machines like the LHC are big and expensive, and proposed future colliders would be even costlier and take decades to come online, in addition to requiring a huge amount of effort from the community in terms of precise theoretical predictions and data analysis. Some argue that colliders still might uncover genuinely new physics, deviations from the standard model that might explain phenomena like dark matter, but as no such deviations have yet been conclusively observed people are increasingly skeptical. In the meantime, most people working on collider physics are focused on learning new consequences of known physics. For example, by comparing observed results with theoretical approximations, people have found that certain high-energy processes usually left out of calculations are actually needed to get a good agreement with the data, showing that these processes are more important than expected.

…ok, you see what I did there, right? Was that fair?

There are a few key differences, with implications to keep in mind:

First, collider physics is significantly more expensive than gravitational wave physics. LIGO took about $300 million to build and spends about $50 million a year. The LHC took about $5 billion to build and costs $1 billion a year to run. That cost still puts both well below several other government expenses that you probably consider frivolous (please don’t start arguing about which ones in the comments!), but it does mean collider physics demands a bit of a stronger argument.

Second, the theoretical motivation to expect new fundamental physics out of LIGO is generally considered much weaker than for colliders. A large part of the theoretical physics community thought that they had a good argument why they should see something new at the LHC. In contrast, most theorists have been skeptical of the kinds of modified gravity theories that have dramatic enough effects that one could measure them with gravitational wave telescopes, with many of these theories having other pathologies or inconsistencies that made people wary.

Third, the general public finds astrophysics cooler than particle physics. Somehow, telling people “pairs of black holes collide more often than we thought because sometimes a third star in the neighborhood nudges them together” gets people much more excited than “pairs of quarks collide more often than we thought because we need to re-sum large logarithms differently”, even though I don’t think there’s a real “principled” difference between them. Neither reveals new laws of nature, both are upgrades to our ability to model how real physical objects behave, neither is useful to know for anybody living on Earth in the present day.

With all this in mind, my advice to gravitational wave physicists is to try, as much as possible, not to lean on stories about dark matter and modified gravity. You might learn something, and it’s worth occasionally mentioning that. But if you don’t, you run a serious risk of disappointing people. And you have such a big PR advantage if you just lean on new consequences of bog standard GR, that those guys really should get the bulk of the news coverage if you want to keep the public on your side.