Monthly Archives: March 2025

This Week, at FirstPrinciples.org

I’ve got a piece out this week in a new venue: FirstPrinciples.org, where I’ve written a profile of a startup called Vaire Computing.

Vaire works on reversible computing, an idea that tries to leverage thermodynamics to make a computer that wastes as little heat as possible. While I learned a lot of fun things that didn’t make it into the piece…I’m not going to tell you them this week! That’s because I’m working on another piece about reversible computing, focused on a different aspect of the field. When that piece is out I’ll have a big “bonus material post” talking about what I learned writing both pieces.

This week, instead, the bonus material is about FirstPrinciples.org itself, where you’ll be seeing me write more often in future. The First Principles Foundation was founded by Ildar Shar, a Canadian tech entrepreneur who thinks that physics is pretty cool. (Good taste that!) His foundation aims to support scientific progress, especially in addressing the big, fundamental questions. They give grants, analyze research trends, build scientific productivity tools…and most relevantly for me, publish science news on their website, in a section called the Hub.

The first time I glanced through the Hub, it was clear that FirstPrinciples and I have a lot in common. Like me, they’re interested both in scientific accomplishments and in the human infrastructure that makes them possible. They’ve interviewed figures in the open access movement, like the creators of arXiv and SciPost. On the science side, they mix coverage of the mainstream and reputable with outsiders challenging the status quo, and hot news topics with explainers of key concepts. They’re still new, and still figuring out what they want to be. But from my glimpse on the way, it looks like they’re going somewhere good.

Hot Things Are Less Useful

Did you know that particle colliders have to cool down their particle beams before they collide?

You might have learned in school that temperature is secretly energy. With a number called Boltzmann’s constant, you can convert a temperature of a gas in Kelvin to the average energy of a molecule in the gas. If that’s what you remember about temperature, it might seem weird that someone would cool down the particles in a particle collider. The whole point of a particle collider is to accelerate particles, giving them lots of energy, before colliding them together. Since those particles have a lot of energy, they must be very hot, right?

Well, no. Here’s the thing: temperature is not just the average energy. It’s the average random energy. It’s energy that might be used to make a particle move forward or backwards, up or down, a random different motion for each particle. It doesn’t include motion that’s the same for each particle, like the movement of a particle beam.

Cooling down a particle beam then, doesn’t mean slowing it down. Rather, it means making it more consistent, getting the different particles moving in the same direction rather than randomly spreading apart. You want the particles to go somewhere specific, speeding up and slamming into the other beam. You don’t want them to move randomly, running into the walls and destroying your collider. So you can have something with high energy that is comparatively cool.

In general, the best way I’ve found to think about temperature and heat is in terms of usefulness and uselessness. Cool things are useful, they do what you expect and not much more. Hot things are less useful, they use energy to do random things you don’t want. Sometimes, by chance, this random energy will still do something useful, and if you have a cold thing to pair with the hot thing, you can take advantage of this in a consistent way. But hot things by themselves are less useful, and that’s why particle colliders try to cool down their beams.

AI Can’t Do Science…And Neither Can Other Humans

Seen on Twitter:

I don’t know the context here, so I can’t speak to what Prof. Cronin meant. But it got me thinking.

Suppose you, like Prof. Cronin, were to insist that AI “cannot in principle” do science, because AI “is not autonomous” and “does not come up with its own problems to solve”. What might you mean?

You might just be saying that AI is bad at coming up with new problems to solve. That’s probably fair, at least at the moment. People have experimented with creating simple “AI researchers” that “study” computer programs, coming up with hypotheses about the programs’ performance and testing them. But it’s a long road from that to reproducing the much higher standards human scientists have to satisfy.

You probably don’t mean that, though. If you did, you wouldn’t have said “in principle”. You mean something stronger.

More likely, you might mean that AI cannot come up with its own problems, because AI is a tool. People come up with problems, and use AI to help solve them. In this perspective, not only is AI “not autonomous”, it cannot be autonomous.

On a practical level, this is clearly false. Yes, machine learning models, the core technology in current AI, are set up to answer questions. A user asks something, and receives the model’s prediction of the answer. That’s a tool, but for the more flexible models like GPT it’s trivial to turn it into something autonomous. Just add another program: a loop that asks the model what to do, does it, tells the model the result, and asks what to do next. Like taping a knife to a Roomba, you’ve made a very simple modification to make your technology much more dangerous.

You might object, though, that this simple modification of GPT is not really autonomous. After all, a human created it. That human had some goal, some problem they wanted to solve, and the AI is just solving the problem for them.

That may be a fair description of current AI, but insisting it’s true in principle has some awkward implications. If you make a “physics AI”, just tell it to do “good physics”, and it starts coming up with hypotheses you’d never thought of, is it really fair to say it’s just solving your problem?

What if the AI, instead, was a child? Picture a physicist encouraging a child to follow in their footsteps, filling their life with physics ideas and rhapsodizing about the hard problems of the field at the dinner table. Suppose the child becomes a physicist in turn, and finds success later in life. Were they really autonomous? Were they really a scientist?

What if the child, instead, was a scientific field, and the parent was the general public? The public votes for representatives, the representatives vote to hire agencies, and the agencies promise scientists they’ll give them money if they like the problems they come up with. Who is autonomous here?

(And what happens if someone takes a hammer to that process? I’m…still not talking about this! No-politics-rule still in effect, sorry! I do have a post planned, but it will have to wait until I can deal with the fallout.)

At this point, you’d probably stop insisting. You’d drop that “in principle”, and stick with the claim I started with, that current AI can’t be a scientist.

But you have another option.

You can accept the whole chain of awkward implications, bite all the proverbial bullets. Yes, you insist, AI is not autonomous. Neither is the physicist’s child in your story, and neither are the world’s scientists paid by government grants. Each is a tool, used by the one, true autonomous scientist: you.

You are stuck in your skull, a blob of curious matter trained on decades of experience in the world and pre-trained with a couple billion years of evolution. For whatever reason, you want to know more, so you come up with problems to solve. You’re probably pretty vague about those problems. You might want to see more pretty pictures of space, or wrap your head around the nature of time. So you turn the world into your tool. You vote and pay taxes, so your government funds science. You subscribe to magazines and newspapers, so you hear about it. You press out against the world, and along with the pressure that already exists it adds up, and causes change. Biological intelligences and artificial intelligences scurry at your command. From their perspective, they are proposing their own problems, much more detailed and complex than the problems you want to solve. But from yours, they’re your limbs beyond limbs, sight beyond sight, asking the fundamental questions you want answered.

Cool Asteroid News

Did you hear about the asteroid?

Which one?

You might have heard that an asteroid named 2024 YR4 is going to come unusually close to the Earth in 2032. When it first made the news, astronomers estimated a non-negligible chance of it hitting us: about three percent. That’s small enough that they didn’t expect it to happen, but large enough to plan around it: people invest in startups with a smaller chance of succeeding. Still, people were fairly calm about this one, and there are a couple of good reasons:

  • First, this isn’t a “kill the dinosaurs” asteroid, it’s much smaller. This is a “Tunguska Event” asteroid. Still pretty bad if it happens near a populated area, but not the end of life as we know it.
  • We know about it far in advance, and space agencies have successfully deflected an asteroid before, for a test. If it did pose a risk, it’s quite likely they’d be able to change its path so it misses the Earth instead.
  • It’s tempting to think of that 3% chance as like a roll of a hundred-sided die: the asteroid is on a random path, roll 1 to 3 and it will hit the Earth, roll higher and it won’t, and nothing we do will change that. In reality, though, that 3% was a measure of our ignorance. As astronomers measure the asteroid more thoroughly, they’ll know more and more about its path, and each time they figure something out, they’ll update the number.

And indeed, the number has been updated. In just the last few weeks, the estimated probability of impact has dropped from 3% to a few thousandths of a percent, as more precise observations clarified the asteroid’s path. There’s still a non-negligible chance it will hit the moon (about two percent at the moment), but it’s far too small to do more than make a big flashy crater.

It’s kind of fun to think that there are people out there who systematically track these things, with a plan to deal with them. It feels like something out of a sci-fi novel.

But I find the other asteroid more fun.

In 2020, a probe sent by NASA visited an asteroid named Bennu, taking samples which it carefully packaged and brought back to Earth. Now, scientists have analyzed the samples, revealing several moderately complex chemicals that have an important role in life on Earth, like amino acids and the bases that make up RNA and DNA. Interestingly, while on Earth these molecules all have the same “handedness“, the molecules on Bennu are divided about 50/50. Something similar was seen on samples retrieved from another asteroid, so this reinforces the idea that amino acids and nucleotide bases in space do not have a preferred handedness.

I first got into physics for the big deep puzzles, the ones that figure into our collective creation story. Where did the universe come from? Why are its laws the way they are? Over the ten years since I got my PhD, it’s felt like the answers to these questions have gotten further and further away, with new results serving mostly to rule out possible explanations with greater and greater precision.

Biochemistry has its own deep puzzles figuring into our collective creation story, and the biggest one is abiogenesis: how life formed from non-life. What excites me about these observations from Bennu is that it represents real ongoing progress on that puzzle. By glimpsing a soup of ambidextrous molecules, Bennu tells us something about how our own molecules’ handedness could have developed, and rules out ways that it couldn’t have. In physics, if we could see an era of the universe when there were equal amounts of matter and antimatter, we’d be ecstatic: it would confirm that the imbalance between matter and antimatter is a real mystery, and show us where we need to look for the answer. I love that researchers on the origins of life have reason right now to be similarly excited.