Monthly Archives: November 2024

A Tale of Two Experiments

Before I begin, two small announcements:

First: I am now on bluesky! Instead of having a separate link in the top menu for each social media account, I’ve changed the format so now there are social media buttons in the right-hand sidebar, right under the “Follow” button. Currently, they cover tumblr, twitter, and bluesky, but there may be more in future.

Second, I’ve put a bit more technical advice on my “Open Source Grant Proposal” post, so people interested in proposing similar research can have some ideas about how best to pitch it.

Now, on to the post:


Gravitational wave telescopes are possibly the most exciting research program in physics right now. Big, expensive machines with more on the way in the coming decades, gravitational wave telescopes need both precise theoretical predictions and high-quality data analysis. For some, gravitational wave telescopes have the potential to reveal genuinely new physics, to probe deviations from general relativity that might be related to phenomena like dark matter, though so far no such deviations have been conclusively observed. In the meantime, they’re teaching us new consequences of known physics. For example, the unusual population of black holes observed by LIGO has motivated those who model star clusters to consider processes in which the motion of three stars or black holes is related to each other, discovering that these processes are more important than expected.

Particle colliders are probably still exciting to the general public, but for many there is a growing sense of fatigue and disillusionment. Current machines like the LHC are big and expensive, and proposed future colliders would be even costlier and take decades to come online, in addition to requiring a huge amount of effort from the community in terms of precise theoretical predictions and data analysis. Some argue that colliders still might uncover genuinely new physics, deviations from the standard model that might explain phenomena like dark matter, but as no such deviations have yet been conclusively observed people are increasingly skeptical. In the meantime, most people working on collider physics are focused on learning new consequences of known physics. For example, by comparing observed results with theoretical approximations, people have found that certain high-energy processes usually left out of calculations are actually needed to get a good agreement with the data, showing that these processes are more important than expected.

…ok, you see what I did there, right? Was that fair?

There are a few key differences, with implications to keep in mind:

First, collider physics is significantly more expensive than gravitational wave physics. LIGO took about $300 million to build and spends about $50 million a year. The LHC took about $5 billion to build and costs $1 billion a year to run. That cost still puts both well below several other government expenses that you probably consider frivolous (please don’t start arguing about which ones in the comments!), but it does mean collider physics demands a bit of a stronger argument.

Second, the theoretical motivation to expect new fundamental physics out of LIGO is generally considered much weaker than for colliders. A large part of the theoretical physics community thought that they had a good argument why they should see something new at the LHC. In contrast, most theorists have been skeptical of the kinds of modified gravity theories that have dramatic enough effects that one could measure them with gravitational wave telescopes, with many of these theories having other pathologies or inconsistencies that made people wary.

Third, the general public finds astrophysics cooler than particle physics. Somehow, telling people “pairs of black holes collide more often than we thought because sometimes a third star in the neighborhood nudges them together” gets people much more excited than “pairs of quarks collide more often than we thought because we need to re-sum large logarithms differently”, even though I don’t think there’s a real “principled” difference between them. Neither reveals new laws of nature, both are upgrades to our ability to model how real physical objects behave, neither is useful to know for anybody living on Earth in the present day.

With all this in mind, my advice to gravitational wave physicists is to try, as much as possible, not to lean on stories about dark matter and modified gravity. You might learn something, and it’s worth occasionally mentioning that. But if you don’t, you run a serious risk of disappointing people. And you have such a big PR advantage if you just lean on new consequences of bog standard GR, that those guys really should get the bulk of the news coverage if you want to keep the public on your side.

The Nowhere String

Space and time seem as fundamental as anything can get. Philosophers like Immanuel Kant thought that they were inescapable, that we could not conceive of the world without space and time. But increasingly, physicists suspect that space and time are not as fundamental as they appear. When they try to construct a theory of quantum gravity, physicists find puzzles, paradoxes that suggest that space and time may just be approximations to a more fundamental underlying reality.

One piece of evidence that quantum gravity researchers point to are dualities. These are pairs of theories that seem to describe different situations, including with different numbers of dimensions, but that are secretly indistinguishable, connected by a “dictionary” that lets you interpret any observation in one world in terms of an equivalent observation in the other world. By itself, duality doesn’t mean that space and time aren’t fundamental: as I explained in a blog post a few years ago, it could still be that one “side” of the duality is a true description of space and time, and the other is just a mathematical illusion. To show definitively that space and time are not fundamental, you would want to find a situation where they “break down”, where you can go from a theory that has space and time to a theory that doesn’t. Ideally, you’d want a physical means of going between them: some kind of quantum field that, as it shifts, changes the world between space-time and not space-time.

What I didn’t know when I wrote that post was that physicists already knew about such a situation in 1993.

Back when I was in pre-school, famous string theorist Edward Witten was trying to understand something that others had described as a duality, and realized there was something more going on.

In string theory, particles are described by lengths of vibrating string. In practice, string theorists like to think about what it’s like to live on the string itself, seeing it vibrate. In that world, there are two dimensions, one space dimension back and forth along the string and one time dimension going into the future. To describe the vibrations of the string in that world, string theorists use the same kind of theory that people use to describe physics in our world: a quantum field theory. In string theory, you have a two-dimensional quantum field theory stuck “inside” a theory with more dimensions describing our world. You see that this world exists by seeing the kinds of vibrations your two-dimensional world can have, through a type of quantum field called a scalar field. With ten scalar fields, ten different ways you can push energy into your stringy world, you can infer that the world around you is a space-time with ten dimensions.

String theory has “extra” dimensions beyond the three of space and one of time we’re used to, and these extra dimensions can be curled up in various ways to hide them from view, often using a type of shape called a Calabi-Yau manifold. In the late 80’s and early 90’s, string theorists had found a similarity between the two-dimensional quantum field theories you get folding string theory around some of these Calabi-Yau manifolds and another type of two-dimensional quantum field theory related to theories used to describe superconductors. People called the two types of theories dual, but Witten figured out there was something more going on.

Witten described the two types of theories in the same framework, and showed that they weren’t two equivalent descriptions of the same world. Rather, they were two different ways one theory could behave.

The two behaviors were connected by something physical: the value of a quantum field called a modulus field. This field can be described by a number, and that number can be positive or negative.

When the modulus field is a large positive number, then the theory behaves like string theory twisted around a Calabi-Yau manifold. In particular, the scalar fields have many different values they can take, values that are smoothly related to each other. These values are nothing more or less than the position of the string in space and time. Because the scalars can take many values, the string can sit in many different places, and because the values are smoothly related to each other, the string can smoothly move from one place to another.

When the modulus field is a large negative number, then the theory is very different. What people thought of as the other side of the duality, a theory like the theories used to describe superconductors, is the theory that describes what happens when the modulus field is large and negative. In this theory, the scalars can no longer take many values. Instead, they have one option, one stable solution. That means that instead of there being many different places the string could sit, describing space, there are no different places, and thus no space. The string lives nowhere.

These are two very different situations, one with space and one without. And they’re connected by something physical. You could imagine manipulating the modulus field, using other fields to funnel energy into it, pushing it back and forth from a world with space to a world of nowhere. Much more than the examples I was aware of, this is a super-clear example of a model where space is not fundamental, but where it can be manipulated, existing or not existing based on physical changes.

We don’t know whether a model like this describes the real world. But it’s gratifying to know that it can be written down, that there is a picture, in full mathematical detail, of how this kind of thing works. Hopefully, it makes the idea that space and time are not fundamental sound a bit more reasonable.

The “That’s Neat” Level

Everything we do, we do for someone.

The simplest things we do for ourselves. We grab that chocolate bar on the table and eat it, and it makes us happier.

Unless the chocolate bar is homemade, we probably paid money for it. We do other things, working for a living, to get the money to get those chocolate bars for ourselves.

(We also get chocolate bars for our loved ones, or for people we care about. Whether this is not in a sense also getting a chocolate bar for yourself is left as an exercise to the reader.)

What we do for the money, in turn, is driven by what would make someone else happier. Sometimes this is direct: you cut someone’s hair, they enjoy the breeze, they pay you, you enjoy the chocolate.

Other times, this gets mediated. You work in HR at a haircut chain. The shareholders want more money, to buy things like chocolate bars, so they vote for a board who wants to do what the shareholders want so as not to be in breach of contract and get fewer chocolate bars, so the board tells you to do things they believe will achieve that, and you do them because that’s how you get your chocolate bars. Every so often, the shareholders take a look at how many chocolate bars they can afford and adjust.

Compared to all this, academia is weirdly un-mediated.

It gets the closest to this model with students. Students want to learn certain things because they will allow them to provide other people with better services in future, which they can use to buy chocolate bars, and other things for the sheer pleasure, a neat experience almost comparable to a chocolate bar. People running universities want more money from students so they can spend it on things like giant statues of chocolate bars, so they instruct people working in the university to teach more of the things students want. (Typically in a very indirect way, for example funding a department in the US based on number of majors rather than number of students.)

But there’s a big chunk of academics whose performance is mostly judged not by their teaching, but by their research. They are paid salaries by departments based on the past quality of their research, or paid out of grants awarded based on the expected future quality of their research. (Or to combine them, paid salaries by departments based on the expected size of their grants.)

And in principle, that introduces many layers of mediation. The research universities and grant agencies are funded by governments, which pool money together in the expectation that someday by doing so they will bring about a world where more people can eat chocolate bars.

But the potential to bring about a world of increased chocolate bars isn’t like maximizing shareholder value. Nobody can check, one year later, how much closer you are to the science-fueled chocolate bar utopia.

And so in practice, in science, people fund you because they think what you’re doing is neat. Because it scratches the chocolate-bar-shaped hole in their brains. They might have some narrative about how your work could lead to the chocolate bar utopia the government is asking for, but it’s not like they’re calculating the expected distribution of chocolate bars if they fund your project versus another. You have to convince a human being, not that you are doing something instrumentally and measurably useful…but that you are doing something cool.

And that makes us very weird people! Halfway between haircuts and HR, selling a chocolate bar that promises to be something more.

Replacing Space-Time With the Space in Your Eyes

Nima Arkani-Hamed thinks space-time is doomed.

That doesn’t mean he thinks it’s about to be destroyed by a supervillain. Rather, Nima, like many physicists, thinks that space and time are just approximations to a deeper reality. In order to make sense of gravity in a quantum world, seemingly fundamental ideas, like that particles move through particular places at particular times, will probably need to become more flexible.

But while most people who think space-time is doomed research quantum gravity, Nima’s path is different. Nima has been studying scattering amplitudes, formulas used by particle physicists to predict how likely particles are to collide in particular ways. He has been trying to find ways to calculate these scattering amplitudes without referring directly to particles traveling through space and time. In the long run, the hope is that knowing how to do these calculations will help suggest new theories beyond particle physics, theories that can’t be described with space and time at all.

Ten years ago, Nima figured out how to do this in a particular theory, one that doesn’t describe the real world. For that theory he was able to find a new picture of how to calculate scattering amplitudes based on a combinatorical, geometric space with no reference to particles traveling through space-time. He gave this space the catchy name “the amplituhedron“. In the years since, he found a few other “hedra” describing different theories.

Now, he’s got a new approach. The new approach doesn’t have the same kind of catchy name: people sometimes call it surfaceology, or curve integral formalism. Like the amplituhedron, it involves concepts from combinatorics and geometry. It isn’t quite as “pure” as the amplituhedron: it uses a bit more from ordinary particle physics, and while it avoids specific paths in space-time it does care about the shape of those paths. Still, it has one big advantage: unlike the amplituhedron, Nima’s new approach looks like it can work for at least a few of the theories that actually describe the real world.

The amplituhedron was mysterious. Instead of space and time, it described the world in terms of a geometric space whose meaning was unclear. Nima’s new approach also describes the world in terms of a geometric space, but this space’s meaning is a lot more clear.

The space is called “kinematic space”. That probably still sounds mysterious. “Kinematic” in physics refers to motion. In the beginning of a physics class when you study velocity and acceleration before you’ve introduced a single force, you’re studying kinematics. In particle physics, kinematic refers to the motion of the particles you detect. If you see an electron going up and to the right at a tenth the speed of light, those are its kinematics.

Kinematic space, then, is the space of observations. By saying that his approach is based on ideas in kinematic space, what Nima is saying is that it describes colliding particles not based on what they might be doing before they’re detected, but on mathematics that asks questions only about facts about the particles that can be observed.

(For the experts: this isn’t quite true, because he still needs a concept of loop momenta. He’s getting the actual integrands from his approach, rather than the dual definition he got from the amplituhedron. But he does still have to integrate one way or another.)

Quantum mechanics famously has many interpretations. In my experience, Nima’s favorite interpretation is the one known as “shut up and calculate”. Instead of arguing about the nature of an indeterminately philosophical “real world”, Nima thinks quantum physics is a tool to calculate things people can observe in experiments, and that’s the part we should care about.

From a practical perspective, I agree with him. And I think if you have this perspective, then ultimately, kinematic space is where your theories have to live. Kinematic space is nothing more or less than the space of observations, the space defined by where things land in your detectors, or if you’re a human and not a collider, in your eyes. If you want to strip away all the speculation about the nature of reality, this is all that is left over. Any theory, of any reality, will have to be described in this way. So if you think reality might need a totally new weird theory, it makes sense to approach things like Nima does, and start with the one thing that will always remain: observations.

I Ain’t Afraid of No-Ghost Theorems

In honor of Halloween this week, let me say a bit about the spookiest term in physics: ghosts.

In particle physics, we talk about the universe in terms of quantum fields. There is an electron field for electrons, a gluon field for gluons, a Higgs field for Higgs bosons. The simplest fields, for the simplest particles, can be described in terms of just a single number at each point in space and time, a value describing how strong the field is. More complicated fields require more numbers.

Most of the fundamental forces have what we call vector fields. They’re called this because they are often described with vectors, lists of numbers that identify a direction in space and time. But these vectors actually contain too many numbers.

These extra numbers have to be tidied up in some way in order to describe vector fields in the real world, like the electromagnetic field or the gluon field of the strong nuclear force. There are a number of tricks, but the nicest is usually to add some extra particles called ghosts. Ghosts are designed to cancel out the extra numbers in a vector, leaving the right description for a vector field. They’re set up mathematically such that they can never be observed, they’re just a mathematical trick.

Mathematical tricks aren’t all that spooky (unless you’re scared of mathematics itself, anyway). But in physics, ghosts can take on a spookier role as well.

In order to do their job cancelling those numbers, ghosts need to function as a kind of opposite to a normal particle, a sort of undead particle. Normal particles have kinetic energy: as they go faster and faster, they have more and more energy. Said another way, it takes more and more energy to make them go faster. Ghosts have negative kinetic energy: the faster they go, the less energy they have.

If ghosts are just a mathematical trick, that’s fine, they’ll do their job and cancel out what they’re supposed to. But sometimes, physicists accidentally write down a theory where the ghosts aren’t just a trick cancelling something out, but real particles you could detect, without anything to hide them away.

In a theory where ghosts really exist, the universe stops making sense. The universe defaults to the lowest energy it can reach. If making a ghost particle go faster reduces its energy, then the universe will make ghost particles go faster and faster, and make more and more ghost particles, until everything is jam-packed with super-speedy ghosts unto infinity, never-ending because it’s always possible to reduce the energy by adding more ghosts.

The absence of ghosts, then, is a requirement for a sensible theory. People prove theorems showing that their new ideas don’t create ghosts. And if your theory does start seeing ghosts…well, that’s the spookiest omen of all: an omen that your theory is wrong.