Tag Archives: Higgs

Nature Abhors a Constant

Why is a neutrino lighter than an electron? Why is the strong nuclear force so much stronger than the weak nuclear force, and why are both so much stronger than gravity? For that matter, why do any particles have the masses they do, or forces have the strengths they do?

To some people, these sorts of questions are meaningless. A scientist’s job is to find out the facts, to measure what the constants are. To ask why, though…why would you want to do that?

Maybe a sense of history?

See, physics has a history of taking what look like arbitrary facts (the orbits of the planets, the rate objects fall, the pattern of chemical elements) and finding out why they are that way. And there’s no reason not to expect this trend to continue.

The point can be made even more strongly: increasingly, it is becoming clear that nature abhors a constant.

To explain this, I first have to clarify what I mean by a constant. If you were asked to think of a constant, you’d probably think of the speed of light. The thing is, the speed of light is actually not the sort of constant I have in mind. The speed of light is three hundred million meters per second…but it’s also 671 million miles per hour, or one light year per year. Choose the right units, and the speed of light is just one. To go a bit further: the speed of light is merely an artifact of how we choose our units of distance and time, so it’s not a “real” constant at all!

So what would a “real” constant look like? Well, imagine if there were two fundamental speeds: a maximum, like the speed of light and a minimum, which nothing could go slower than. You could pick units so that one of the speeds was one, or so that the other was…but they couldn’t both be one at the same time. Their ratio stays the same, no matter what units you’re using. That’s the sign of a true constant. To say it another way: a “real” constant is dimensionless.

It is these “real” constants that nature so abhors, because whenever such a “real” constant appears to exist, it is likely to be due to a scalar field.

To remind readers, a scalar field is a type of quantum field consisting of a number that can vary through space. Temperature is an iconic illustration of a scalar field: at any given point you can define temperature by a number, and that number changes as you move from place to place.

Now constants, being constant, are not known for changing from place to place. Just because we don’t see mass or charge being different in different places, though, doesn’t mean they aren’t scalar fields.

To illustrate, imagine that you live far in the past, far enough that no-one knows that air has weight. Through careful experimentation, though, you can observe air pressure: everything is pressed upon in all directions by some mysterious force. Even if you don’t have access to mountains and therefore can’t see that air pressure varies by height, maybe you have begun to guess that air pressure is related to the weight of the air. You have a possible explanation for your constant pressure, in terms of a scalar pressure field. But how do you test your idea? Well, the big difference between a scalar and a constant is that a scalar can vary. Since there’s so much air above you, it’s hard to get air pressure to vary: you have to put enough energy in to the air to make it happen. More specifically, you vibrate the air: you create sound waves! By measuring how fast the sound waves go, you can test out your proposed number for the mass of the air, and if everything lines up right, you have successfully replaced a mysterious constant with a logical explanation.

This is almost exactly what happened with the Higgs. Scientists observed that particle masses seemed to be arbitrary numbers, and proposed a scalar field to explain them. (As a matter of fact, the masses involved actually cannot just be constants; the mathematics involved doesn’t allow it. They must be scalar fields). In order to test out the theory, we built the Large Hadron Collider, and used it to cause ripples in the seemingly constant masses, just like sound waves in air. In this case, those ripples were the Higgs particle, which served as evidence for the Higgs field just as sound waves serve as evidence for the mass of air.

And this sort of method keeps going. The Higgs explains mass in many cases, but it doesn’t explain the differences between particle masses, and it may be that new fields are needed to explain those. The same thing goes for the strengths of forces. Scalar fields are the most likely explanations for inflation, and in string theory scalars control the size and shape of the extra dimensions. So if you’ve got a mysterious constant, nature likely has a scalar field waiting in the wings to explain it.

Supersymmetry, to the Rescue!

Part Three of a Series on N=4 Super Yang-Mills Theory

This is the third in a series of articles that will explain N=4 super Yang-Mills theory. In this series I take that phrase apart bit by bit, explaining as I go. Because I’m perverse and out to confuse you, I started with the last bit here, and now I’m working my way up.

N=4 Super Yang-Mills Theory

Ah, supersymmetry…trendy, sexy, mysterious…an excuse to put “super” in front of words…it’s a grand subject.

If I’m going to manage to explain supersymmetry at all, then I need to explain spin. Luckily, you don’t need to know much about spin for this to work. While I could start telling you about how particles literally spin around like tops despite having a radius of zero, and how quantum mechanics restricts how fast they spin to a few particular values measured by Planck’s constant…all you really need to know is the following:

Spin is a way to categorize particles.

In particular, there are:
Spin 1: Yang-Mills fields are spin 1, carrying forces with a direction and strength.
Spin ½: This spin covers pretty much all of the particles you encounter in everyday matter: electrons, neutrons, and protons, as well as more exotic stuff like neutrinos. If you want to make large-scale, interesting structures like rocks or lifeforms you pretty much need spin ½ particles.
Spin 0: A spin zero field (also called a scalar) is a number, like a temperature, that can vary from place to place. The Higgs field is an example of a spin zero field, where the number is part of the mass of other particles, and the Higgs boson is a ripple in that field, like a cold snap would be for temperature.

While they aren’t important for this post, you can also have higher numbers for spin: gravity has spin 2, for example.

With this definition in hand, we can start talking about supersymmetry, which is also pretty straightforward if you ignore all of the actual details.

Supersymmetry is a relationship (or symmetry) between particles with spin X, and particles with spin X-½

For example, you could have a relationship between a spin 1 Yang-Mills field and a spin ½ matter particle, or between a spin ½ matter particle and a spin 0 scalar.

“Relationship” is a vague term here, much like it is in romance, and just like in romance you’d do well to clarify precisely what you mean by it. Here, it means something like the following: if you switch a particle for its “superpartner” (the other particle in the relationship) then the physics should remain the same. This has two important consequences: superpartners have the same mass as each-other and superpartners have the same interactions as each-other.

The second consequence means that if a particle has electric charge -1, its superpartner also has electric charge -1. If you’ve got gluons, each with a color and an anti-color, then their superpartners will also have both a color and an anti-color. Astute readers will have remembered that quarks just have a color or an anti-color, and realized the implication: quarks cannot be the superpartners of gluons.

Other, even more well-informed readers will be wondering about the first consequence. Such readers might have heard that the LHC is looking for superpartners, or that superpartners could explain dark matter, and that in either case superpartners have very high mass. How can this be if superpartners have to have the same mass as their partners among the regular particles?

The important point to make here is that our real world is not supersymmetric, even if superpartners are discovered at the LHC, because supersymmetry is broken. In physics, when a symmetry of any sort is broken it’s like a broken mirror: it no longer is the same on each side, but the two sides are still related in a systematic way. Broken supersymmetry means that particles that would be superpartners can have different masses, but they will still have the same interactions.

When people look for supersymmetry at the LHC, they’re looking for new particles with the same interactions as the old particles, but generally much higher mass. When I talk about supersymmetry, though, I’m talking about unbroken supersymmetry: pairs of particles with the same interactions and the same mass. And N=4 super Yang-Mills is full of them.

How full? N=4 full. And that’s next week’s topic.