Category Archives: Life as a Physicist

What Referees Are For

This week, we had a colloquium talk by the managing editor of the Open Journal of Astrophysics.

The Open Journal of Astrophysics is an example of an arXiv overlay journal. In the old days, journals shouldered the difficult task of compiling scientists’ work into a readable format and sending them to university libraries all over the world so people could stay up to date with the work of distant colleagues. They used to charge libraries for the journals, now some instead charge authors per paper they want to publish.

Now, most of that is unnecessary due to online resources, in my field the arXiv. We prepare our papers using free tools like LaTeX, then upload them to arXiv.org, a website that makes the papers freely accessible for everybody. I don’t think I’ve ever read a paper in a physical journal in my field, and I only check journal websites if I think there’s a mistake in the arXiv version. The rest of the time, I just use the arXiv.

Still, journals do one thing the arXiv doesn’t do, and that’s refereeing. Each paper a journal receives is sent out to a few expert referees. The referees read the paper, and either reject it, accept it as-is, or demand changes before they can accept it. The journal then publishes accepted papers only.

The goal of arXiv overlay journals is to make this feature of journals also unnecessary. To do this, they notice that if every paper is already on arXiv, they don’t need to host papers or print them or typeset them. They just need to find suitable referees, and announce which papers passed.

The Open Journal of Astrophysics is a relatively small arXiv overlay journal. They operate quite cheaply, in part because the people running it can handle most of it as a minor distraction from their day job. SciPost is much bigger, and has to spend more per paper to operate. Still, it spends a lot less than journals charge authors.

We had a spirited discussion after the talk, and someone brought up an interesting point: why do we need to announce which papers passed? Can’t we just publish everything?

What, in the end, are the referees actually for? Why do we need them?

One function of referees is to check for mistakes. This is most important in mathematics, where referees might spend years making sure every step in a proof works as intended. Other fields vary, from theoretical physics (where we can check some things sometimes, but often have to make do with spotting poorly explained parts of a calculation), to fields that do experiments in the real world (where referees can look for warning signs and shady statistics, but won’t actually reproduce the experiment). A mistake found by a referee can be a boon to not just the wider scientific community, but to the author as well. Most scientists would prefer their papers to be correct, so we’re often happy to hear about a genuine mistake.

If this was all referees were for, though, then you don’t actually need to reject any papers. As a colleague of mine suggested, you just need the referees to publish their reports. Then the papers could be published along with comments from the referees, and possibly also responses from the author. Readers could see any mistakes the referees found, and judge for themselves what they show about the result.

Referees already publish their reports in SciPost much of the time, though not currently in the Open Journal of Astrophysics. Both journals still reject some papers, though. In part, that’s because they serve another function: referees are supposed to tell us which papers are “good”.

Some journals are more prestigious and fancy than others. Nature and Science are the most famous, though people in my field almost never bother to publish in either. Still, we have a hierarchy in mind, with Physical Review Letters on the high end and JHEP on the lower one. Publishing in a fancier and more prestigious journal is supposed to say something about you as a scientist, to say that your work is fancier and more prestigious. If you can’t publish in any journal at all, then your work wasn’t interesting enough to merit getting credit for it, and maybe you should have worked harder.

What does that credit buy you? Ostensibly, everything. Jobs are more likely to hire you if you’ve published in more prestigious places, and grant agencies will be more likely to give you money.

In practice, though, this depends a lot on who’s making the decisions. Some people will weigh these kinds of things highly, especially if they aren’t familiar with a candidate’s work. Others will be able to rely on other things, from numbers of papers and citations to informal assessments of a scientist’s impact. I genuinely don’t know whether the journals I published in made any impact at all when I was hired, and I’m a bit afraid to ask. I haven’t yet sat on the kind of committee that makes these decisions, so I don’t know what things look like from the other side either.

But I do know that, on a certain level, journals and publications can’t matter quite as much as we think. As I mentioned, my field doesn’t use Nature or Science, while others do. A grant agency or hiring committee comparing two scientists would have to take that into account, just as they have to take into account the thousands of authors on every single paper by the ATLAS and CMS experiments. If a field started publishing every paper regardless of quality, they’d have to adapt there too, and find a new way to judge people compatible with that.

Can we just publish everything, papers and referee letters and responses and letters and reviews? Maybe. I think there are fields where this could really work well, and fields where it would collapse into the invective of a YouTube comments section. I’m not sure where my own field sits. Theoretical particle physics is relatively small and close-knit, but it’s also cool and popular, with many strong and dumb opinions floating around. I’d like to believe we could handle it, that we could prune back the professional cruft and turn our field into a real conversation between scholars. But I don’t know.

A Significant Calculation

Particle physicists have a weird relationship to journals. We publish all our results for free on a website called the arXiv, and when we need to read a paper that’s the first place we look. But we still submit our work to journals, because we need some way to vouch that we’re doing good work. Explicit numbers (h-index, impact factor) are falling out of favor, but we still need to demonstrate that we get published in good journals, that we do enough work, and that work has an impact on others. We need it to get jobs, to get grants to fund research at those jobs, and to get future jobs for the students and postdocs we hire with those grants. Our employers need it to justify their own funding, to summarize their progress so governments and administrators can decide who gets what.

This can create weird tensions. When people love a topic, they want to talk about it with each other. They want to say all sorts of things, big and small, to contribute new ideas and correct others and move things forward. But as professional physicists, we also have to publish papers. We can publish some “notes”, little statements on the arXiv that we don’t plan to make into a paper, but we don’t really get “credit” for those. So in practice, we try to force anything we want to say into a paper-sized chunk.

That wouldn’t be a problem if paper-sized chunks were flexible, and you can see when journals historically tried to make them that way. Some journals publish “letters”, short pieces a few pages long, to contrast with their usual papers that can run from twenty to a few hundred pages. These “letters” tend to be viewed as prestigious, though, so they end up being judged on roughly the same standards as the normal papers, if not more strictly.

What standards are those? For each journal, you can find an official list. The Journal of High-Energy Physics, for example, instructs reviewers to look for “high scientific
quality, originality and relevance”. That rules out papers that just reproduce old results, but otherwise is frustratingly vague. What constitutes high scientific quality? Relevant to whom?

In practice, reviewers use a much fuzzier criterion: is this “paper-like”? Does this look like other things that get published, or not?

Each field will assess that differently. It’s a criterion of familiarity, of whether a paper looks like what people in the field generally publish. In my field, one rule of thumb is that a paper must contain a significant calculation.

A “significant calculation” is still quite fuzzy, but the idea is to make sure that a paper requires some amount of actual work. Someone has to do something challenging, and the work shouldn’t be half-done: as much as feasible, they should finish, and calculate something new. Ideally, this should be something that nobody had calculated before, but if the perspective is new enough it can be something old. It should “look hard”, though.

That’s a fine way to judge whether someone is working hard, which is something we sometimes want to judge. But since we’re incentivized to make everything into a paper, this means that every time we want to say something, we want to accompany it with some “significant calculation”, some concrete time-consuming work. This can happen even if we want to say something that’s quite direct and simple, a fact that can be quickly justified but nonetheless has been ignored by the field. If we don’t want it to be “just” an un-credited note, we have to find some way to turn it into a “significant calculation”. We do extra work, sometimes pointless work, in order to make something “paper-sized”.

I like to think about what academia would be like without the need to fill out a career. The model I keep imagining is that of a web forum or a blogging platform. There would be the big projects, the in-depth guides and effortposts. But there would also be shorter contributions, people building off each other, comments on longer pieces and quick alerts pinned to the top of the page. We’d have a shared record of knowledge, where everyone contributes what they want to whatever level of detail they want.

I think math is a bit closer to this ideal. Despite their higher standards for review, checking the logic of every paper to make sure it makes sense to publish, math papers can sometimes be very short, or on apparently trivial things. Physics doesn’t quite work this way, and I suspect part of it is our funding sources. If you’re mostly paid to teach, like many mathematicians, your research is more flexible. If you’re paid to research, like many physicists, then people want to make sure your research is productive, and that tends to cram it into measurable boxes.

In today’s world, I don’t think physics can shift cultures that drastically. Even as we build new structures to rival the journals, the career incentives remain. Physics couldn’t become math unless it shed most of the world’s physicists.

In the long run, though…well, we may one day find ourselves in a world where we don’t have to work all our days to keep each other alive. And if we do, hopefully we’ll change how scientists publish.

IPhT-60 Retrospective

Last week, my institute had its 60th anniversary party, which like every party in academia takes the form of a conference.

For unclear reasons, this one also included a physics-themed arcade game machine.

Going in, I knew very little about the history of the Institute of Theoretical Physics, of the CEA it’s part of (Commissariat of Atomic Energy, now Atomic and Alternative Energy), or of French physics in general, so I found the first few talks very interesting. I learned that in France in the early 1950’s, theoretical physics was quite neglected. Key developments, like relativity and statistical mechanics, were seen as “too German” due to their origins with Einstein and Boltzmann (nevermind that this was precisely why the Nazis thought they were “not German enough”), while de Broglie suppressed investigation of quantum mechanics. It took French people educated abroad to come back and jumpstart progress.

The CEA is, in a sense, the French equivalent of the some of the US’s national labs, and like them got its start as part of a national push towards nuclear weapons and nuclear power.

(Unlike the US’s national labs, the CEA is technically a private company. It’s not even a non-profit: there are for-profit components that sell services and technology to the energy industry. Never fear, my work remains strictly useless.)

My official title is Ingénieur Chercheur, research engineer. In the early days, that title was more literal. Most of the CEA’s first permanent employees didn’t have PhDs, but were hired straight out of undergraduate studies. The director, Claude Bloch, was in his 40’s, but most of the others were in their 20’s. There was apparently quite a bit of imposter syndrome back then, with very young people struggling to catch up to the global state of the art.

They did manage to catch up, though, and even excel. In the 60’s and 70’s, researchers at the institute laid the groundwork for a lot of ideas that are popular in my field at the moment. Stora’s work established a new way to think about symmetry that became the textbook approach we all learn in school, while Froissart figured out a consistency condition for high-energy physics whose consequences we’re still teasing out. Pham was another major figure at the institute in that era. With my rudimentary French I started reading his work back in Copenhagen, looking for new insights. I didn’t go nearly as fast as my partner in the reading group though, whose mastery of French and mathematics has seen him use Pham’s work in surprising new ways.

Hearing about my institute’s past, I felt a bit of pride in the physicists of the era, not just for the science they accomplished but for the tools they built to do it. This was the era of preprints, first as physical papers, orange folders mailed to lists around the world, and later online as the arXiv. Physicists here were early adopters of some aspects, though late adopters of others (they were still mailing orange folders a ways into the 90’s). They also adopted computation, with giant punch-card reading, sheets-of-output-producing computers staffed at all hours of the night. A few physicists dove deep into the new machines, and guided the others as capabilities changed and evolved, while others were mostly just annoyed by the noise!

When the institute began, scientific papers were still typed on actual typewriters, with equations handwritten in or typeset in ingenious ways. A pool of secretaries handled much of the typing, many of whom were able to come to the conference! I wonder what they felt, seeing what the institute has become since.

I also got to learn a bit about the institute’s present, and by implication its future. I saw talks covering different areas, from multiple angles on mathematical physics to simulations of large numbers of particles, quantum computing, and machine learning. I even learned a bit from talks on my own area of high-energy physics, highlighting how much one can learn from talking to new people.

IPhT’s 60-Year Anniversary

This year is the 60th anniversary of my new employer, the Institut de Physique Théorique of CEA Paris-Saclay (or IPhT for short). In celebration, they’re holding a short conference, with a variety of festivities. They’ve been rushing to complete a film about the institute, and I hear there’s even a vintage arcade game decorated with Feynman diagrams. For me, it will be a chance to learn a bit more about the history of this place, which I currently know shamefully little about.

(For example, despite having his textbook on my shelf, I don’t know much about what our Auditorium’s namesake Claude Itzykson was known for.)

Since I’m busy with the conference this week, I won’t have time for a long blog post. Next week I’ll be able to say more, and tell you what I learned!

Physics’ Unique Nightmare

Halloween is coming up, so let’s talk about the most prominent monster of the physics canon, the nightmare scenario.

Not to be confused with the D&D Nightmare, which once was a convenient source of infinite consumable items for mid-level characters.

Right now, thousands of physicists search for more information about particle physics beyond our current Standard Model. They look at data from the Large Hadron Collider to look for signs of new particles and unexpected behavior, they try to detect a wide range of possible dark matter particles, and they make very precise measurements to try to detect subtle deviations. And in the back of their minds, almost all of those physicists wonder if they’ll find anything at all.

It’s not that we think the Standard Model is right. We know it has problems, deep mathematical issues that make it give nonsense answers and an apparent big mismatch with what we observe about the motion of matter and light in the universe. (You’ve probably heard this mismatch called dark matter and dark energy.)

But none of those problems guarantee an answer soon. The Standard Model will eventually fail, but it may fail only for very difficult and expensive experiments, not a Large Hadron Collider but some sort of galactic-scale Large Earth Collider. It might be that none of the experiments or searches or theories those thousands of physicists are working on will tell them anything they didn’t already know. That’s the nightmare scenario.

I don’t know another field that has a nightmare scenario quite like this. In most fields, one experiment or another might fail, not just not giving the expected evidence but not teaching anything new. But most experiments teach us something new. We don’t have a theory, in almost any field, that has the potential to explain every observation up to the limits of our experiments, but which we still hope to disprove. Only the Standard Model is like that.

And while thousands of physicists are exposed to this nightmare scenario, the majority of physicists aren’t. Physics isn’t just the science of the reductionistic laws of the smallest constituents of matter. It’s also the study of physical systems, from the bubbling chaos of nuclear physics to the formation of planets and galaxies and black holes, to the properties of materials to the movement of bacteria on a petri dish and bees in a hive. It’s also the development of new methods, from better control of individual atoms and quantum states to powerful new tricks for calculation. For some, it can be the discovery, not of reductionistic laws of the smallest scales, but of general laws of the largest scales, of how systems with many different origins can show echoes of the same behavior.

Over time, more and more of those thousands of physicists break away from the nightmare scenario, “waking up” to new questions of these kinds. For some, motivated by puzzles and skill and the beauty of physics, the change is satisfying, a chance to work on ideas that are moving forward, connected with experiment or grounded in evolving mathematics. But if your motivation is really tied to those smallest scales, to that final reductionistic “why”, then such a shift won’t be satisfying, and this is a nightmare you won’t wake up from.

Me, I’m not sure. I’m a tool-builder, and I used to tell myself that tool-builders are always needed. But I find I do care, in the end, what my tools are used for. And as we approach the nightmare scenario, I’m not at all sure I know how to wake up.

Academic Hiring: My Field vs. Bret’s

Bret Deveraux is a historian and history-blogger who’s had a rough time on the academic job market. He recently had a post about how academic hiring works, at least in his corner of academia. Since we probably have some overlap in audience (and should have more, if you’re at all interested in ancient history he’s got some great posts), I figured I’d make a post of my own pointing out how my field, and fields nearby, do things differently.

First, there’s a big difference in context. The way Bret describes things, it sounds like he’s applying only to jobs in the US (maybe also Canada?). In my field, you can do that (the US is one of a few countries big enough to do that), but in practice most searches are at least somewhat international. If you look at the Rumor Mill, you’ll see a fair bit of overlap between US searches and UK searches, for example.

Which brings up another difference: rumor mills! It can be hard for applicants to get a clear picture of what’s going on. Universities sometimes forget to let applicants know they weren’t shortlisted, or even that someone else was hired. Rumor mills are an informal way to counteract this. They’re websites where people post which jobs are advertised in a given year, who got shortlisted, and who eventually got offered the job. There’s a rumor mill for the US market (including some UK jobs anyway), a UK rumor mill, a German/Nordic rumor mill (which also has a bunch of Italian jobs on it, to the seeming annoyance of the organizers), and various ones that I haven’t used but are linked on the US one’s page.

Bret describes a seasonal market with two stages: a first stage aimed at permanent positions, and a second stage for temporary adjunct teaching positions. My field doesn’t typically do adjuncts, so we just have the first stage. This is usually, like Bret’s field, something that happens in the Fall through Winter, but in Europe institutional funding decisions can get made later in the year, so I’ve seen new permanent positions get advertised even into the early Spring.

(Our temporary positions are research-focused, and advertised at basically the same time of year as the faculty positions, with the caveat that there is a special rule for postdocs. Due to a widely signed agreement, we in high-energy theory have agreed to not require postdocs to make a decision about whether they will accept a position until Feb 15 at the earliest. This stopped what used to be an arms race, with positions requiring postdocs to decide earlier and earlier in order to snatch the good ones before other places could make offers. The deadline was recently pushed a bit later yet, to lower administrative load during the Christmas break.)

Bret also describes two stages of interviews, a long-list interviewed on Zoom (that used to be interviewed at an important conference) and a short-list interviewed on campus. We just have the latter: while there are sometimes long-lists, they’re usually an internal affair, and I can’t think of a conference you could expect everyone to go to for interviews anyway. Our short-lists are also longer than his: I was among eight candidates when I interviewed for my position, which is a little high but not unheard of, five is quite typical.

His description of the actual campus visit matches my experience pretty well. There’s a dedicated talk, and something that resembles a “normal job interview”, but the rest, conversations from the drive in to the dinners if they organize them, are all interviews on some level too.

(I would add though, that while everyone there is trying to sort out if you’d be a good fit for them, you should also try to sort out if they’d be a good fit for you. I’ll write more about this another time, but I’m increasingly convinced that a key element in my landing a permanent position was the realization that, rather than just trying for every position I where I plausibly had a chance, I should focus on positions where I would actually be excited to collaborate with folks there.)

Bret’s field, as mentioned, has a “second round” of interviews for temporary positions, including adjuncts and postdocs. We don’t have adjuncts, but we do have postdocs, and they mostly interview at the same time the faculty do. For Bret, this wouldn’t make any sense, because anyone applying for postdocs is also applying for faculty positions, but in my field there’s less overlap. For one, very few people apply for faculty positions right out of their PhD: almost everyone, except those viewed as exceptional superstars, does at least one postdoc first. After that, you can certainly have collisions, with someone taking a postdoc and then getting a faculty job. The few times I’ve broached this possibility with people, they were flexible: most people have no hard feelings if a postdoc accepts a position and then changes their mind when they get a faculty job, and many faculty jobs let people defer a year, so they can do their postdoc and then start their faculty job afterwards.

(It helps that my field never seems to have all that much pressure to fill teaching roles. I’m not sure why (giant lecture courses using fewer profs? more research funding meaning we don’t have to justify ourselves with more undergrad majors?), but it’s probably part of why we don’t seem to hire adjuncts very often.)

Much like in Bret’s field, we usually need to submit a cover letter, CV, research statement, and letters of recommendation. Usually we submit a teaching statement, not a portfolio: some countries (Denmark) have been introducing portfolios but for now they’re not common. Diversity statements are broadly speaking a US and Canada thing: you will almost always need to submit one for a job in those places (one memorable job I looked at asserted that Italian-American counted as diversity), and sometimes in the UK, but much more rarely elsewhere in Europe (I can think of only one example). You never need to submit transcripts except if you’re applying to some unusually bureaucracy-obsessed country. “Writing samples” sometimes take the form of requests for a few important published papers: most places don’t ask for this, though. Our cover letters are less fixed (I’ve never heard a two-page limit, and various jobs actually asked for quite different things). While most jobs require three letters of recommendation, I was surprised to learn (several years in to applying…) that one sometimes can submit more, with three just being a minimum.

Just like Bret’s field, these statements all need to be tailored to the job to some extent (something I once again appreciated more a few years in). That does mean a lot of work, because much like Bret’s field there are often only a few reasonable permanent jobs one can apply for worldwide each year (maybe more than 6-12, but that depends on what you’re looking for), and they essentially all have hundreds of applicants. I won’t comment as much on how hiring decisions get made, except to say that my field seems a little less dysfunctional than Bret’s with “just out of PhD” hires quite rare and most people doing a few postdocs before finding a position. Still, there is a noticeable bias towards comparatively fresh PhDs, and this is reinforced by the European grant system: the ERC Starting Grant is a huge sum of money compared to many other national grants, and you can only apply for it within seven years from your PhD. The ERC Consolidator Grant can be applied for later (twelve years from PhD), but has higher standards (I’m working on an application for it this year). If you aren’t able to apply for either of those, then a lot of European institutions won’t consider you.

On the Care and Feeding of International Employees

Science and scholarship are global. If you want to find out the truth about the universe, you’ll have to employ the people best at figuring out that truth, regardless of where they come from. Research shuffles people around, driving them together to collaborate and apart to share their expertise.

(If you don’t care about figuring out the truth, and just want to make money? You still may want international employees. For plenty of jobs, the difference between the best person in the world and the best person in your country can be quite substantial.)

How do you get these international employees? You could pay them a lot, I guess, but that’s by definition expensive, and probably will annoy the locals. Instead, most of what you need to do to attract international employees isn’t to give them extra rewards: instead, it’s more important to level the playing field, and cover for the extra disadvantages an international employee will have.

You might be surprised when I mention disadvantages, but while international employees may be talented people, that doesn’t make moving to another country easy. If you stay in the same country you were born, you get involved in that country’s institutions in a regular way. Your rights and responsibilities, everything from driving to healthcare to taxes, are set up gradually over the course of your life. For someone moving to a new country, that means all of this has to be set up all at once.

This means that countries that can process these things quickly are much better for international employees. If your country takes six months to register someone for national healthcare, then new employees are at risk during that time or will have to pay extra for private insurance. If a national ID number is required to get a bank account, then whatever processing time that ID number takes must pass before the new employee can get paid. It also matters if the rules are clearly and consistently communicated, as new international employees can waste a lot of time and money if they’re given incorrect advice, or if different bureaucrats enforce different rules at their own discretion.

It also means that employers have an advantage if they can smooth entry into these institutions. In some countries it can be quite hard to find a primary care physician, as most people have the same doctor as their parents, switching only when a doctor retires. When I worked with the Perimeter Institute, they had a relationship with a local clinic that would accept their new employees as clients. In a city where it was otherwise quite hard to find a doctor, that was a real boon. Employers can also offer consistent advice even when their government doesn’t. They can keep track of their employees experiences and make reliable guides for how to navigate the system. If they can afford it, they can even keep an immigration lawyer on staff to advise about these questions.

An extremely important institution is the language itself. Moving internationally will often involve moving somewhere where you don’t speak the language, or don’t speak it very well. This gives countries an advantage if their immigrant-facing institutions are proficient in a language that’s common internationally, which at the moment largely means English. It also means countries have a big advantage if their immigrant-facing institutions are digital. If you communicate with immigrants with text, they can find online translations and at least try to figure things out. If you communicate in person, or worse through a staticky phone line, then you will try the patience even of people who do passably speak the language.

In the long term, of course, one cannot get by in one’s native language alone. As such, it is also important for countries to have good ways for people to learn the language. While I lived there, Denmark went back and forth on providing free language lessons for recent immigrants, sometimes providing them and sometimes not.

All of these things become twice as important in the case of spouses. You might think the idea that a country or employer should help out a new employee’s spouse is archaic, a product of an era of housewives discouraged from supporting themselves. But it is precisely because we don’t live in such an era that countries and employers need to take spouses into account. For an employer, hiring someone from another country is already an unusual event. Two partners getting hired to move to the same country by different employers at the same time is, barring special arrangements, extremely unlikely. That means that spouses of international employees should not have to wait for an employer to give them the same rights as their spouse: they need the same right to healthcare and employment and the like as their spouse, on arrival, so that they can find jobs and integrate without an unfair disadvantage. An employer can level the playing field further. The University of Copenhagen’s support for international spouses included social events (important because it’s hard to make new friends in a new country without the benefit of work friends), resume help (because each country has different conventions and expectations for job seekers), and even legal advice. At minimum, every resource you provide your employees that could in principle also be of use to their spouses (language classes, help with bureaucracy) should be considered.

In all your planning, as a country or an employer, keep in mind that not everyone has the same advantages. You can’t assume that someone moving to a new country will be able to integrate on their own. You have to help them, if not for fairness’ sake, then because if you don’t you won’t keep getting international employees to come at all.

Getting Started in Saclay

I started work this week in my new position, as a permanent researcher at the Institute for Theoretical Physics of CEA Paris-Saclay. I’m still settling in, figuring out how to get access to the online system and food at the canteen and healthcare. Things are slowly getting into shape, with a lot of running around involved. Until then, I don’t have a ton of time to write (and am dedicating most of it to writing grants!) But I thought, mirroring a post I made almost a decade ago, that I’d at least give you a view of my new office.

Learning for a Living

It’s a question I’ve now heard several times, in different forms. People hear that I’ll be hired as a researcher at an institute of theoretical physics, and they ask, “what, exactly, are they paying you to research?”

The answer, with some caveats: “Whatever I want.”

When a company hires a researcher, they want to accomplish specific things: to improve their products, to make new ones, to cut down on fraud or out-think the competition. Some government labs are the same: if you work for NIST, for example, your work should contribute in some way to achieving more precise measurements and better standards for technology.

Other government labs, and universities, are different. They pursue basic research, research not on any specific application but on the general principles that govern the world. Researchers doing basic research are given a lot of freedom, and that freedom increases as their careers go on.

As a PhD student, a researcher is a kind of apprentice, working for their advisor. Even then, they have some independence: an advisor may suggest projects, but PhD students usually need to decide how to execute them on their own. In some fields, there can be even more freedom: in theoretical physics, it’s not unusual for the more independent students to collaborate with other people than just their advisor.

Postdocs, in turn, have even more freedom. In some fields they get hired to work on a specific project, but they tend to have more freedom as to how to execute it than a PhD student would. Other fields give them more or less free rein: in theoretical physics, a postdoc will have some guidance, but often will be free to work on whatever they find interesting.

Professors, and other long-term researchers, have the most freedom of all. Over the climb from PhD to postdoc to professor, researchers build judgement, demonstrating a track record for tackling worthwhile scientific problems. Universities, and institutes of basic research, trust that judgement. They hire for that judgement. They give their long-term researchers free reign to investigate whatever questions they think are valuable.

In practice, there are some restrictions. Usually, you’re supposed to research in a particular field: at an institute for theoretical physics, I should probably research theoretical physics. (But that can mean many things: one of my future colleagues studies the science of cities.) Further pressure comes from grant funding, money you need to hire other researchers or buy equipment that can come with restrictions attached. When you apply for a grant, you have to describe what you plan to do. (In practice, grant agencies are more flexible about this than you might expect, allowing all sorts of changes if you have a good reason…but you still can’t completely reinvent yourself.) Your colleagues themselves also have an impact: it’s much easier to work on something when you can walk down the hall and ask an expert when you get stuck. It’s why we seek out colleagues who care about the same big questions as we do.

Overall, though, research is one of the free-est professions there is. If you can get a job learning for a living, and do it well enough, then people will trust your judgement. They’ll set you free to ask your own questions, and seek your own answers.

Enfin, Permanent

My blog began, almost eleven years ago, with the title “Four Gravitons and a Grad Student”. Since then, I finished my PhD. The “Grad Student” dropped from the title, and the mysterious word “postdoc” showed up on a few pages. For three years I worked as a postdoc at the Perimeter Institute in Canada, before hopping the pond and starting another three-year postdoc job in Denmark. With a grant from the EU, three years became four. More funding got me to five (with a fancier title), and now nearing on six. Each step, my contract has been temporary: at first three years at a time, then one-year extensions. Each year I applied, all over the world, looking for a permanent job: for a chance to settle down somewhere, to build my own research group without worrying about having to move the next year.

This year, things have finally worked out. In the Fall I will be moving to France, starting a junior permanent position with L’Institut de Physique Théorique (or IPhT) at CEA Paris-Saclay.

A photo of the entryway to the Institute, taken when I interviewed

It’s been a long journey to get here, with a lot of soul-searching. This year in particular has been a year of reassessment: of digging deep and figuring out what matters to me, what I hope to accomplish and what clues I have to guide the way. Sometimes I feel like I’ve matured more as a physicist in the last year than in the last three put together.

The CEA (originally Commissariat à l’énergie atomique, now Commissariat à l’énergie atomique et aux énergies alternatives, or Alternative Energies and Atomic Energy Commission, and yes that means they’re using the “A” for two things at the same time), is roughly a parallel organization to the USA’s Department of Energy. Both organizations began as a way to manage their nation’s nuclear program, but both branched out, both into other forms of energy and into scientific research. Both run a nationwide network of laboratories, lightly linked but independent from their nations’ universities, both with notable facilities for particle physics. The CEA’s flagship site is in Saclay, on the outskirts of Paris, and it’s their Institute for Theoretical Physics where I’ll be working.

My new position is genuinely permanent: unlike a tenure-track position in the US, I don’t go up for review after a fixed span of time, with the expectation that if I don’t get promoted I lose the job altogether. It’s also not a university, which in particular means I’m not required to teach. I’ll have the option of teaching, working with nearby universities. In the long run, I think I’ll pursue that option. I’ve found teaching helpful the past couple years: it’s helped me think about physics, and think about how to communicate physics. But it’s good not to have to rush into preparing a new course when I arrive, as new professors often do.

It’s also a really great group, with a lot of people who work on things I care about. IPhT has a long track record of research in scattering amplitudes, with many leading figures. They’ve played a key role in topics that frequent readers will have seen show up on this blog: on applying techniques from particle physics to gravitational waves, to the way Calabi-Yau manifolds show up in Feynman diagrams, and even recently to the relationship of machine learning to inference in particle physics.

Working temporary positions year after year, not knowing where I’ll be the next year, has been stressful. Others have had it worse, though. Some of you might have seen a recent post by Bret Deveraux, a military historian with a much more popular blog who has been in a series of adjunct positions. Deveraux describes the job market for the humanities in the US quite well. I’m in theoretical physics in Europe, so while my situation hasn’t been easy, it has been substantially better.

First, there’s the physics component. Physics has “adjunctified” much less than other fields. I don’t think I know a single physicist who has taken an adjunct teaching position, the kind of thing where you’re paid per course and only to teach. I know many who have left physics for other kinds of work, for Wall Street or Silicon Valley or to do data science for a bank or to teach high school. On the other side, I know people in other fields who do work as adjuncts, particularly in mathematics.

Deveraux blames the culture of his field, but I think funding also must have an important role. Physicists, and scientists in many other areas, rarely get professor positions right after their PhDs, but that doesn’t mean they leave the field entirely because most can find postdoc positions. Those postdocs are focused on research, and are often paid for by government grants: in my field in the US, that usually means the Department of Energy. People can go through two or sometimes even three such positions before finding something permanent, if they don’t leave the field before that. Without something like the Department of Energy or National Institutes of Health providing funding, I don’t know if the humanities could imitate that structure even if they wanted to.

Europe, in turn, has a different situation than the US. Most European countries don’t have a tenure-track: just permanent positions and fixed-term positions. Funding also works quite differently. Department of Energy funding in the US is spread widely and lightly: grants are shared by groups of theorists at a given university, each getting funding for a few postdocs and PhDs across the group. In Europe, a lot of the funding is much more concentrated: big grants from the European Research Council going to individual professors, with various national and private grants supplementing or mirroring that structure. That kind of funding, and the rarity of tenure, in turn leads to a different kind of temporary position: one not hired to teach a course but hired for research as long as the funding lasts. The Danish word for my current title is Adjunkt, but that’s as one says in France a faux ami: the official English translation is Assistant Professor, and it’s nothing like a US adjunct. I know people in a variety of forms of that kind of position in a variety of countries, people who landed a five-year grant where they could act like a professor, hire people and so on, but who in the end were expected to move when the grant was over. It’s a stressful situation, but at least it lets us further our research and make progress, unlike a US adjunct in the humanities or math who needs to spend much of their time on teaching.

I do hope Deveraux finds a permanent position, he’s got a great blog. And to return to the theme of the post, I am extremely grateful and happy that I have managed to find a permanent position. I’m looking forward to joining the group at Saclay: to learning more about physics from them, but also, to having a place where I can start to build something, and make a lasting impact on the world around me.