Monthly Archives: January 2025

Physics Gets Easier, Then Harder

Some people have stories about an inspiring teacher who introduced them to their life’s passion. My story is different: I became a physicist due to a famously bad teacher.

My high school was, in general, a good place to learn science, but physics was the exception. The teacher at the time had a bad reputation, and while I don’t remember exactly why I do remember his students didn’t end up learning much physics. My parents were aware of the problem, and aware that physics was something I might have a real talent for. I was already going to take math at the university, having passed calculus at the high school the year before, taking advantage of a program that let advanced high school students take free university classes. Why not take physics at the university too?

This ended up giving me a huge head-start, letting me skip ahead to the fun stuff when I started my Bachelor’s degree two years later. But in retrospect, I’m realizing it helped me even more. Skipping high-school physics didn’t just let me move ahead: it also let me avoid a class that is in many ways more difficult than university physics.

High school physics is a mess of mind-numbing formulas. How is velocity related to time, or acceleration to displacement? What’s the current generated by a changing magnetic field, or the magnetic field generated by a current? Students learn a pile of apparently different procedures to calculate things that they usually don’t particularly care about.

Once you know some math, though, you learn that most of these formulas are related. Integration and differentiation turn the mess of formulas about acceleration and velocity into a few simple definitions. Understand vectors, and instead of a stack of different rules about magnets and circuits you can learn Maxwell’s equations, which show how all of those seemingly arbitrary rules fit together in one reasonable package.

This doesn’t just happen when you go from high school physics to first-year university physics. The pattern keeps going.

In a textbook, you might see four equations to represent what Maxwell found. But once you’ve learned special relativity and some special notation, they combine into something much simpler. Instead of having to keep track of forces in diagrams, you can write down a Lagrangian and get the laws of motion with a reliable procedure. Instead of a mess of creation and annihilation operators, you can use a path integral. The more physics you learn, the more seemingly different ideas get unified, the less you have to memorize and the more just makes sense. The more physics you study, the easier it gets.

Until, that is, it doesn’t anymore. A physics education is meant to catch you up to the state of the art, and it does. But while the physics along the way has been cleaned up, the state of the art has not. We don’t yet have a unified set of physical laws, or even a unified way to do physics. Doing real research means once again learning the details: quantum computing algorithms or Monte Carlo simulation strategies, statistical tools or integrable models, atomic lattices or topological field theories.

Most of the confusions along the way were research problems in their own day. Electricity and magnetism were understood and unified piece by piece, one phenomenon after another before Maxwell linked them all together, before Lorentz and Poincaré and Einstein linked them further still. Once a student might have had to learn a mess of particles with names like J/Psi, now they need just six types of quarks.

So if you’re a student now, don’t despair. Physics will get easier, things will make more sense. And if you keep pursuing it, eventually, it will stop making sense once again.

Science Journalism Tasting Notes

When you’ve done a lot of science communication you start to see patterns. You notice the choices people make when they write a public talk or a TV script, the different goals and practical constraints that shape a piece. I’ve likened it to watching an old kung fu movie and seeing where the wires are.

I don’t have a lot of experience doing science journalism, I can’t see the wires yet. But I’m starting to notice things, subtle elements like notes at a wine-tasting. Just like science communication by academics, science journalism is shaped by a variety of different goals.

First, there’s the need for news to be “new”. A classic news story is about something that happened recently, or even something that’s happening right now. Historical stories usually only show up as new “revelations”, something the journalist or a researcher recently dug up. This isn’t a strict requirement, and it seems looser in science journalism than in other types of journalism: sometimes you can have a piece on something cool the audience might not know, even if it’s not “new”. But it shapes how things are covered, it means that a piece on something old will often have something tying it back to a recent paper or an ongoing research topic.

Then, a news story should usually also be a “story”. Science communication can sometimes involve a grab-bag of different topics, like a TED talk that shows off a few different examples. Journalistic pieces often try to deliver one core message, with details that don’t fit the narrative needing to wait for another piece where they fit better. You might be tempted to round this off to saying that journalists are better writers than academics, since it’s easier for a reader to absorb one message than many. But I think it also ties to the structure. Journalists do have content with multiple messages, it just usually is not published as one story, but a thematic collection of stories.

Combining those two goals, there’s a tendency for news to focus on what happened. “First they had the idea, then there were challenges, then they made their discovery, now they look to the future.” You can’t just do that, though, because of another goal: pedagogy. Your audience doesn’t know everything you know. In order for them to understand what happened, there are often other things they have to understand. In non-science news, this can sometimes be brief, a paragraph that gives the background for people who have been “living under a rock”. In science news, there’s a lot more to explain. You have to teach something, and teaching well can demand a structure very different from the one-step-at a time narrative of what happened. Balancing these two is tricky, and it’s something I’m still learning how to do, as can be attested by the editors who’ve had to rearrange some of my pieces to make the story flow better.

News in general cares about being independent, about journalists who figure out the story and tell the truth regardless of what the people in power are saying. Science news is strange because, if a scientist gets covered at all, it’s almost always positive. Aside from the occasional scandal or replication crisis, science news tends to portray scientific developments as valuable, “good news” rather than “bad news”. If you’re a politician or a company, hearing from a journalist might make you worry. If you say the wrong thing, you might come off badly. If you’re a scientist, your biggest worry is that a journalist might twist your words into a falsehood that makes your work sound too good. On the other hand, a journalist who regularly publishes negative things about scientists would probably have a hard time finding scientists to talk to! There are basic journalistic ethics questions here that one probably learns about at journalism school and we who sneak in with no training have to learn another way.

These are the flavors I’ve tasted so far: novelty and narrative vs. education, positivity vs. accuracy. I’ll doubtless see more over the years, and go from someone who kind of knows what they’re doing to someone who can mentor others. With that in mind, I should get to writing!

Ways Freelance Journalism Is Different From Academic Writing

A while back, I was surprised when I saw the writer of a well-researched webcomic assume that academics are paid for their articles. I ended up writing a post explaining how academic publishing actually works.

Now that I’m out of academia, I’m noticing some confusion on the other side. I’m doing freelance journalism, and the academics I talk to tend to have some common misunderstandings. So academics, this post is for you: a FAQ of questions I’ve been asked about freelance journalism. Freelance journalism is more varied than academia, and I’ve only been doing it a little while, so all of my answers will be limited to my experience.

Q: What happens first? Do they ask you to write something? Do you write an article and send it to them?

Academics are used to writing an article, then sending it to a journal, which sends it out to reviewers to decide whether to accept it. In freelance journalism in my experience, you almost never write an article before it’s accepted. (I can think of one exception I’ve run into, and that was for an opinion piece.)

Sometimes, an editor reaches out to a freelancer and asks them to take on an assignment to write a particular sort of article. This happens more freelancers that have been working with particular editors for a long time. I’m new to this, so the majority of the time I have to “pitch”. That means I email an editor describing the kind of piece I want to write. I give a short description of the topic and why it’s interesting. If the editor is interested, they’ll ask some follow-up questions, then tell me what they want me to focus on, how long the piece should be, and how much they’ll pay me. (The last two are related, many places pay by the word.) After that, I can write a draft.

Q: Wait, you’re paid by the word? Then why not make your articles super long, like Victor Hugo?

I’m paid per word assigned, not per word in the finished piece. The piece doesn’t have to strictly stick to the word limit, but it should be roughly the right size, and I work with the editor to try to get it there. In practice, places seem to have a few standard size ranges and internal terminology for what they are (“blog”, “essay”, “short news”, “feature”). These aren’t always the same as the categories readers see online. Some places have a web page listing these categories for prospective freelancers, but many don’t, so you have to either infer them from the lengths of articles online or learn them over time from the editors.

Q: Why didn’t you mention this important person or idea?

Because pieces pay more by the word, it’s easier as a freelancer to sell shorter pieces than longer ones. For science news, favoring shorter pieces also makes some pedagogical sense. People usually take away only a few key messages from a piece, if you try to pack in too much you run a serious risk of losing people. After I’ve submitted a draft, I work with the editor to polish it, and usually that means cutting off side-stories and “by-the-ways” to make the key points as vivid as possible.

Q: Do you do those cool illustrations?

Academia has a big focus on individual merit. The expectation is that when you write something, you do almost all of the work yourself, to the extent that more programming-heavy fields like physics and math do their own typesetting.

Industry, including journalism, is more comfortable delegating. Places will generally have someone on-staff to handle illustrations. I suggest diagrams that could be helpful to the piece and do a sketch of what they could look like, but it’s someone else’s job to turn that into nice readable graphic design.

Q: Why is the title like that? Why doesn’t that sound like you?

Editors in journalistic outlets are much more involved than in academic journals. Editors won’t just suggest edits, they’ll change wording directly and even input full sentences of their own. The title and subtitle of a piece in particular can change a lot (in part because they impact SEO), and in some places these can be changed by the editor quite late in the process. I’ve had a few pieces whose title changed after I’d signed off on them, or even after they first appeared.

Q: Are your pieces peer-reviewed?

The news doesn’t have peer review, no. Some places, like Quanta Magazine, do fact-checking. Quanta pays independent fact-checkers for longer pieces, while for shorter pieces it’s the writer’s job to verify key facts, confirming dates and the accuracy of quotes.

Q: Can you show me the piece before it’s published, so I can check it?

That’s almost never an option. Journalists tend to have strict rules about showing a piece before it’s published, related to more political areas where they want to preserve the ability to surprise wrongdoers and the independence to find their own opinions. Science news seems like it shouldn’t require this kind of thing as much, it’s not like we normally write hit pieces. But we’re not publicists either.

In a few cases, I’ve had people who were worried about something being conveyed incorrectly, or misleadingly. For those, I offer to do more in the fact-checking stage. I can sometimes show you quotes or paraphrase how I’m describing something, to check whether I’m getting something wrong. But under no circumstances can I show you the full text.

Q: What can I do to make it more likely I’ll get quoted?

Pieces are short, and written for a general, if educated, audience. Long quotes are harder to use because they eat into word count, and quotes with technical terms are harder to use because we try to limit the number of terms we ask the reader to remember. Quotes that mention a lot of concepts can be harder to find a place for, too: concepts are introduced gradually over the piece, so a quote that mentions almost everything that comes up will only make sense to the reader at the very end.

In a science news piece, quotes can serve a couple different roles. They can give authority, an expert’s judgement confirming that something is important or real. They can convey excitement, letting the reader see a scientist’s emotions. And sometimes, they can give an explanation. This last only happens when the explanation is very efficient and clear. If the journalist can give a better explanation, they’re likely to use that instead.

So if you want to be quoted, keep that in mind. Try to say things that are short and don’t use a lot of technical jargon or bring in too many concepts at once. Convey judgement, which things are important and why, and convey passion, what drives you and excited you about a topic. I am allowed to edit quotes down, so I can take a piece of a longer quote that’s cleaner or cut a long list of examples from an otherwise compelling statement. I can correct grammar and get rid of filler words and obvious mistakes. But I can’t put words in your mouth, I have to work with what you actually said, and if you don’t say anything I can use then you won’t get quoted.

Government Science Funding Isn’t a Precision Tool

People sometimes say there is a crisis of trust in science. In controversial subjects, from ecology to health, increasingly many people are rejecting not only mainstream ideas, but the scientists behind them.

I think part of the problem is media literacy, but not in the way you’d think. When we teach media literacy, we talk about biased sources. If a study on cigarettes is funded by the tobacco industry or a study on climate change is funded by an oil company, we tell students to take a step back and consider that the scientists might be biased.

That’s a worthwhile lesson, as far as it goes. But it naturally leads to another idea. Most scientific studies aren’t funded by companies, most studies are funded by the government. If you think the government is biased, does that mean the studies are too?

I’m going to argue here that government science funding is a very different thing than corporations funding individual studies. Governments do have an influence on scientists, and a powerful one, but that influence is diffuse and long-term. They don’t have control over the specific conclusions scientists reach.

If you picture a stereotypical corrupt scientist, you might imagine all sorts of perks. They might get extra pay from corporate consulting fees. Maybe they get invited to fancy dinners, go to corporate-sponsored conferences in exotic locations, and get gifts from the company.

Grants can’t offer any of that, because grants are filtered through a university. When a grant pays a scientist’s salary, the university pays less to compensate, instead reducing their teaching responsibilities or giving them a slightly better chance at future raises. Any dinners or conferences have to obey not only rules from the grant agency (a surprising number of grants these days can’t pay for alcohol) but from the university as well, which can set a maximum on the price of a dinner or require people to travel economy using a specific travel agency. They also have to be applied for: scientists have to write their planned travel and conference budget, and the committee evaluating grants will often ask if that budget is really necessary.

Actual corruption isn’t the only thing we teach news readers to watch out for. By funding research, companies can choose to support people who tend to reach conclusions they agree with, keep in contact through the project, then publicize the result with a team of dedicated communications staff.

Governments can’t follow up on that level of detail. Scientific work is unpredictable, and governments try to fund a wide breadth of scientific work, so they have to accept that studies will not usually go as advertised. Scientists pivot, finding new directions and reaching new opinions, and government grant agencies don’t have the interest or the staff to police them for it. They also can’t select very precisely, with committees that often only know bits and pieces about the work they’re evaluating because they have to cover so many different lines of research. And with the huge number of studies funded, the number that can be meaningfully promoted by their comparatively small communications staff is only a tiny fraction.

In practice, then, governments can’t choose what conclusions scientists come to. If a government grant agency funds a study, that doesn’t tell you very much about whether the conclusion of the study is biased.

Instead, governments have an enormous influence on the general type of research that gets done. This doesn’t work on the level of conclusions, but on the level of topics, as that’s about the most granular that grant committees can get. Grants work in a direct way, giving scientists more equipment and time to do work of a general type that the grant committees are interested in. It works in terms of incentives, not because researchers get paid more but because they get to do more, hiring more students and temporary researchers if they can brand their work in terms of the more favored type of research. And it works by influencing the future: by creating students and sustaining young researchers who don’t yet have temporary positions, and by encouraging universities to hire people more likely to get grants for their few permanent positions.

So if you’re suspicious the government is biasing science, try to zoom out a bit. Think about the tools they have at their disposal, about how they distribute funding and check up on how it’s used. The way things are set up currently, most governments don’t have detailed control over what gets done. They have to filter that control through grant committees of opinionated scientists, who have to evaluate proposals well outside of their expertise. Any control you suspect they’re using has to survive that.

Freelancing in [Country That Includes Greenland]

(Why mention Greenland? It’s a movie reference.)

I figured I’d give an update on my personal life.

A year ago, I resigned from my position in France and moved back to Denmark. I had planned to spend a few months as a visiting researcher in my old haunts at the Niels Bohr Institute, courtesy of the spare funding of a generous friend. There turned out to be more funding than expected, and what was planned as just a few months was extended to almost a year.

I spent that year learning something new. It was still an amplitudes project, trying to make particle physics predictions more efficient. But this time I used Python. I looked into reinforcement learning and PyTorch, played with using a locally hosted Large Language Model to generate random code, and ended up getting good results from a classic genetic programming approach. Along the way I set up a SQL database, configured Docker containers, and puzzled out interactions with CUDA. I’ve got a paper in the works, I’ll post about it when it’s out.

All the while, on the side, I’ve been seeking out stories. I’ve not just been a writer, but a journalist, tracking down leads and interviewing experts. I had three pieces in Quanta Magazine and one in Ars Technica.

Based on that, I know I can make money doing science journalism. What I don’t know yet is whether I can make a living doing it. This year, I’ll figure that out. With the project at the Niels Bohr Institute over, I’ll have more time to seek out leads and pitch to more outlets. I’ll see whether I can turn a skill into a career.

So if you’re a scientist with a story to tell, if you’ve discovered something or accomplished something or just know something that the public doesn’t, and that you want to share: do reach out. There’s a lot that can be of interest, passion that can be shared.

At the same time, I don’t know yet whether I can make a living as a freelancer. Many people try and don’t succeed. So I’m keeping my CV polished and my eyes open. I have more experience now with Data Science tools, and I’ve got a few side projects cooking that should give me a bit more. I have a few directions in mind, but ultimately, I’m flexible. I like being part of a team, and with enthusiastic and competent colleagues I can get excited about pretty much anything. So if you’re hiring in Copenhagen, if you’re open to someone with ten years of STEM experience who’s just starting to see what industry has to offer, then let’s chat. Even if we’re not a good fit, I bet you’ve got a good story to tell.